
CS 7880 Graduate Cryptography September 20, 2017

Lecture 5: Pseudorandom Generators

Lecturer: Daniel Wichs Scribe: Willy Quach

1 Topic Covered

• Computational Security

• Pseudorandom Generators

2 Computational Security

We previously defined the notion of (one-time) computational security for encryption schemes,
which formalizes the intuition that no efficient attacker can distinguish the encryptions of
two different messages, even if those messages are chosen maliciously. This is a weaker no-
tion compared to perfect security and ε-security for negligible ε. In particular, the One Time
Pad is (one-time) computationally secure (as we saw it is secure against computationally
unbounded attackers).

Thus, it is natural to ask whether computational security gives us more flexibility than
statistical notions of security to build encryption schemes. More precisely, recall that for
ε-security for small ε, we necessarily have |K| ≥ |M|. Does there exist a computationally
secure encryption scheme such that |K| < |M|? It turns out that there is no hope if
P = NP :

Theorem 1 Suppose P = NP . Then for any n, there is no One-time computationally
secure encryption scheme with K = {0, 1}n and M = {0, 1}n+1.

Proof: Let (Enc,Dec) be an encryption scheme (with key space K and message spaceM),
and let A be an attacker for the One-time computational security game, defined as follows:

• In the first phase, A chooses two random messages m0,m1 uniformly and indepen-
dently in M = {0, 1}n+1.

• After receving a ciphertext c from the Challenger (which encrypts mb in OneSecb for
b ∈ {0, 1}), A checks if:

∃k ∈ K,Dec(k, c) = m1, (1)

and outputs 1 if that is the case, and 0 otherwise.

We first claim thatA is efficient. To do so, define L := {(c,m) | ∃k ∈ K,Dec(k, c) = m}.
Then L ∈ NP (as there is some k being a valid witness for any (c,m) ∈ L by construction).
But by assumption, A can test efficiently if (c,m1) ∈ L, and can therefore perform the
check (1) efficiently.

Lecture 5, Page 1

Next, we prove that A distinguishes games OneSec0 and OneSec1 with constant prob-
ability. Note that if A plays game OneSec1, he always outputs 1 by correctness of the
scheme (the key chosen by the Challenger being a valid k for (1)):

Pr[OneSec1A = 1] = 1.

Now suppose that A plays game OneSec0. Then, for any c, the set S := {Dec(k, c), k ∈ K}
has size at most |K| = 2n. Note that A outputs 1 if and only if m1 ∈ S (where c is computed
by the Challenger). As A picked m1 independently of m0, m1 does not depend on c, so
that:

Pr[OneSec0A = 1] = Pr[m1 ∈ S] ≤ |K|/|M| ≤ 1/2,

which concludes the proof.

3 Pseudorandom Generators (PRG)

A Pseudorandom Generator is a (family of) function that stretch a random input string
(the seed) and outputs a longer string which looks uniform. More formally:

Definition 1 [Pseudorandom Generator]
A family of deterministic and efficient to compute functions G :

(
{0, 1}n → {0, 1}`(n)

)
n∈N

such that ∀n, `(n) > n is a Pseudorandom Generator if:

G(Un) ≈ U`(n).

♦

Remark 1 The set G({0, 1}n) has size at most 2n, whereas {0, 1}`(n) has size greater than
2n+1. So an unbounded adversary can easily distinguish between the two distributions. How-
ever if G is a PRG, then no efficient adversary can do the same.

The existence of PRGs suffices to build non-trivial One-Time computationally secure
encryption. Define:

Enc(k,m) := G(k)⊕m,

Dec(k, c) := G(k)⊕ c,

where K = {0, 1}n and M = {0, 1}`(n) (recall that `(n) > n by definition, so that |K| <
|M|).

In other words, this scheme uses the output of G as a One-Time Pad key.

Theorem 2 Suppose G :
(
{0, 1}n → {0, 1}`(n)

)
n∈N is a PRG. Then (Enc,Dec) defined

above is One-Time computationally secure.

Proof: The proof proceeds with a sequence of hybrids, using the hybrid argument intro-
duced in the previous lecture.

Let OneSecb, b ∈ {0, 1} be the game defining One-time computationally security.
Define the following intermediate games (which only differ in the way c is computed by

the Challenger):

Lecture 5, Page 2

• Game OneSecRb, b ∈ {0, 1}: this is almost the same game as OneSecb, but the
Challenger here computes c as c = R⊕mb for a uniformly random R← {0, 1}`(n).

• Game OneSecR∗: here the Challenger picks c uniformly in {0, 1}`(n).

Note that OneSecb ≈ OneSecRb for any b ∈ {0, 1}. This follows from a reduction from
the security of the PRG: we show that a distinguisher D between OneSecb and OneSecRb

(for any b) implies a distinguisher R between G(Un) and U`(n). Indeed, the reduction

R receives samples z from {0, 1}`(n), and forwards z ⊕ mb to the OneSecb - OneSecRb

distinguisher D. Then it forwards the output of the distinguisher to the Challenger.
Then R is clearly efficient. Also if the sample comes from G(Un) then the distinguisher

D receives samples from OneSecb; if the samples come from U`(n) then the distinguisher

D receives samples from OneSecRb. Therefore, the reduction R distinguishes G(Un) and
U`(n) with the same probability as the distinguisher D does for OneSecb and OneSecRb.

Also, we have that: OneSecb ≈ OneSecR∗ for any b (actually we already showed that
OneSecb ≡ OneSecR∗ when studying the One-Time Pad, which is a stronger statement).

Overall, we have OneSec0 ≈ OneSecR0 ≈ OneSecR∗ ≈ OneSecR1 ≈ OneSec1, and so,
a hybrid argument gives:

OneSec0 ≈ OneSec1,

which concludes the proof.

Next, we show how one can increase the stretch of a PRG:

Theorem 3 Let G :
(
{0, 1}n → {0, 1}n+1

)
n∈N be a PRG (where `(n) = n+ 1). Then there

exists a PRG G′ :
(
{0, 1}n → {0, 1}`(n)

)
n∈N for any polynomial `(n) > n.

Remark 2 We cannot hope to achieve a PRG with arbitrarily large, say, exponential
stretch, because the distinguisher is allowed to run in time polynomial to its input. If
`(n) = 2n for instance, the distinguisher can run G on all inputs {0, 1}n; with high proba-
bility, a sample in U`(n) will not lie in G({0, 1}n).

Proof: Let G be a PRG with 1-bit stretch (i.e. G outputs n + 1 bits). The idea is to
iterate G to get an extra bit of pseudorandomness at every step:

b1 bk

x0
G−−−−→ x1

G−−−−→ · · · G−−−−→ xk

where xi ∈ {0, 1}n, bi ∈ {0, 1} are defined by x0 ← {0, 1}n, and G(xi) = (xi+1‖bi+1) for
i < k, and set:

G′(x0) = (xk‖b1‖ · · · ‖bk) ∈ {0, 1}n+k.

This gives a new family of functions with `(n) = n+k. Let us prove that, for constant k, G′

is a PRG. However, the definition of a PRG only gives guarantees with respect to uniform
inputs. Let us define the following distributions:

Hi = (xk‖b1‖ · · · ‖bk),

where:

Lecture 5, Page 3

bi+1 bk
b1, · · · , bi ← {0, 1},

xi ← {0, 1}n
G−−−−→ xi+1

G−−−−→ · · · G−−−−→ xk

Note that we have for all i < k: Hi ≈ Hi+1. This follows from a similar reduction
as in the previous theorem: a distinguisher D between Hi and Hi+1 for any i implies a
distinguisher R for the PRG G with same success probability.

More precisely, R receives some sample y = (xi+1‖bi+1) ∈ {0, 1}n+1, and computes
k − i − 1 iterations of G with input xi+1, as above. It picks uniformly b1, · · · bi uniformly
itself, and sends (xk‖b1‖ · · · ‖bk) to D, and forwards the output of D. Such a reduction R
is efficient (as G itself is efficient to compute).

Then, if y comes from G(Un) then D receives samples distributed as Hi; if y comes from
Un+1 then D receives samples distributed as Hi + 1.

As H0 corresponds to the distribution G(Un), and Hk corresponds to U`(n), a hybrid
argument concludes the proof for constant k.

One has to be slightly more careful if k(n) is polynomial in n for instance. Recall that
all random variables X are indexed with a security parameter n. We now have to consider
a family of increasingly many random variables {Xk

n}n∈N,k≤`(n).
Then we can define our intermediate distributions as before: {H i(n)

n }n∈N for any poly-
nomial i(n) (which is efficiently computable OR if we allow non-uniform reductions).

We then prove similarly as above that:

∀ polynomial i(n), {H i(n)
n }n ≈ {H i(n)+1

n }n.

The hybrid argument generalizes naturally in this case: if for all polynomials i ≤ k

(where n + k(n) = `(n)), we have {H i(n)
n }n ≈ {H i(n)+1

n }n, then:

{H0
n}n ≈ {H`(n)

n }n,

which concludes the proof for polynomial k(n).

Remark 3 One advantage of the construction of the PRG in the proof above is that you
do not have to know in advance how many outputs bits you need; you can always continue
iterating the process whenever needed.

Lecture 5, Page 4

