CS 7810 Graduate Cryptography

Lecture : Basic Number Theory and Algebra
Lecturer: Daniel Wichs Scribe: Yashvanth Kondi (Edited)

1 Topics Covered

e Fundamentals of field arithmetic
e Introduction to modular arithmetic

e Group theory

2 Fundamentals of Field Arithmetic

Given two integers a, b the cost of performing standard operations is as follows:

e a+b, a xband “division with remainder” in time poly in input length, which means
poly(logy a + log, b).

e a’: result of computation has length exponential in input size, so trivially there exists

no algorithm to perform exponentiation in poly time.
e gcd(a,b):

1. if b =0, output a

2. else ‘divide’ a by b to obtain k,r such that a = k- b+ r where r < b, and output
ged(b, r).

Euclid’s algorithm (above) computes the greatest common divisor of a and b. As

lej_fr < %, there are at most log% (a + b) iterations, keeping the overall running time

polynomial in the inputs.

e egcd(a,b) = (z,y) such that a-x 4+ b-y = ged(a,b): can be computed in poly time by
extending Euclid’s algorithm, as described below.
eged(a,b) :
1. if b = 0, output (1,0)
2. else ‘divide’ a by b to obtain k, r such that a = k-b+ 7 where r < b, and compute
(', y") = eged(b, ).
3. Output (¢/,2' — ¢ - k).
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3 Modular Arithmetic

The set of integers modulo N is denoted Zy. Given a,b € Zy, computing (a+b) (mod N)
and (a-b) (mod N) is straightforward to do in poly time.
Given a € Zy, the ‘inverse’ of a is denoted a~!, and by definition a-a~! =1 (mod N).

Theorem 1 An a € Zy has an inverse if and only if gcd(a, N) = 1. Furthermore the
inverse can be computed in polynomial time in the lengths of a, N.

Proof: If gcd(a, N) = 1 then, by the extended Euclid’s algorithm, we can find =,y such
that -a+y- N = 1 meaning that x-a = 1 mod N. This means that x = a~! is the inverse
of a.

If @ has an inverse x = a~! then a - = 1 mod N. This means that there exists some
y € Z such that a-x + N -y = 1. Since gcd(a, N) divides a and N it must also divide
a-x+ N -y =1. But this can only happen if gcd(a, N) = 1. L]

Exponentiation. Given a,b € Zy, computing a® (mod N) can be done in poly time via
the ‘repeated square’ algorithm. Let the number of bits to represent an element in Zy be
n = logy N. The technique is to parse b into bits bgb; - - - by, and then make use of the

observation that b = > 2¢.b; to simplify the computation as follows:
i€[n]

b (Z 2i.b¢> oi b,
a:ale[n] :Ha'z

i€[n]

The algorithm itself follows easily, as described below.
expy(a,b) :

1. Parse b into bits bgby - - - by,.

2. Set c=1, and d = a.

3. If jp = 1, update c=a

4. For i € [2,n] : Update d = d?. If b; = 1, then update ¢ = ¢-d (mod N)

5. Output c.

4 Groups

A group (G, %) characterized by a set of elements G and an operator *, satisfies the following
properties:

1. Closure: Va,b € G, we have that a *b € G.
2. Associativity: Va,b,c € G, we have that (a*b) xc=a* (bx*c).

3. Identity: Je € G such that Va € G, axe=ex*xa = a.
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4. Inverse: Va € G, Ja~' € Gsuch that axa ' =a lxa=e.

It’s easy to see that (Zy,+) is a group with identity element e = 0. However (Zy, X) is
not a group (as 0 does not have an inverse for any N), and may not be a group for every N
even if zero is omitted. This is because inverses exist only for a € Zy where ged(a, N) = 1.
We instead work with group (Z};, x), where Z} = {a : a € Zy, gcd(a, N) = 1}.

Group order. The order ¢(N) of N is given by the size of the group Z};, ie. ¢(N) = |Z}].
It is easy to see that for a prime p, ¢(p) =p — 1.

Subgroups. If H C G, we call H = (H, %) a subgroup of G = (G, ) if (H,x) is also a
group. This is denoted H C G.

Theorem 2 Lagrange’s Theorem. Let H = (H,*) and G = (G, ) be groups. If H C G,
then |H| divides |G|.

Proof: Let H = {hl,hg'”hu}m}. Pick ¢1 € G, ¢1 ¢ H and enumerate g1H = {¢ -
hi,91 - h2---g1 - hy}. Continue to pick g; € G, g; ¢ HU {g1,92---gi—1} and generate
gl = {gi - h1,9i - ha---gi- hym}. Note that g;H and g;H are completely disjoint sets when
i # j. This can be shown as follows: consider g such that g € ¢;H and g € g;H. Therefore
gi-hir = gj-hj = g for some ', j' € [|H|]. This gives us g; = g;-hj - hi_,l. Now, any element
in ¢;H can be interpreted as g; - hy, = g; - hj - hl._/l - hy, = gj - hyy for some k’. This proves
that if g;H and g;H have even one common element, then 7 = j. As all the g;H sets are

therefore disjoint, once we exhaust all possible g; € G we will have that > |g;H| = |G| for
i€[n]
some integer n. O

Corollary 1 If p is prime, then Va € Zj, a?~1 =1 (mod p).

Cyclic Groups. Let G = (G, ). Consider g € G. Denote {g) = {¢°,g',--- g7} as the
subgroup ‘generated’ by g. We say that G is cyclic if (g) is cyclic, ie. g9 = ¢° = 1. Note
that ¢* - ¢/ = 't/ (m°d @) The size q of (g) is the order of the group.

Proof: (Postponed proof of Fermat’s Little Theorem, see Corollary 1).
a)|=q| (p—1),s0 "t =a?® =1 (mod p) 0

Also observe that a® (mod N) = a® 4 ¢N) (mod N), so ab = a#Nk+b (mod oN) - Note
that (g) is isomorphic to Zg, ie. ((g),-) = (Zq, +).

Theorem 3 Ifp is prime, then (Z,, x) is a cyclic group. ie. 3g such that Z; = {1, g,g%, - g1}
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