
CS 7880 Graduate Cryptography October 13, 2015

Lecture 9: Pseudorandom Functions

Lecturer: Daniel Wichs Scribe: Alain Passelègue

1 Topic Covered

• Pseudorandom Functions.

• From OWFs to PRFs via PRGs: the GGM Construction.

• From PRGs to One-Time Symmetric Encryption.

2 Pseudorandom Functions (PRF)

High-level idea:

• PRG: short random seed s 7→ G(s) long “random looking” output.

• PRF: short random key K 7→ FK(·) “random looking” function.

Definition 1 [Pseudorandom Function] A pseudorandom function (PRF) is a family of
functions {FK : {0, 1}m(n) → {0, 1}`(n)}n∈N,K∈{0,1}n such that:

• Efficiency: one can compute FK(x) in poly(n)-time (given K and x);

• Security: for any poly-time adversary A:∣∣∣Pr
[
AFK(·)(1n) = 1

]
− Pr

[
AR(·)(1n) = 1

]∣∣∣ ≤ negl(n).

where K
$← {0, 1}n and R

$← F({0, 1}m(n) → {0, 1}`(n)) with F({0, 1}m(n) → {0, 1}`(n))
denoting the set of all functions mapping m(n) bits to `(n) bits.

♦

Remark 1 Note that describing a truly random function R : {0, 1}m(n) → {0, 1}`(n) would
require 2m(n) · `(n) bits. So we cannot even efficiently describe such functions, let alone
evaluate them. However, the point of building pseudorandom functions, is to have a function
FK that looks like a random function to the outside world, but can be described with only
an n bit key K and can be evaluated efficiently.

You might want to think of AR(·) as the experiment where the outputs of R(·) are chosen
“on the fly” uniformly at random, since R(·) doesn’t have a short description as a truly
random function. In other words, each time A calls the function on a fresh input x, we
choose a fresh output y and remember the pair (x, y) in case x gets queried again.

Lecture 9, Page 1



Another way to define the security of a pseudorandom function is to use a definition
based on the indistinguishability of two experiments.

Definition 2 [Indistinguishability of Experiments] Let Exp1(n) and Exp2(n) denote two
experiments with an adversary A. We say that the experiments Exp1(n) and Exp2(n) are
(computationally) indistinguishable if for all PPT adversary A,∣∣Pr

[
Exp1A(n) = 1

]
− Pr

[
Exp2A(n) = 1

]∣∣ ≤ negl(n).

where the notation ExpA(n) denotes the adversary A participating in the experiment. ♦
Defining a security notion via indistinguishability of experiments is very common and

convenient. For instance, we can define the security of a pseudorandom function {FK :
{0, 1}m(n) → {0, 1}`(n)}n∈N,K∈{0,1}n as the indistinguishability of the experiments Exp1(n)

and Exp2(n), defined as follows: in Exp1(n), one picks K
$← {0, 1}n uniformly at random and

the adversary is given black-box access to the function FK(·), while in Exp2(n), one picks

R
$← F({0, 1}m(n) → {0, 1}`(n)) uniformly at random and the adversary is given black-box

access to the function R(·).

3 From PRGs to PRFs: the GGM construction

Theorem 1 (Golreich, Goldwasser, Micali [1]) Given any pseudorandom generator (PRG)
we can construct a pseudorandom function (PRF) for any polynomials m(·), `(·) defining
the lengths of the input and output. (Sine we also know that PRGs can be constructed from
OWFs, this says that PRFs can be constructed from OWFs).

Let us first show how to construct a PRF with output length n.

Construction 1 Let G : {0, 1}n → {0, 1}2n denote a pseudorandom generator, and let
us denote by (G0(K), G1(K)) = G(K) the first and second (n-bit) halves of G(K). Let
{FK : {0, 1}m(n) → {0, 1}n}n∈N,K∈{0,1}n denote the family of functions defined by:

FK(x) = Gxm(n)
(Gxm(n)−1

(. . . (Gx1(K)) . . . )),

where x = x1 . . . xm(n) is the input and K ∈ {0, 1}n is the key.

A more intuitive view of this construction is depicted in Figure 1 for m(n) = 3 and
using the following notation: Ks‖b = Gb(Ks), for any Ks ∈ {0, 1}n, any s ∈ {0, 1}∗ and any
b ∈ {0, 1}. Therefore, the evaluation of FK on input x = x1x2x3 is the value Kx1x2x3 =
Gx3(Gx2(Gx1(K))).

Theorem 2 Assuming G is a pseudorandom generator, the family of functions defined in
Construction 1 is a pseudorandom function.

Efficiency. Efficiency is straigthforward as evaluating FK on a fresh input corresponds
simply to evaluating m(n) times the pseudorandom generator G and as m(n) is polynomial.

Security (sketch of a proof). The idea for the proof is to show that, under the
security of the underlying pseudorandom generator, one can change values in each node in

Lecture 9, Page 2



K

K0

K00

K000 K001

K01

K010 K011

K1

K10

K100 K101

K11

K110 K111

Figure 1: The GGM construction for 3-bit inputs.

a fixed level of the tree, defined in Figure 1, to uniformly random values. Then, starting
from the root and changing one level at a time, one can change all the values in the nodes
of the tree to uniformly random values. There is a small problem with this intuition: there
is an exponential number of nodes (2i nodes at level i), thus this proof is not polynomial
time. One can easily circumvent this problem by simulating values on the fly: one changes
only the values that are useful to respond to the adversary queries. As the adversary is
polynomial-time, one needs to change only a polynomial number of values. A formal proof
is given below.

Proof:[Theorem 2] Let us first prove the following intermediate result.

Claim 1 Let G : {0, 1}n → {0, 1}2n be a pseudorandom generator. Let t(n) be a polynomial
number (in n). Then, we have:

{(G(K1), . . . , G(Kt(n)))}K1,...,Kt(n)←{0,1}n ≈c {(U2n, . . . ,U2n)},

where U2n denotes the uniform distribution over {0, 1}2n.

Proof:[Claim 1] We show the following claim by a simple hybrid argument. Let Di =
{(G(K1), . . . , G(Kt(n)−i),U2n, . . . ,U2n)}K1,...,Kt(n)−i∈{0,1}n , for i = 0, . . . , t(n). First, it is

clear that D0 = {(G(K1), . . . , G(Kt(n)))}K1,...,Kt(n)∈{0,1}n and that Dt(n) = {(U2n, . . . ,U2n)}.
Then, we just need to show that Di ≈c Di+1 for all i = 0, . . . , t(n) − 1 to prove the above
claim.

The only difference between Di and Di+1 lies in the (i + 1)-th component of the vec-
tor, which is on the one hand computed as the evalution of the PRG G on a uniformly
random input Ki, and on the other hand set to a uniformly random value. By definition
of the security of a pseudorandom generator, these two distributions are computationally
indistinguishable.

The claim follows.

Remark 2 The above claim is no longer true if t(n) is superpolynomial.

Lecture 9, Page 3



We can now proof Theorem 2 using this statement.
Let us define the experiment Expi(n), for i = 0, . . . ,m(n) as follows: it starts by initial-

izing two empty arrays T1,T2. When adversary A makes a query x ∈ {0, 1}m(n), one checks

if s = x1 . . . xi is in T1. If it does not, one picks Ks
$← {0, 1}n at random and adds s to

T1 and Ks to T2 in the last position. If it does, let Ks = T2[i1(s)], where i1(s) denotes the
index of s in T1. Finally, output y = Gxm(n)

(Gxm(n)−1
(. . . (Gxi+1(Ks)) . . . )).

First, it is clear that Exp0(n) and Expm(n)(n) are exactly the same as the ones defining
the PRF security of F , as in Exp0(n), one just checks if ε ∈ T1 at every query, so a key
Kε is picked at random at the first query and is used to respond to all following queries
by outputting y = Gxm(n)

(Gxm(n)−1
(. . . (Gx1(Kε)) . . . )) = FKε(x), while in Expm(n)(n), for

every query x, one checks if x ∈ T1 (which is not the case if x is a new input) and outputs

a random value Kx
$← {0, 1}n for this input. Then, all values output are truly random

values. Then, we just need to argue that Expi(n) and Expi+1(n) are indistinguishable for
any i = 0, . . . ,m(n)− 1,, and by a standard hybrid argument, the security of the PRF will
follow.

The only difference between experiments Expi(n) and Expi+1(n) is the following: For any
input x ∈ {0, 1}m(n), in Expi(n), one evaluates G on input Gx(i+1)(Kx1...xi) where Kx1...xi

is a random n-bit string and use the part Gxi+2 as input for the outter PRG call, while
in Expi+1(n), one evaluates G directly on a uniformly random n + 1-bit string Kx1...xi+1

associated to x1 . . . xi+1 and use to part Gx(i+2)(Kx1...xi+1) as input for the outter PRG call.

Hence, to argue the indistinguishability of experiments Expi(n) and Expi+1(n), it is
sufficient to prove that the two distributions {G(K1), . . . , G(Kt(n))}K1,...,Kt(n)∈{0,1}n and

{(U2n, . . . ,U2n)} are indistinguishable, where K1, . . . ,Kt(n) denote all the random n-bit
strings associated to all strings x1 . . . xi ∈ {0, 1}i that are prefix of queries of A. As t(n) is
at most the number of queries made by A, which is polynomial in n, this follows directly
from Claim 1.

Theorem 2 follows.

We can now use the above construction to build pseudorandom function for any poly-
nomial output length.

Claim 2 Let F = {FK : {0, 1}m(n) → {0, 1}n}n∈N,K∈{0,1}n be a pseudorandom function and

G : {0, 1}n → {0, 1}`(n) be a pseudorandom generator, then F ′ = {G ◦ FK : {0, 1}m(n) →
{0, 1}`(n)}n∈N,K∈{0,1}n is a pseudorandom function.

Proof:[Claim 2] The proof follows an hybrid argument. Let A be an adversary against the
PRF security of F ′. We can assume without loss of generality that A never repeats a query.
Let x1, . . . , xt(n) denote its queries. Then, assuming F is a pseudorandom function, the
distributions {G◦FK(x1), . . . , G◦FK(xt(n))}K∈{0,1}n and {G(s1), . . . , G(sn)}s1,...,st(n)∈{0,1}n
are computationally indistinguishable. Now, assuming G is a pseudorandom generator,
the distributions {G(s1), . . . , G(sn)}s1,...,st(n)∈{0,1}n and {y1, . . . , yt(n)}y1,...,yt(n)∈{0,1}`(n) are

computationally indistinguishable.
The claim follows.

Proof:[Theorem 1] Theorem 1 now easily follows from Theorem 2, Claim 2 and from the
fact that one-way functions imply pseudorandom generators (Goldreich-Levin).

Lecture 9, Page 4



4 One-Time Symmetric Encryption

Definition 3 [One-Time Symmetric Encryption] Π = (Enc,Dec) is a one-time symmetric
encryption scheme with message length `(n) if Enc : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ and Dec :
{0, 1}∗ × {0, 1}∗ → {0, 1}∗ are two PPT algorithms such that:

• Correctness: for all n ∈ N,K ∈ {0, 1}n,m ∈ {0, 1}`(n),

Pr [Dec(K,Enc(K,m)) = m ] = 1.

• Security: for any PPT adversary A, experiments Exp0A(n) and Exp1A(n) are indistin-
guishable, where ExpbA(n) is defined as follows: A(1n) outputs m0,m1 ∈ {0, 1}`(n), one

picks K
$← {0, 1}n at random and sends c = Enc(K,mb) to A. A outputs b′ (output

of the experiment).

♦

Proposition 1 Assuming G : {0, 1}n → {0, 1}`(n) is a pseudorandom generator, Π =
(Enc,Dec) with Enc : (K,m) ∈ {0, 1}n × {0, 1}`(n) 7→ G(K) ⊕ m ∈ {0, 1}`(n) and Dec :
(K, c) ∈ {0, 1}n × {0, 1}`(n) 7→ G(K) ⊕ c ∈ {0, 1}`(n) is a one-time symmetric encryption
scheme.

Proof:[Proposition 1] The proof follows an hybrid argument. Let A be an adversary against
the one-time security of Π. Let m0,m1 denote the messages chosen by A. Assuming G is a
pseudorandom generator, the distributions {G(K) ⊕m0}K∈{0,1}n and {R ⊕m0}R∈{0,1}`(n)

are computationally indistinguishable. As R is uniformly random, the distributions {R ⊕
m0}R∈{0,1}`(n) and {R ⊕ m1}R∈{0,1}`(n) are statistically indistinguishable (one-time pad).
Finally, assuming G is a pseudorandom generator, the distributions {R⊕m1}R∈{0,1}`(n) and
{G(K)⊕m1}K∈{0,1}n are computationally indistinguishable.

The claim follows.

References

[1] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. On the Cryptographic Applications
of Random Functions. In CRYPT0 1984.

Lecture 9, Page 5


