
CS 7880 Graduate Cryptography September 10, 2015

Lecture 15:

Lecturer: Daniel Wichs Scribe: Mehraneh Liaee

1 Topic Covered

• Threshold Cryptography

• Trapdoor Permutation

• RSA

2 Threshold Cryptography

Let’s remind ElGamal public key encryption-decryption scheme from last session. In this
scheme, we have a secret key, sk = x ∈ Zq, and a public key, pk = f = gx, where g is the
group generator. To encrypt a message m, we pick a random y ∈ Za and use the following
encryption function:

c = Enc(pk,m) = (h = gy, z = fym)

To decrypt a cipher text, we use the following decryption function:

Dec(sk, c = (h, z)) =
z

hx
=

fy.m

gxy
= m

Since secret keys are very important and the whole secrecy of scheme is dependent on
secrecy of the secret key, we need to protect it. One idea is not keeping the whole secret
key in one machine, because once that machine is hacked, the secret key will be recovered
by the adversary and everything is lost. The idea of threshold cryptography is to spread
secret key over several machines in a way that if some subset of machines get broken, then
the security of whole system is not broken. We saw the same idea in secret sharing. Here,
we want to use the idea from ElGamal scheme to build such a scheme.

Assume we have n devices, and we want that even if the attacker breaks n−1 of devices,
he does not learn anything.

• Each device i has xi such that x =
∑n

i=1 xi mod q.

• To decrypt a cipher text c = (h, z), we need to compute hx without having the whole
sk = x in one device. Thus, each device sends si = hxi , and it yields that hx =

∏
si.

Since we get hx, we are able to decrypt c, and recover m = z/hx.

Lecture 15, Page 1



Now, assume an attacker corrupts n − 1 of devices and learns xi : i 6= j for all devices
but one device j. Thus, the adversary can compute hxi : i 6= j. Assume that a message m
and its cipher text c = (h, z) is given to the adversary. Adversary is able to recover hx = z

m .
He is also able to recover sj = hxj = z

m
∏

i6=j h
xi

, but he does not learn anything about xj .

Thus the security of system is still not corrupted. This means even if adversary sees one
message and its cipher text, and corrupts n− 1 device, he won’t be able to learn about the
whole secret key.

3 Trapdoor Permutation or TDP

Trapdoor permutation f is a OWP with additional requirements, some additional secret key
which associates with function f , if you have the secret key you can invert function f .

• (pk, sk)← Gen(1n)

• fpk : Dpk → Dpk is a permutation:

– fpk(x) is computable in polynomial time in terms of n (efficiently computable).

– Sampling x from domain Dpk, (x ← Dpk), can be done in polynomial time in
terms of n.

• correctness: Invsk(y) is the inverse function of fpk. If we have the secret key sk
of function, then we can invert it efficiently.

Invsk(fpk(x)) = x or Invsk = f−1
pk

• security: ∀ PPT attacker A:

Pr[A(pk, y) = x : (pk, sk)← Gen(1n), x← Dpk, y = fpk(x)] = negl(n)

Remark 1 The only difference of TDP from OWP is having secret key and inversion prop-
erty. There is a question which asks if we have a TDP, is that a good candidate for public
key encryption scheme? Then answer is that we can not use fpk(x) directly in a public
key encryption scheme. The reason is because fpk(x) is deterministic and there is no ran-
domnessss in the procedure. If we encrypt the same message twice, we will see the same
ciphertext twice, which is not secure. The other problem is that even if we encrypt a ran-
dom message, we won’t be able to recover message but maybe we can learn some bits of
it. So TDP does not say anything about hiding any information about the message. In the
following, we try to fix these problems by using hard core bit of the function .

3.1 Encryption from TDP

The idea for constructing encryption scheme from TDP is we don’t use x as the message,
we use it as the randomness. Consider the case that message m is only one bit. We have
following encryption and decryption functions:

• c = Enc(pk,m) : x← Dpk, c = (fpk(x), hc(x)⊕m)

Lecture 15, Page 2



• m = Dec(sk, c = (y, b)) : hc(Invsk(y)⊕ b)

Remark 2 From the above construction, the correctness of the scheme can be easily ver-
ified, and the security follows from Goldreich-Levin theorem. To generalize this scheme
to messages of longer bit, you can apply the same function for every bit of the message
separately.

Remark 3 Note that instead of using hard core bit, one can use Random Oracle model by
replacing RO(x) with hc(x).

4 RSA

Instead of looking at sequence order groups, we look at composite order groups. We are
going to look at group ZN , where N is the product of two prime numbers p, q. We have
this assumption that factoring is hard, the definition comes in the following.

Definition 1 Factoring assumption. For all PPT attacker A,

Pr[A(N) = p, q : p, q ← {n-bit primes}, N = pq] = negl(n)

♦
We first try to understand the structure of group Z∗

N . We know the order of this group
is ϕ(N) = (p− 1)(q − 1), which is the number of integers less than N which are relatively
prime according to N . Chinese remainder theorem tells that Z∗

N as a group is isomorphic
to Z∗

p × Z∗
q , and we denote it by Z∗

N
∼= Z∗

p × Z∗
q . Also, from Chinees remainder theorem,

we have ZN as a ring is isomorphic to Zp × Zq. Using Chinese remainder theorem, for any
element a in ZN , we can think of it as a tuple (ap, aq), where ap = (a mod p) and aq = (a
mod q). Then instead of doing operation in ZN , we separately do operation in Zp and Zq,
and using the isomorphism, recover the result in ZN .

Moreover, there are elements ep, eq ∈ ZN , such that their corresponding tuples are of
the form (1, 0) and (0, 1) in Zp ∗ Zq. Thus, whenever we have (ap, aq) ∈ Zp ∗ Zq, we can
recover a as follows:

a = ap.ep + aq.eq ∈ Zn

We call these elements ep, eq basis elements. The same thing holds for Z∗
N .

Now, we want to look at function fe(x) = (xe mod N), where x ∈ Z∗
N . We want to

show that this function is a permutation and one-way. It turns out that for some value of
e this function is a permutation.

Observation 1 If gcd(ϕ(N), e) = 1, then function fe(x) = (xe mod N) is a permutation.

Observation 2 If gcd(ϕ(N), e) = 1, then there exists an integer d such that d.e = (1
mod ϕ(N)) and fd(fe(x)) = x mod N .

Remark 4 Note that d is like a secret key, if we know ϕ(N) or p and q then we can easily
find d and ?nvert function fe(x), however relying on assumption of hardness of factoring
problem, without having ϕ(N) or p and q, we cannot obtain d efficiently, and we cannot
invert fe(x) efficiently. It is also sufficient to pick e = 3.

Now, we are ready to construct the RSA scheme.

Lecture 15, Page 3



4.1 RSA construction

Definition 2 RSA construction

• Key Generation: (pk = (N, e), sk = d)← RSAGen(1n), where gcd(e, ϕ(N)) = 1.

• RSA Assumption: ∀ PPT attacker A

Pr[A(N, e, y) = x : (N, e, d)← RSAGen(1n), x← Z∗
N , y = (xe mod N)] = negl(n)

• Encryption: fpk(x) = (xe mod N) and fpk : Z∗
N → Z∗

N

• Decryption: fd(y) = (yd mod N)

♦

Remark 5 Sampling from ZN is easy in polynomially, how about sampling from Z∗
N? The

probability of choosing a number which is not in Z∗
N but it is in ZN is very tiny. So whenever

we sample a number from Z∗
N , we test it in polynomial time whether its relatively prime to

N or not, if it was not in Z∗
N , we ignore it and sample again.

Remark 6 How good and secure is RSA?

• RSA is insecure, if factoring is not hard, which means giving N , we can find p and q
such that N = pq. Having p and q, we can find ϕN and d respectively.

• RSA is insecure, if we have ϕ(N). In fact, we can show that finding ϕ(N) is as hard
as factoring. Having ϕ(n), we can calculate t = N − ϕ(N) − 1 = p + q. Then, we
have the following equality:

q2 − tq −N = 0

Thus, having N and ϕ(N), we can obtain t and q respectively.

• RSA is insecure, if we have d. In fact, having d, ϕ(N) can be recovered doing more
work.

Lecture 15, Page 4


