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1 Topic Covered

• Identification Schemes

• Schnorr Identification Scheme

• Schnorr Signatures

2 Identification Schemes

Identification schemes help to convince “verifiers” about the identity of someone without
letting others (read adversaries) convince the “verifiers” about the identity of that particular
person. For example, if I were to log in to many websites using the same password, then a
secure identification scheme should prevent other websites from logging in to a particular
website using my identity. We consider the following aspects of an identification scheme.

2.1 Structure

Let (pk, sk)← Gen(1n), where n is a security parameter, pk is the public key, and sk is the
secret key. The protocol comprises a prover, P , and a verifier, V .

P (pk, sk) V (pk)

←−−−−−−
−−−−−−→
←−−−−−−

↓ 0/1

The protocol is randomised, and V outputs either 0 or 1.

2.2 Correctness

We require the following notion of correctness.

P [Output(P (pk, sk)↔ V (pk)) = 1] = 1

The verifier should accept if we run the protocol correctly.
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2.3 Honest Verifier Security

Let V iew(P (pk, sk)↔ V (pk)) denote everything that the verifier sees when the protocol is
running. It is also referred to as the transcript of the protocol from the perspective of the
verifier. Let IDGameA(n) be the following security game.

A V (pk)
(pk, sk)← Gen(1n)

pk
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

“next”−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
tri = V iew(P (pk, sk)↔ V (pk)) for i = 1, . . . , t
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

↓ b ∈ {0, 1} = V ’s Output

Here, t = poly(n). We say that the scheme is secure if,

P [IDGameA(n) = 1] = negl(n).

3 Schnorr Identification Scheme

If we have a digital signature scheme, then it is simple to construct an identification scheme
from it. The verifier, V , picks a random string and asks the prover, P , to sign it, and when
that signature is transmitted to V , he can verify it. But here, we build an identification
scheme from Discrete Log, which would have the following form.

P (pk, sk) V (pk)
a−−−−−−−−−−−−−−−−−−−−−→
c←−−−−−−−−−−−−−−−−−−−−− c← Dpk

z−−−−−−−−−−−−−−−−−−−−−→ V (pk, (a, c, z)) = 1

Let (G, g, q)← Gen(1n), where G is a group with prime order, q, and g is the generator
of G. Then we have the following scheme.

P (pk, sk) V (pk)
r ← Zq a = gr

−−−−−−−−−−−→
c←−−−−−−−−−−− c← Zq

z = r + c · x−−−−−−−−−−−→ Ver(pk, (a, c, z)) = 1

Ver(pk, (a, c, z)) : If a · hc = gz, output 1. Else, output 0.

Lecture 18, Page 2



Claim 1 ∃ PPT, Sim, with (a, c, z)← Sim(pk), such that ∀(pk, sk)← Gen(1n),

V iew(P (pk, sk)↔ V (pk)) ≡ Sim(pk).

So, Sim is a simulator, who simulates the transcripts himself without knowing the secret
key. This is good for the security of the system because it implies that the adversary could
not have done much, even on viewing multiple transcripts, because he could have generated
the transcripts himself. So, he could not have learned anything more than the public key.

Proof: If Sim samples c, z ← Zq, and sets a = gz

hc , then the distribution of a given c, z
is exactly the same as in V iew. In other words, the distribution of (a, c, z) is the same in
both cases. The simulator basically generates the transcripts by running the protocol in a
different order.

Claim 2 ∃ PPT, Ext with x′ ← Ext(pk, a, (c, z), (c′, z′)), such that whenever c 6= c′ and
V er(pk, (a, c, z)) = V er(pk, (a, c′, z′)) = 1, then x′ = x.

Proof: V er(pk, (a, c, z)) = V er(pk, (a, c′, z′)) = 1
⇐⇒ a.hc = gz

⇐⇒ a.hc
′

= gz
′

⇒ hc−c
′

= gz−z
′

⇒ h = g
z−z′
c−c′ [c− c′ 6= 0, and q is prime]

Ext outputs x′ = z−z′
c−c′ .

The aforementioned claims are somewhat contradictory. The first claim says that an
adversary is able to create as many transcripts as he wants without knowing the secret key.
On the other hand, the second claim says that if the adversary can verify two different
transcripts with the same a, then he can break the system as he can recover the secret key.
But in the first claim, any given value of a is never repeated in any sampled view (with
high probability) because the choices of c and z are random each time.

Theorem 1 The above construction is a secure identification scheme under Discrete Log.

Proof: Assume ∃ PPT, A, such that P [IDGameA(n) = 1] = ε(n) 6= negl(n). We construct
a reduction, B, that solves Discrete Logarithm.

A

pk

{tri}i=1,...,q

a

c

z

B : tri =
Sim(.)

h = gx

x
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Here, a technique called, “rewinding,” is used: B takes a snapshot upto the point it sees
a. Then it rewinds and sends a fresh c′ to the adversary, and hopes that V er(pk, (a, c′, z′)) =
1.

Let w be the total state of A after it sends a. Let pw = Pr[W = w], where W is the
random variable denoting the transcript up to the point, where B takes the snapshot, and
let εw = P [IDGameA(n) = 1|W = w]. Then,

P [A wins] =
∑
w

pw · εw = ε(n).

Let δw = P [B wins|W = w]. B wins when c 6= c′ and when A wins on both occasions. So,

δw = ε2w

(
1− 1

q

)
≥ ε2w −

1

q
.

We get the following.

P [B wins] =
∑
w

pwδw

≥
∑
w

pw · εw2 − 1

q

[
∵ P

[
c = c′

]
=

1

q

]
= E

[
εw

2
]
− 1

q

≥ E [εw]2 − 1

q
[∵ By Jensen’s Inequality]

= ε2(n)− 1

q
6= negl(n) [∵ nonnegl(n)− negl(n) = nonnegl(n)]

So, when A breaks the identification scheme, we are able to solve the Discrete Log prob-
lem with non-negligible probability, thus, contradicting our assumption. Therefore, the
construction is secure under Discrete Log.

4 Schnorr Signatures

We cannot use the identification scheme directly to construct the signature scheme because
the identification scheme is interactive. We want the signature to be performed in one
shot. Instead, we pretend that the signee (the prover in the identification scheme) has
an “imaginary friend”, who uses the Random Oracle (RO) to return a value to him. He
finally outputs another value based on the value he recieved, which is then his signature.
Also, Gen for this scheme is the same as Gen for the identification scheme. So, we have
(pk, sk)← Gen(1n), where sk = x and pk = h = gx.

Signsk(m) “Imaginary Friend”
a = gr(r ← Zq)−−−−−−−−−−−→
c← RO(a,m)
←−−−−−−−−−−−
z = r + c · x−−−−−−−−−−−→

Output: σ ← (a, c, z)
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Verifypk(m,σ = (a, c, z)): If c = RO(a,m) and gz = ahc, output 1. Else, output 0.
Note that we don’t really need c in σ as RO is known to public, but we keep it any-

way for simplicity. We prove the security of this scheme under RO model, and for that,
we assume that there is an adversary, A, that breaks its security. Then we would have a
reduction, B, that would break the security of the identification scheme. Assume that B
makes q Random Oracle queries.

A :
SigGameA(n)

pk

(aj ,mj)

cj

mi

σi ← (ai, ci, zi)

m∗, σ∗ ← (a∗, c∗, z∗)

B

j∗ ← [q]
If j 6= j∗

cj ← C
Else
cj∗ = c∗

RO(ai,mi)← ci

pk,{(ai, ci, zi)}

aj∗

c∗

z∗

Challenger :
IDGameB(n)

We want each ai to have very high entropy. Some meaningful class of secure ID schemes
has this property. Schnorr also does because the choice of a is random since r is random.

In the reduction, RO is programmed, such that RO(ai,mi) = ci for every signature
query, mi. A wants random ci, which is what it gets because B gets {(ai, ci, zi)} at the
beginning.
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