
CS 7810 Graduate Cryptography October 30, 2017

Lecture 15 & 16: Trapdoor Permutations, RSA, Signatures

Lecturer: Daniel Wichs Scribe: Willy Quach & Giorgos Zirdelis

1 Topic Covered.

• Trapdoor Permutations.

• RSA

• Signatures from Trapdoor Permutations

2 Trapdoor Permutations (TDP).

Let us define a new basic primitive, called Trapdoor Permutations (TDP). Trapdoor per-
mutations are very powerful and give us an easy way to build public-key encryption and
signatures (in the RO model). On the other hand we only have very few candidates, all
relying on the hardness of factoring. Moreover, TDPs don’t seem to be essential in building
crypto and almost all primitives that we can build from TDPs we also know how to build
using other means without TDPs.

Definition 1 A Trapdoor Permutation (TDP) is given by 3 algorithms:

• Gen(1n) outputs a pair of keys (pk, sk);

• fpk : Dpk → Dpk defined over some domain Dpk;

• gsk : Dpk → Dpk defined over the same domain,

such that:

• There is an efficient sampling algorithm x← Dpk;

• fpk is a permutation computable in polynomial time (given pk);

• gsk is a permutation computable in polynomial time (given sk) such that: ∀x ∈ Dpk :
gsk(fpk(x)) = x.

The security of a TDP is expressed as:

∀PPT A,Pr[A(pk, fpk(x)) = x | (pk, sk)← Gen(1n), x← Dpk] ≤ negl(n).

♦
Let us now show that Trapdoor Permutations imply Public-Key Encryption.

Lecture 15 & 16, Page 1

As a first attempt, one could think of defining (pk, sk) for the Trapdoor Permutation as
the public and secret keys of the Public-Key scheme, respectively, and defining Encpk(m) :=
fpk(m). This is not enough, as any CPA-secure encryption scheme cannot be deterministic.

As a second attempt, one could think of choosing a random value x, and giving fpk(x), x⊕
m as the ciphertext. This does not work either as it is not necessarily hard to recover some
part of x given fpk(x).

However, we can use the above idea to encrypt a one-bit message, by using the hard-core
bit hc(x) instead of x as a one-time pad: Encpk(m) = (fpk(x), hc(x)⊕m),

Fr example, using the Goldreich-Levin hard-core bit we get:

Encpk(m) = (fpk(x), r, 〈x, r〉 ⊕m).

where x← Dpk, r ← {0, 1}|x|.
Alternatively, we can have a more efficient scheme in the Random Oracle Model where

we can encrypt a long message, by defining:

Encpk(m) = (fpk(x), RO(x)⊕m).

3 Cryptography modulo N = pq.

3.1 Chinese Remainder Theorem.

Define N = pq for two primes p and q. The structure of ZN is well understood:

Theorem 1 (Chinese Remainder Theorem (CRT)) Let N = pq, where p and q are
prime. Then:

ZN ∼= Zp × Zq;
Z∗N ∼= Z∗p × Z∗q ;

In other words, there exists an isomorphism ψ : ZN → Zp × Zq defined by ap = a mod p,
and aq = a mod q. It’s easy to see that if ψ(a) = (ap, bq), and ψ(b) = (bp, bq), then:

• ψ(a+ b) = (ap + bp, aq + bq),

• ψ(a · b) = (ap · bp, aq · bq).

Furthermore, ψ is invertible and the inverse ψ−1 can be efficiently computed using the
extended euclidean algorithm. Indeed, as p and q are primes, we can efficiently compute
integers x and y such that px + qy = 1. This gives px = 1 mod q and qy = 1 mod p.
In other words, ψ(px) = (0, 1), and ψ(qy) = (1, 0), so that for all (α, β) ∈ Zp × Zq,
ψ−1(α, β) = αqy + βpx.

The theorem implies in particular that ϕ(N) = |Z∗N | = |Z∗p| · |Z∗q | = (p− 1) · (q − 1).

Lecture 15 & 16, Page 2

3.2 RSA Trapdoor Permutation.

Fix an integer N . Recall that by Lagrange’s theorem Xϕ(N) = 1 mod N .
Define fe(x) = xe mod N = xe mod ϕ(N) mod N , which is a permutation as soon as

gcd(e, ϕ(N)) = 1. Indeed, if that is the case, there exists d ∈ N such that e·d = 1 mod ϕ(N),
which gives fd(fe(x)) = xe·d mod N = x.

This naturally gives a candidate TDP for N = pq where p and q are primes:

• Gen(1n): pick p, q random n-bit primes, and set N = pq.

Pick e such that gcd(e, ϕ(N)) = 1, and compute d = e−1 mod ϕ(N).

Set pk = (N, e), sk = (N, d), and Dpk = Z∗N ;

• Define fpk(x) = xe mod N ;

• and gsk(x) = xd mod N .

We know that fpk and gsk are permutations that can be computed in polynomial time,
and we can sample efficiently from Dpk.

It is not clear that this TDP is secure though; it is actually assumed, and this assumption
is called the RSA assumption.

We often compare the RSA assumption to the hardness Factoring, defined as follows:

∀PPT A,Pr[A(N) = {p, q} | p, q ← n-bit primes, N = pq] ≤ negl(n).

It follows that solving the RSA problem is no harder than solving the Factoring problem.
In other words, if Factoring is easy, then RSA is easy. Indeed, solving Factoring allows to
compute ϕ(N) = (p−1) · (q−1), which in turn allows to compute e−1 mod ϕ(N) and break
the RSA assumption. The other direction is not known and it is possible that factoring is
hard but RSA is easy.

This raises the natural question of building a Public-Key cryptosystem based on the
hardness of Factoring alone.

3.3 Rabin’s PKE

Instead of considering exponentiation by a public parameter e, we simply square the input.
Define:

f :Z∗N → Z∗N
x 7→ x2

This is not a permutation. In fact, the image of this function is QRN the subgroup of
quadratic residues modulo N and we will see that only 1/4th of the elements of Z∗N are in
QRN . Let us spend some time understanding the structure of this function and the group
QRN .

Lecture 15 & 16, Page 3

Squaring and Quadratic Residues mod p. First, let us understand the squaring
function f(x) = x2 mod p for a prime p and the corresponding group QRp.

We know that for any generator g of Z∗p, the group QRp consists of all of the even
powers of g: QRp = {1, g2, g4, . . . , gp−3}. Therefore |QRp| = |Z∗p|/2 = (p− 1)/2 . Note that

1 has two square-roots under f namely, 1 and g(p−1)/2. Therefore it must be the case that
g(p−1)/2 = −1. In general, every element g2i in QRp has two square-roots, namely gi and
−gi = gi+(p−1)/2.

Suppose furthermore that p = 3 mod 4, so that (p−1)/2 is odd. Then, for any g2i ∈ QRp,
out of the two square-roots gi, gi+(p−1)/2 exactly one of them has an even exponent i.e.
exactly one preimage is in QRp. Therefore, the squaring function f induces a permutation
over QRp.

Actually, the permutation is efficiently invertible. Indeed, write p = 4i + 3, and y =
x2 mod p. Then, we have (y(i+1))2 = y2i+2 = x4i+4 = y, so y(i+1) and y(i+1)+(p−1)/2 are
preimages of x, and (exactly) one of them is a quadratic residue, and therefore an inverse
of f|QRp

.

Squaring and Quadratic Residues mod N . The above generalizes directly to Z∗N
where N = pq by the Chinese Remainder Theorem. In particular, it implies QRN ∼=
QRp ×QRq and |QRN | = |Z∗N |/4.

Each ement in y ∈ QRN has exactly 4 square-roots. If (xp, xq) is one square-root of
y = (yp, yq) ∈ QRN then (±xp,±xq) are the 4 square-roots of y.

The function f(x) = x2 is not injective (it is 4-to-1) when the domain is Z∗N . However,
if we restrict the domain to QRN and p ≡ 3 mod 4 and q ≡ 3 mod 4 then f(x) = x2 is a
permutation. Furthermore, f is efficiently invertible given p and q since we can efficiently
invert modulo p,q individually.

Lastly, we can sample elements from QRN efficiently: just sample elements from Z∗N ,
and square the samples.

We claim that f(x) = x2 mod N is a TDP. To prove this, we first prove the following.

Lemma 1 Given x, z ∈ Z∗N such that x2 = z2 but x 6= ±z, one can efficiently factor N .

Proof: Due to the expression of the 4 preimages of any y ∈ QRN above, we have x =
(xp, xq) and z = (xp,−xq) or z = (−xp, xq).

Suppose that z = (xp,−xq). Then x+ z = (0, 2xq) which is divisible by p but not by q;
so that gcd(x+ z,N) = p.

Otherwise, x− z = (2xp, 0) and the same argument applies.

We can now prove that f(x) = x2 is a one-way function over Z∗N . In particular, this
means that given a random y ∈ QRN one cannot find any square-root x such that x2 =
y mod N . Note that this is a stronger statement then just saying that f is a one-way
permutation over QRN since we’re showing that it’s hard to find any square-root, not just
the one which is itself a quadratic residue.

Theorem 2 f : Z∗N → QRN , x 7→ x2 is a One-Way Function assuming Factoring is hard.

Lecture 15 & 16, Page 4

Proof: Assume A breaks the one-wayness of f . Our reduction R does the following: it
picks x randomly in Z∗N , and sends y = x2 to the adversary, which outputs some z. If
z2 = x2 and z 6= ±x, the reduction uses the Lemma above to factor N .

The adversary finds z2 such that x2 = z2 with non-negligible probability by definition.
We saw that for any y ∈ QRN , y has 4 different preimages from f . As a result, we have
that z 6= ±x with probability 1/2 over the randomness of x alone (as the adversary only
sees y = x2). So the reduction factors N with non-negligible probability.

4 Signatures

4.1 Definition

We now define Signatures, which is the public-key counterpart of MACs, and present a
construction from Trapdoor Permutations in the Random Oracle Model. Intuitively, it
allows to sign a message using a secret signing key, while allowing public verification of
signatures (given the associated message).

Definition 2
A Signature is defined by 3 algorithms:

• Gen(1n) : outputs a pair of keys (pk, sk),

• Signsk(m) : outputs a signature σ,

• Verifypk(m, σ) : outputs a bit b,

such that:

• The signature is correct, i.e.:

Pr[Verifypk(m, Signsk(m)) = 1 | (pk, sk)← Gen(1n)] = 1.

• The signature is secure. To define security, consider the following game:

SigGame:

Adversary Challenger

pk←−−−−−−−−−−−−−− (pk, sk)← Gen(1n)

Query Phase:
mi−−−−−−−−−−−−−−→

σi=Signsk(mi)←−−−−−−−−−−−−−−

Challenge Phase:
m∗,σ∗

−−−−−−−−−−−−−−→

Lecture 15 & 16, Page 5

and where the Adversary can request access to the Query Phase as many times as he
wants.

The output of the game is 1 if m∗ 6= mi ∀i and Verifypk(m
∗, σ∗) = 1.

A Signature scheme is secure if:

∀PPT A,Pr[SigGameA(1n) = 1] = negl(n).

♦

4.2 Construction from TDPs in the Random Oracle Model

As a first attempt, one might think of defining Signsk = gsk(m), and Verifypk(m, σ) checks
that fpk(σ) = m. This alone is not enough, as a forger can simply pick any σ∗, and compute
m∗ = fpk(σ).

The signature scheme from trapdoor permutations in the RO model is defined succinctly
as follows:

• A pair of keys (pk, sk) which is the same as with trapdoor permutations just by setting
pk = PK.

• Sign(sk,m) = Invsk(RO(m))

• Verify(VK,m, σ): RO(m) = fPK(σ) with fPK : DPK → DPK and RO : {0, 1}∗ → DPK.

To prove security, we first define a signature game, namely SigGameA(n) with n being
the security parameter. In this game, a PPT adversary A is allowed to make queries to the
random oracle and to the signing oracle. after that, he must come up with a new message
m? and a siganture ß for that message. A pictorial view of the game is given below:

A

VK

zj

yj
yj = RO(zj)

mi

σi
σi = sign(mi)

m?, σ?

Figure 1: SigGameA(n).

A wins (or outputs 1) iff m? 6∈ mi and RO(m?) = fPK(σ?). We note that the adversary
has access to the Random Oracle only by querying it.

Lecture 15 & 16, Page 6

Before we continue we make a couple of simplifying assumptions for which A maintains
the same success probability and we can always convert an adversary to one that satisfies
these assumptions:

1. A makes exactly q = q(n) distinct queries to the Random Oracle

2. A always queries RO on mi and m?

Our goal it to use an attacker A that can win SigGameA(n) with some non-negligible
probability ε(n), to create an attacker B that inverts the trapdoor permutation with non-
negligible probability. We do this with a reduction. The usual trapdoor permutation
security game is given below:

B

PK− only,

y?

x?

Figure 2: The trapdoor permutation game.

B wins (or outputs 1) iff fPK(x?) = y?. PK is a random public key of the trapdoor
permutation and y? is a random value from DPK.

In the reduction, B has to give the input to A (or play SigGameA(n) with) as A expects
it to be. The first thing that B does it to give A the key PK. After that, there are two types
queries that B must answer to A: random oracle and signature queries. While we will see
in detail how B answers these queries there is a subtle point here. At some point B has to
give A the image he wants to invert, i.e. y?. He has to do that when A queries the message
m? on the random oracle. The problem is that B does not know when A will do that. So
what is the best strategy for B here? To make a guess! To formalize this a bit more, we
define a new SigGame′A(n) where we pick at random a query index from 1 through q and
now the probability of B winning the game also depends on guessing correct when A will
query m? on the random oracle, which essentially makes it more difficult for B to do so.
We denote with red color the additions on the new SigGame′A(n) game that is illustrated
below:

The probability of B winning SigGame′A(n) is,

Pr[SigGame′A(n) = 1] = Pr[SigGameA(n) = 1] · Pr[j? is correct|SigGameA(n) = 1] =
ε(n)

q
.

This follows from the fact that j? is random and indepentent of SigGameA(n) and also A
does not know its value, hence Pr[j? is correct|SigGameA(n) = 1] = Pr[j? is correct] = 1/q.
We assumed that the winning probability ε(n) of A for SigGame′A(n) is non-negligible,

Lecture 15 & 16, Page 7

j? ← [q]

The ad-
versary B

uses A as a
subroutine

PK− only,

y?

x?

B wins (or outputs 1) iff fPK−only(x
?) = y? ∧ j? ← [q]

Figure 3: SigGame′A(n).

therefore the probability of B winning the game is also non-negligible. Next, we give in
detail how B works in steps (i.e. the reduction):

1. Choose j? ← [q]

2. Set pk = PK

3. On a RO query zj :

(a) if j 6= j?:

{
xj ← DPK

output yj = fPK(xj)

(b) if j = j?: output yj = y?

4. On sign query mi = zj :

(a) if j 6= j?: output xj

(b) if j = j?: quit (or output something bogus)

5. Output x? = σ?

Some observations are in order.

• There is no RO in this game.

• Steps 3 and 4 are repeated for a total of q times.

• At step 3(a) xj is chosen at random therefore yj = fPK(xj) is also random. We store
the pairs (xj , yj) because we need them at step 4. The same holds for 3(b), because
y? is chosen at random.

Lecture 15 & 16, Page 8

• At step 4(a) we know how to answer the sign queries, because at step 3 we chose first
the xj and the yj . Note that we have assumed that before A make a sign query, he
first makes a RO query on the same message (moce precisely, he makes a query to
what he believes to be a RO).

By the previous analysis is that the winning probability of B is:

Pr [B(PK, y?) = x? : (PK, sk)← Gen(1n), x? ← DPK, y
? ← fPK(x?)] =

ε(n)

q
.

Lecture 15 & 16, Page 9

