
CS 7810 Foundations of Cryptography October 16, 2017

Lecture 11: Hash Functions and Random Oracle Model

Lecturer: Daniel Wichs Scribe: Akshar Varma

1 Topic Covered

• Definition of Hash Functions

• Merkle-Damgåard Theorem

• Merkle Trees

• Random Oracle Model

2 Collision-Resistant Hash Functions

A collision-resistant hash functions (CRHF) is a function that “shrinks” a long message to
a short output called the digest of the message. Intuitively, we want to ensure that the even
though the digest is short it uniquely identifies the message. This may seem contradictory
since many messages must be hashed to the same digest. However, the security property
that we will require, called collision resistance says that no efficient adversary can come up
with a collision consisting of two different inputs that both get mapped to the same output.

2.1 Naive definition

A natural way of defining a CRHF is as follows. A family of functions H : {0, 1}`(n) →
{0, 1}n with `(n) > n are collision-resistant hash functions iff they satisfy the following
properties.

• H(x) can be computed in polynomial time.

• For all PPT adversaries A,

Pr[H(x) = H(x′) ∧ x 6= x′ : (x, x′)← A(1n)] = negl(n).

While this definition intuitively captures the idea of a CRHF it is never going to be
satisfied if we allow for non-uniform adversaries. When non-uniform adversaries are allowed
there is a trivial adversary that simply hard codes a collision for each possible n and always
successfullly outputs x 6= x′ such that H(x) = H(x′) (all without doing any computation).

Lecture 11, Page 1

2.2 Better definition

To remove the possibility of such trivial adversaries, we modify our definition to include
a “seed”. A family of functions H(s, x) : {0, 1}n × {0, 1}`(n) → {0, 1}n with `(n) > n are
collision-resistant hash functions iff they satisfy the following properties.

• Hs(x) := H(s, x) can be computed in polynomial time.

• For all PPT adversaries A,

Pr[Hs(x) = Hs(x
′) ∧ x 6= x′ : s← {0, 1}n, (x, x′)← A(1n, s)] = negl(n).

The definition says that when a uniformly random public seed is used, no adversary
can find a collision with non-negligible probability. Apart from capturing the intuition of
collision-resistant hash functions it also removes the possibility of trivial adversaries. This
seed is primarily for having a sound definition and in practice unseeded hash functions are
used because no one knows how to come up with the hard coded collisions and hence the
trivial adversary.

3 Merkle-Damgåard Theorem

Recall that for PRGs we had a theorem stating that if we have a PRG which extends the
input by one bit, then we can use that to create PRGs that extends the input by any
polynomial number of bits. Similarly, we now show that if we can compress the input by
one bit, then we can compress it by any polynomial number of bits.

Theorem 1 If Hs is a family of collision-resistant hash functions with `(n) = n + 1, then
we can construct a family of collision-resistant hash functions H ′s with `′(n) = poly(n).

Proof: We provide a construction for H ′s similar to the construction for the chained PRG
construction. Let X = (x1, x2, . . . , xn) be the input bits to the function H ′s. We define
H ′s(X) = y`′(n) via the following figure.

x1 x2 xi x`′(n)

Hs Hs Hs Hs
0n y`′(n)−1

y`′(n)
y1

. . .

We show that if ∃X 6= X ′ such that H ′s(X) = H ′s(X
′), then we can use that to find a

collision for Hs. Let y1, . . . , y`′(n) be the values created during the computation of Hs(X) and
y′1, . . . , y

′
`′(n) be the values created during the computation Hs(X

′). We know that y`′(n) =

y′`′(n) because H ′s(X) = H ′s(X
′). Search backwards for the largest i such that (xi, yi−1) 6=

(x′i, y
′
i−1) (this i exists because X 6= X ′). This pair implies that Hs(xi, yi−1) = Hs(x

′
i, y
′
i−1) ∵

yi = y′i. This provides a collision for Hs and is a contradiction to Hs being a CRHF.

Lecture 11, Page 2

A natural question to ask now is whether the same construction is sufficient for variable
length inputs? The answer is no. Consider a CRHF for which Hs(0

n+1) = 0n, we simply
prepend 0n to our input and get collisions, H ′s(X) = H ′s(0

n||X).
The place where our proof fails is when we search for “the largest i”. We simply “fall

off” the chain of Hs corresponding to H ′s(X) when searching for this i. We can avoid
this problem by defining H ′′s (X) = H ′s(X|| < `′(n) >) where < `′(n) > is the binary
representation of the length of the input X. Now the same proof idea will work. Either we
find a collision in the first n bits (∵ `′(n) ≤ 2n) from the right or |X| = |X ′| and the earlier
proof works is sufficient.

4 Merkle Trees

While the Merkle-Damgåard construction allows us to go from 1 bit compression to any
sized compression, we now look at a different construction which is more useful in some
scenarios.

Theorem 2 If Hs is a family of collision-resistant hash functions with `(n) = 2n, then we
can construct a family of collision-resistant hash functions H ′s with `′(n) = n · 2i for any
i > 0.

Proof: Let X = (x1, x2, . . . , x2i) be the input bits split into blocks of n bits each. We com-
pute the final digest by creating a binary tree (of depth i) with each n bit block as a leaf, and
every internal node being the hash of the concatenation of its two children (x = Hs(xl, xr)).
Thus, the root will be a digest of the required size and would be dependent on all the bits of
X. We illustrate the tree structure for i = 3.

H ′s(X)

x1 x2 x3 x4 x5 x6 x7 x8

The proof that this construction gives us a CRHF is quite similar to the proof of the
Merkle-Damgåard construction. Using a downwards search starting at the root in the two

Lecture 11, Page 3

trees, we would see that a parent and the corresponding children would provide a collision
for Hs if there is a collision for H ′s.

4.1 Merkle-Damgåard construction vs. Merkle Trees

We have seen two ways to construct CRHFs with more compression power starting with
less powerful CRHFs. Both of these have their advantages and disadvantages and we now
look at some of those.

Parallelizability/Streaming: Merkle Trees naturally provide parallelizability in their
construction unlike the Merkle-Damgåard construction. On the other hand, this paralleliz-
ability comes with the disadvantage of having to store a lot of intermediate states before
reaching the final digest value unlike for Merkle-Damgåard where we only need to store one
hashed value at any given time. However, if the data is received in a streaming manner
then the Merkle-Damgåard construction is much more efficient in terms of storage space
required.

Updation/Appending: If the input value changes slightly then the Merkle Tree con-
struction simply updates the internal nodes that do get changed which needs O(i) computa-
tions and hence smaller than O(`′(n)) computations that the Merkle-Damgåard construction
would need. This is a simple storage vs. computation trade-off with the Merkle Tree having
to store all intermediate nodes and the Merkle-Damgåard construction having to perform
all computations from scratch. Appending to the input is slightly more complicated for the
Merkle Tree as new nodes need to be created and balancing of the tree may also come into
play if one needs to keep the updation efficient. For the Merkle-Damgåard construction
storing the state just before the < `′(n) > part might be sufficient.

Small segment of large dataset: A scenario where the Merkle Tree is better equipped
compared to the Merkle-Damgåard construction is when a small part of the message needs
to be verified. Suppose Alice has stored a very large amount of data with Bob and Charlie
wants to see a small segment of this data (say xi). If Bob sends Charlie the whole data and
the corresponding hash, then that results in a large amount of data transfer (especially if
Charlie is only concerned with xi and doesn’t care about the rest of x). However, if Bob
uses the Merkle Tree method of computing the hash then he can simply send Charlie the
requested data segment along with the hashes for all the sibling nodes along the path from
the leaf for xi to the root (as shown in bold in the following figure). This allows us to solve
the problem while avoiding high communication overhead which would not be possible with
the Merkle-Damgåard construction due to its serial nature.

5 Random Oracle Model

The CRHFs that are used in practice seem to have many other cryptographic properties
apart from “collision-resistance”. We try to capture this using the Random Oracle model
by considering an idealized hash function.

We formally define a Random Oracle model as a model in which all parties (including
adversaries) have oracle access to a consistent, uniformly random function RO : {0, 1}∗ →
{0, 1}n. This oracle can be thought of as choosing a random output y on being queried with

Lecture 11, Page 4

H ′s(X)

x1 x2 x3 x4 x5 x6 x7 x8

a value x and remembering its choice. When two people query the function with the same
x, they both receive the same y value.

We define cryptographic systems in this model the same as earlier, except both the
algorithm and adversary are provided oracle access to RO(·). The standard security and
correctness requirements are carried forward into this setting as we will see in the following
examples. We assume that |X| = n while analyzing security of the cryptosystems we define.

5.1 OWFs

We define a OWF in the Random Oracle model as follows:

fRO(·)(X) = RO(X)

Since RO is a truly random function, there is no way for an adversary to invert it except
by brute-force queries. The probability that one query of the adversary succeeds is bounded
by 1

2n . If the adversary A makes T queries to RO, then we can bound the success probability
of A by T

2n .

5.2 PRGs

We define a PRG in the Random Oracle model as follows:

GRO(·)(X) = RO(X||0)||RO(X||1)

This is a PRG as it takes in n bits of input and returns 2n bits of output. The only
way for an adversary to distinguish between G(X) and U2n is to query RO on X||0 or X||1,
which can happen with probability at most 1

2n (adversary needs to guess X). Similar to the
OWF case, the success probability is bounded by T

2n if the adversary is allowed to make T
queries.

Lecture 11, Page 5

5.3 PRFs

We define a PRF in the Random Oracle model as follows:

F
RO(·)
K (X) = RO(K||X)

This has the same security as the PRG definition if |K| = n (adversary has to guess K).

5.4 CRHF

We define a CRHF in the Random Oracle model as follows:

HRO(·)(X) = RO(X)

We claim that this has security T 2

2n if the adversary makes T queries. The proof follows
by noting that the probability of the ith and jth queries colliding is 1

2n and hence with T

queries, the probability of finding a collision is bounded by T 2

2n (using the union bound).
This is also known as the birthday bound that is seen in the birthday paradox.

Pr[(X 6= X ′) ∧ (RO(X) = RO(X ′)) : (X,X ′)← ARO(·)(1n)]

≤ Pr[∃i, j ∈ [T], i 6= j,RO(Xi) = RO(Xj)]

≤
∑
i,j

Pr[RO(Xi) = RO(Xj)] ≤
T 2

2n

5.5 Random Oracles in real life

The motivation of coming up with the Random Oracle model was to try and capture the
extra properties that CRHFs seemed to show in real life, in a formal and rigourous manner.
When we try to go back from the theoretical models to practice, we lose this rigour.

In real life there are no random oracles RO, and the cryptographic primitives that we
construct in this model cannot be directly used. What is done in practice is to simply
replace the RO with a CRHF Hs and use the same constructions as in the Random Oracle
model. Of course Hs is not a truly random function, and hence none of the nice properties
that we can prove regarding RO necessarily hold when we use Hs. When shifting from
theory to practice, mathematical rigour and proofs are let go and one just hopes that it
works out. The guarantees regarding security get modified (in a hand-wavy manner), with
the number of queries T getting replaced with the running time of Hs. While this is not a
rigourous manner of arguing about the security of cryptosystems it seems to work in general
and thus gets used.

Lecture 11, Page 6

