
CS 7880 Graduate Cryptography October 15, 2015

Lecture 10: CPA Encryption, MACs, Hash Functions

Lecturer: Daniel Wichs Scribe: Matthew Dippel

1 Topic Covered

• Chosen plaintext attack model of security

• MACs in a computational setting

• Definition of collision resistant hash functions

2 Recap of last lecture - PRGs for one time pads

Last lecture, we saw how a PRG could be used to use keys to encrypt messages of a larger
size with a one-time-pad. Given a key k and a message m where |k| < |m|, we use a PRG
G with at least |m| − |k| bit stretch to generate a one time pad G(k). Then, we do bit-
wise XORing with m to achieve our ciphertext. Formally, our encryption and decryption
functions are:

Enc(k,m) = G(k)⊕m

Dec(k, c) = G(k)⊕ c

Disregarding other properties, the above still has the problem of not working for more
than one message. Our goal for the next section will be to define a model of security that
provides multi-message encryption security, and to provide a scheme which achieves it.

3 Chosen Plaintext Attack (CPA)

We will now consider a new model of security in which an adversary has blackbox access
to our encryption function with the same key we are using. The adversary can make a
polynomial number of queries with any plaintext message they want, and will receive the
corresponding ciphertext. The adversary also gets to provide two messages m0 and m1.
One of them (unknown to the adversary) is chosen, and an encryption of it is returned.
The adversary must then determine which message, m0 or m1, was encrypted and returned
to it.

Lecture 10, Page 1

3.1 CPA Definition

In order to analyze such a scenario, we will consider two experiments, CPA-Exp-0 and
CPA-Exp-1. In both experiments the adversary can query a encryption oracle by choos-
ing arbitrary messages mi and getting back ciphertexts ci ← Enc(k,mi). The adversary
can query the oracle as many times as it wants. At some point the adversary chooses two
challenge messages M0,M1 and gets back an encryption of Mb where b = 0 in experiment
0 and b = 1 in experiment 1, It will then be the job of the adversary to correctly conclude
which experiment he is in. For a bit b ∈ 0, 1, an adversary A and a security parameter n,
we define CPA-Expb

A(n) as the following procedure:

CPA-Expb
A(n)

Challenger Adversary A
k ← {0, 1}n

Repeat poly(n) times{ mi
�−−−−−−−−−−−−−−−−−−−−−−−−−−

Enc(k,mi)
−−−−−−−−−−−−−−−−−−−−−−−−−−�

M0,M1
�−−−−−−−−−−−−−−−−−−−−−−−−−− picks M0, M1 of equal length

C = Enc(k,Mb)
−−−−−−−−−−−−−−−−−−−−−−−−−−�

Repeat poly(n) times{ mi
�−−−−−−−−−−−−−−−−−−−−−−−−−−

Enc(k,mi)
−−−−−−−−−−−−−−−−−−−−−−−−−−�

b′ ∈ {0, 1}
�−−−−−−−−−−−−−−−−−−−−−−−−−−
The output of the experiment is b′

Definition 1 A symmetric-key encryption scheme (Enc,Dec) is CPA secure if for any
PPT adversary A we have∣∣∣ Pr[CPA-Expb

A(n) = 1]− Pr[CPA-Expb
A(n) = 1]

∣∣∣ = negl(n).

♦

Experiment Indistinguishability. We already defined the computational indisitinguisha-
bility of two distribution (ensambles) X ≈ Y . Let’s extend this definition to interactive
experiments such as the ones defined above. If ExpA(n) and Exp′A(n) are two experiments
parametrized by an adversary A and a security parameter n, we write Exp ≈ Exp′ as a
shorthand notation to denote that for all PPT adversary A∣∣ Pr[ExpA(n) = 1]− Pr[Exp′A(n) = 1]

∣∣ = negl(n).

With this notation, the definition of CPA security for encryption can be written simply as:
CPA-Exp0 ≈ CPA-Exp1.

3.2 A randomized encryption scheme with CPA security

First, it is worth noting that no deterministic encryption protocol can satisfy this definition.
This is because the adversary is not limited in what it is allowed to query with its oracle

Lecture 10, Page 2

access to O(m) = Enc(k,m). Thus, an adversary could first query O(M0) and O(M1) before
passing these messages to the experiment as its choices of M0 and M1. Whichever exper-
iment it is in, it will either be returned O(M0) or O(M1) exactly as the oracle originally
returned to him. Thus with probability 1 it can distinguish between the experiments it is in.

To get around this, we create a randomized encryption scheme, in which, for fixed k
and m, Enc(k,m) is a random variable, satisfying Pr [Dec(k,Enc(k,m)) = m] = 1. Let

Fk : {0, 1}n → {0, 1}`(n) be a PRF. Then we can define Enc and Dec as follows:

Enc(k,m) : x← {0, 1}n
c = (x, Fk(x)⊕m)

Dec(k, c) : c = (x, y)
m = y ⊕ Fk(x)

Where in the above schemes, Enc samples a uniformly random x and returns c, while
Dec unpacks c as described and returns m.

The intuition for the above schemes is that, reusing one time pads is insecure, but access
to a PRF gives us an exponential supply of pads we can use. If we wish to decrypt the
message, then knowing k will let us use Fk to reconstruct the pad, but to an adversary
who can only see x, the pad is indistinguishable from being chosen completely at random,
providing encryption similar to a randomly chosen one time pad.

3.3 Proof of Security

To prove the CPA security of our above scheme, we will proceed by a hybrid argument.
First, we will define the hybrids. Then, we will prove that each one is indistinguishable
from the next. Each hybrid will essentially be a variation of one of the experiments, where
we modify how the encryption procedure works.

H0 : CPA-Exp-0 : Enc(k,m) = (x, Fk(x)⊕m)
H1 : CPA-Exp-0 : Enc(k,m) = (x,R(x)⊕m), R(x) is a true random function

H2 : CPA-Exp-0 : Enc(k,m) = (x, y), y ← {0, 1}`(n)

H ′2 : CPA-Exp-1 : Enc(k,m) = (x, y), y ← {0, 1}`(n)
H3 : CPA-Exp-1 : Enc(k,m) = (x,R(x)⊕m), R(x) is a true random function
H4 : CPA-Exp-1 : Enc(k,m) = (x, Fk(x)⊕m)

Note that we labeled H2, H
′
2 in this manner because they are trivially identical experi-

ments, so the hybrid step is a one liner. In particular, H0 is exactly CPA-Exp-0, and H4 is
exactly CPA-Exp-1.

Lemma 1 H0 ≈ H1

Proof: Suppose A could distinguish between H0 and H1. Since they are both running in
CPA-Exp-0, this is the same as distinguishing between (x, Fk(x)), and (x,R(x)). Formally,
we could have BA distinguish between Fk(X) and R(x) by using A as a black box, where
whenever A would access the encryption oracle O, BA will proxy for the result by passing

Lecture 10, Page 3

the input to its unknown function, and giving the output back to A as the result. Since we
should have Fk(x) ≈ R(x), then H0 ≈ H1.

Lemma 2 H1 ≈ H2

Proof: First, note that the distribution for R(x) and R(x)XORm are the same, since R(x)
is truly random. The difference between H1 and H2 is the difference between R(x)XORm ≈
R(x) and y. The only way we could tell the difference between R(x) and y is if we chose the
same x at least twice. In this case, R(x) would be consistent, but y will, with probability
nearly 1, be a different value. However, x is chosen randomly. If we make q queries to the
oracle, then by a union bound, the probability that we choose the same x more than once
is Pr [∃i, j : xi = xj] ≤ q2/2n ∈ negl(n). Thus we can only differentiate H1 and H2 with
negligible probability.

Lemma 3 H2 ≈ H ′2

Proof: The encryption oracle ignores the inputs, so there is no correlation between what
the oracle gives as an answer and whether we are in CPA-Exp-0 or CPA-Exp-1. The
experiments are identical.

Lemma 4 H ′2 ≈ H3

Proof: The same argument that H1 ≈ H2 applies.

Lemma 5 H3 ≈ H4

Proof: The same argument that H0 ≈ H1 applies.

Thus by a hybrid argument, we have that H0 = CPA-Exp-0 ≈ CPA-Exp-1 = H4, as
desired.

Due to the randomization, it is not possible for a computationally bounded adversary to
tell which M0,M1 was encrypted and returned. The only real attack is to keep querying on
M0 and M1 repeatedly, and hope to get the same random parameter x that the experiment
used for its encryption of Mb.

4 MACs in a computational setting

Previously, we defined 1-time MACs which had information theoretic security, even in the
face of unbounded computational power, but could only be used to authenticate a single
message. We also saw that we can extend this construction to any a-priori bounded number
of messages t, but the size of the key had to grow with t. In this section, we will update
our definition by viewing our adversary as being computationally bounded. This new defi-
nition will allow us to securely generate tags for arbitrarily many messages with a short key.

Lecture 10, Page 4

4.1 Computational secure MAC definition

As before, the key k is chosen uniformly at random. However, this time, the adversary A
has oracle access to MAC(k,m). After making a polynomial number of queries, A can pick
any message m∗, and must attempt to generate a correct tag σ∗. If MAC(k,m∗) = σ∗
and m∗ 6= mi for any of the previously queried mi, then the result of the experiment is
1. Else, it is 0. We define this experiment as AuthExpA. The flow diagram for this is below:

AuthExp
Challenger Adversary A
k ← {0, 1}n

Repeat poly(n) times{ mi
�−−−−−−−−−−−−−−−−−−−−−−−−−−

MAC(k,mi)
−−−−−−−−−−−−−−−−−−−−−−−−−−�

(m∗, σ∗)
�−−−−−−−−−−−−−−−−−−−−−−−−−− Generates (m∗, σ∗) pair
Returns 1 if MAC(k,m∗) = σ∗

and m∗ 6= mi from previous queries
Else returns 0

Definition 2 A MAC is computationally secure if for all PPT adversaries A, we have
that: Pr [AuthExpA(n) = 1] ≤ negl(n). ♦

4.2 MACs with AuthExp security

Given our above definition, it is true that any PRF Fk(x) will suffice as a MAC. We formalize
this and prove it below.

Theorem 1 Let Fk(m) be any PRF . Define a MAC function as MAC(k,m) = Fk(m).
Then MAC(k,m) is computationally secure.

Proof: First, we will show that AuthExp is indistinguishable from an experiment where in
place of Fk we use a truly random function. Then the desired conclusion follows from the
security of the modified experiment.

Define the following two hybrids:
H0 : AuthExp
H1 : AuthExp, replace Fk with R(m) // R is a truly random function

Lemma 6 H0 ≈ H1. In other words, for all PPT A, |Pr [H0(A,n) = 1]−Pr [H1(A,n) = 1] | ≤
negl(n).

Proof: If we could distinguish H0 and H1, then we could distinguish any PRF from a
random function by plugging them into H0 and H1 and distinguishing those experiments.

Lemma 7 For all adversaries A: Pr[H1(A,n) = 1] ≤ 2−n

Lecture 10, Page 5

Proof: Since the MAC function is a truly random function, no matter what queries A
makes in experimet H1, if m∗ was not queried then the final tag MACk(m∗) = R(m∗)
will be random and unknown to the adversary. Thus no matter what tag σ∗ the adversary
chooses, the probability of it being correct σ∗ = R(m∗) is at most 2−n.

Combining the two lemmas we get that for all PPT A:

Pr [AuthExpA(n) = 1] = Pr [H0(A,n) = 1]

≤ Pr [H1(A,n) = 1] + negl(n) By Lemma 6

≤ 2−n + negl(n) ≤ negl(n) By Lemma 7

as we wanted to show.

5 Combining encryption and authenticity

In previous lectures, we had viewed encryption and authenticity as separate problems. In
reality, these two processes are combined to create encryption schemes where messages can
also be verified. Not only that, but they are more related than they appear.

Consider the following simple protocol between parties A and B: A has a message (b,m)
to encrypt for B. If m is a top secret message, she will set b = 1, indicating to B that it is
not to be shared. If m can be freely shared after B is done with it, she will set b = 0. A
uses proper encryption to send Enc(k, (b,m)) to B, who then uses his decryption function
to obtain the original (b,m) and act according to the value of b.

Suppose an actively malicious party E could intercept ciphertexts, and although cannot
read them, could flip any bit of the plaintext message by appropriately tampering with the
ciphertext. Then E could flip the first bit of the plaintext, changing the behavior of B. If this
was a top secret message, B would mistakingly publish it for all to see. Although this exam-
ple may seem forced, in practice there have been attacks on cryptography implementations
which work in a way very similar to the above.

The key problem in the above example is that B will act differently based on what he
reads from the plaintext message. B could also be viewed as a system, which decrypts in-
coming ciphertexts and acts according to the plaintext. For example, imagine a bank server
which receives encrypted transactions, and must make transfers according to the plaintext
descriptions. In order for correctness of this system to be guaranteed, the cryptography
schemes must provide their own guarantees as to what can and cannot be decrypted into a
plaintext message. This is the role of the MACs in the cryptography schemes.

The question to answer is, in what way should encryption and authenticate be composed,
so that neither is compromised? To motivate this question, consider the following incorrect
combination:

• c = Enc(k,m)

• σ ← MAC((, k),m)

• Send (σ, c)

Lecture 10, Page 6

In this case, we are signing the plaintext, not the ciphertext. B can only authenticate after
decrypting c. There are two potential problems with this. First, we have no guarantees
that σ doesn’t reveal any information about the message, which we want to hide. Second,
it is still possible that just by decrypting c, information about the message or the secret
key can be revealed. This is mostly due to Dec(k, c) having undefined behavior if c is not
in its domain, which can occur if it was tampered with by an active eavesdropper.

What we really want is to make sure that bad cipher texts do not get to be passed to
the decryption function. Thus, we do the following:

• c = Enc(k,m)

• σ ← MAC((, k), c)

• Send (σ, c)

When B receives (σ, c), he first checks that MAC(k, c) = σ, and only attempts decryption
if this is the case. This prevents both the MAC from leaking information about m, and
accidental decryption of faulty ciphertexts. To reiterate, the main point is to not decrypt
bad cipher texts.

6 Collision Resistant Hash Functions

A collision resistant hash function is used to compress a long message x to a short digest
y = H(x). Since H is compressing, there are neceserally collisions x 6= x′ such that H(x) =
H(x′). However, we require that such collisions are hard to find.

More formally, we consider a family of functions Hs : {0, 1}`(n) → {0, 1}n, where `(n) >
n and s ∈ {0, 1}n. We think of s as a public seed of the hash function which is chosen
randomly but known to everyone. Then we say Hs is a collision resistant family of hash
functions if:

1. Hs(x) can be computed in polynomial (in |s|, |x|) time.

2. For all PPT A, the following experiment has negligible probability of returning 1:

• s← {0, 1}n

• A gets s.

• A outputs x, x′ ∈ {0, 1}`(n).
• The experiment returns 1 iff x 6= x′ and Hs(x) = Hs(x

′), 0 otherwise.

More compactly, we can write that for all PPT A we have:

Pr[(Hs(x) = Hs(x
′)) ∧ (x 6= x′) : s← {0, 1}n, (x, x′)← A(s)] = negl(n).

Lecture 10, Page 7

Discussion on seeds. One might ask whether the seed s is needed at all - couldn’t we
have just a single hash function H for which it’s hard to find collisions? Intuitively this
seems possible and is actually done in practice. However, for a technical reason, we need
the formal definition to have a random seed. The reason is that, if we had a single fixed
hash function H then there would always be a very simple (non-uniform) adversary A that
has a hard-coded collision x 6= x′ such that H(x) = H(x′) and simply outputs x, x′ without
doing any computation. By choosing a random seed s, we prevent this since the adversary
would need to know a different collision for each s (or at least many seeds s) which would
require an exponential amount of data. In practice, it seems unnecessary to have a seed
since, even though there exists some A with the hard-coded collision x, x′, we as humans
do not know the code of this A. However, we do not have very good ways of formalizing
this mathematically.

Lecture 10, Page 8

