
CS 7880 Graduate Cryptography October 29, 2015

Lecture 14: ElGamal Encryption, Hash Functions from DL, PRGs from DDH

Lecturer: Daniel Wichs Scribe: Biswaroop Maiti

1 Topics Covered

• Public Key Encryption

• A Public Key Encryption from the DDH Assumption

• El Gamal Encryption

• CRHF from Discrete Log

• PRG from DDH

2 Recall

Recall the three number theoretic assumptions we saw last time. We will build Crypto-
graphic schemes or protocols based on the hardness of these problems.

Definition 1 (G, g, q)← Groupgen(1n) ♦

Assumption 1 DL Given g, gX , it is hard to find X.

Assumption 2 Computational Diffie Hellman Given g, gX , gY , it is hard to find gXY .

Assumption 3 Decisional Diffie Hellman Given g, gX , gY , it is hard to distinguish between
gXY and gZ , where Z is chosen at random.

(g, gX , gY , gXY ) ≈ (g, gX , gY , gZ)

3 Key Agreement from the Diffie Helman scheme

A B
x← Zq

hA = gX
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−�

hB = gY
�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Y ← Zq

hXB = gXY hYA = gXY

The keys agreed upon by A and B is gXY .

Lecture 14, Page 1



It is interesting to note that in this scheme, A and B were able to agree upon a key
without communicating about it. Each party generates a puzzle uniformly at random: A
generates hA = gX , and B generates hB = gY . Then, they send their puzzles to each other,
and establish the key to be gXY . Proving this scheme is secure is equivalent to showing
that the DDH assumption holds.

4 Public Key Encryption

The general syntax of Public Key Encryption is the following. There will be two keys: one
public key pk and a private or secret key sk. Any sender encrypts the message using the
public key of the receiver. The receiver decrypts the message using her own secret key. The
private key pk defines a message space Mpk .

(pk, sk)←− Gen(1n)

c←− Enc(pk,m)

m←− Dec(sk, c)

Correctness: For correctness, we must satisfy the condition as follows, that decoding
of a valid encryption is always correct:
∀(pk, sk) ∈ Gen(1n),∀m ∈Mpk ,

Pr [Dec(sk,Enc(pk,m)) = m] = 1

Security: To show the security of Public Key Encryption, we define the following
experiment.

ExpbA(1n) :

(pk, sk)← Gen(1n)

(M0,M1)← A(1n, pk), where M0,M1 ∈Mpk

c← Enc(pk,Mb)

b′ ← A(c)

The adversary can read two(2) messages M0,M1, and is trying to determine which
experiment is current, that is, tries to distinguish between the encryption of them. That is,

given Mb, it attempts to find out whether b
?
= 0, 1. It outputs b′ and wins the game if and

only if b = b′.
We shall prove the security of this game by showing that the experiments Exp0 and Exp1

are computationally indistinguishable. Given a vector of messages, the argument goes via
a hybrid argument. That is,

Exp0 ≈ Exp1 ⇒ ∀PPTA,

|Pr
[
Exp0A(1n) = 1

]
− Pr

[
Exp1A(1n) = 1

]
| = negl(n)

Lecture 14, Page 2



Remark 1 If the Encoder Enc is deterministic, it is easy for the adversary to distinguish
between Enc(M0),Enc(M1). Since the encoder is public, the adversary does not need a
random oracle to encode the messages. The adversary can invoke the encoder and encode
the messages and compare with Mb. Therefore, we see that the Enc must be randomized.

5 Public Key Encryption from DDH

We can use the DDH assumption to build a public key encryption as follows, by a mi-
nor modification of the key exchange protocol we saw before. The following protocol of
communications between A and B are ordained:

A B
sk := X ← Zq

pk := hA = gX
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−�

Y ← Zq

Enc(pk,m) : hB = gY, gXY ·m
�−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

hXB = gXY hYA = gXY

Thus, A the recipient first selects its secret key sk by a random sampling, and builds
the public key pk, which it communicates to the sender B. Then, the sender B generates a
random sample Y , using which and the public key pk, it encrypts the message m and sends
over to A. Note that the recovery of sk from pk is subject to the DL hardness assumption.

6 El Gamal Encryption

From the DDH based scheme we get the El Gamal public key cryptography scheme.

(G, g, q)← Gen(1m)

X ← Zq

sk := X

pk := gX = hA

Enc(pk,m) : Y ← Zq and (gY , hYA ·m)

c0 := gY , c1 := hYA ·m
sk := X

Dec(sk, (c0, c1)) = c1/c
X
0 = gXY ·m/gXY = m

This is essentially the same as the key exchange scheme as modified before. We can
rewrite this in the same framework of the Diffie Helman Key exchange scheme as before.

Lecture 14, Page 3



A B
(G, g, q)← Gen(1n)

sk := X ← Zq

pk := hA = gX
−−−−−−−−−−−−−−−−−−−−−−−−−�

Y ← Zq

Enc(pk,m) : hB = gY , gXY ·m
c0 := gY , c1 := gXY ·m

c0, c1
�−−−−−−−−−−−−−−−−−−−−−−−−−

Dec(sk, (c0, c1)) = c1/c
X
0 = m

As before, A selects a secret / private key sk and sends across the public key pk. We
prove the security of the scheme by the following hybrid argument.

Exp0 :g, pk = gX , c = (gY , gXY m0)

H :g, pk = gX , c = (gY , gZ .m0)

Exp1 :g, pk = gXc = (gY , gXY .m)

Here, Exp0 ≈ H ≈ Exp1

This hybrid argument is also a form of reduction. We use the fact that: gZ .m0 ≈ gZ ,
which is essentially the fact that a totally random quantity multiplied by anything arbitrary
will give something that is still totally random.

7 CRHF from DL

We will build Collision Resistant Hash Function from the Discrete Log hardness. We use
a cyclic group G of prime order q. SeedGen is an oracle that generates a purely random
seed. That is, the hash family contains hash functions indexed by the seed s generated by
SeedGen. Such a Hash Function Hs maps the domain Ds to the range Rs

s← SeedGen(1n)

Hs : Ds → Rs

Security: The guarantee that collision is highly unlikely is given by the following
statement which is akin to the security statement of the public key encryption schemes.
∀PPTA:

Pr[x 6= x′ ∈ Ds : s← SeedGen(1n), x, x′ ← A(1n, s)] = negl(n)

7.1 Construction

The construction is described below.

Lecture 14, Page 4



s = (g, h = gX)

x← Zq

Hs : Z2
q → G

Hs(a, b) = ga · hb

Suppose the adversary gives you a, 6= b, with the same hash.
Then, x = (a, b) 6= x′ = (a′, b′)
gaḣb = ga

′,b′

g(a−a
′)/(b′−b) mod q = h

gz = h, z = (a− a′)/(b′ − b)
Security comes directly from the definition of DL security assumption.

8 Pseudo-random Generators from DDH

We can also build Pseudo-random Generators from the Decisional Diffie Helman assumption.
PRG from DDH:

(G, g, q)← Gen(1n)

x← Zq

y ← Zq

PRGg(x, y) = [gx, gy, gxy]

PRG : Z2
q → G3

Here, x, y are randomly sampled from Zq, where q is a prime. From 2 such uniformly
picked random values, PRGg produces an extra bit gxy, that is computationally indistin-
guishable from a random element of the group G. It follows directly from the DDH assump-
tion that this is a good PRG.

Also, we can extend the PRG with stretch of l as follows, for any given l:
PRGg(X,Y1, . . . Yl) = [gX , gY1 , gXY1 , gY2 , gXY2 . . . gYl , gXYl ]
Zl+1 → G2l+1

8.1 Security

We prove the security of this construction by a hybrid argument as follows.

Lecture 14, Page 5



H0 = g, gX , gY1 , gXY1 , gY2 , gXY2 . . .

H1 = g, gX , gY1 , gZ , gY2 , gXY2 . . .

H0 = f(g, gX , gY , gXY ) = [g, gX , gY1 , gZ , gY2 , gXY2 . . .]

H1 = f(g, gX , gY , gZ)

Here, H0 ≈ H1, from the DDH assumption. This is because for any Z picked at random,
we have

(g, gX , gY , gXY ) ≈ (g, gX , gY , gZ)

Now, we have H1 ≈ H0 via the fact that,if we consider our focus on any triplet, say
g, gy2 , gxy2 , we have that Y2 . . . can be picked uniformly at random, and will remain indis-
tinguishable.

Finally, H0 ≈ H1. This follows because we can replace gXY by gZ .

Lecture 14, Page 6


