
Exercise Set 3 c©2005 Felleisen, Proulx, et. al.

3 Methods for Containment, Unions, and Self Refer-

ential Data

Methods and Containment Arrows

3.1 Problem (11.1.1)

Recall the problem of writing a program that assists a book store manager
(see exercise 1.2). Add the following methods to the Book class:

1. currentBook, which accepts a year and returns true only when the
book was published in the given year;

2. thisAuthor, which accepts an author and returns true only when the
book was writted by the given author;

3. sameAuthor, which accepts another book and returns true only when
the two books have identical authors.

3.2 Problem (11.1.2)

Exercise 1.4 provides the data definition for a weather recording program.
Design the following methods for the WeatherRecord class:

1. withinRange, which determines whether today’s high and low were
within the normal range;

2. rainyDay, which determines whether the precipitation is higher than
some given value;

3. recordDay, which determines whether the temperature broke either
the high or the low record.

4. same, which determines whether two different records represent the
same information.

1

c©2005 Felleisen, Proulx, et. al. Exercise Set3

Methods and Unions of Classes

3.3 Problem (12.1.1)

Figures 3.1 and 3.2 show a part of a class hierarchy for a family of shapes.
Construct examples of the Square class, and test cases for each method de-
clared in the abstract class. Next, extend the hierachy to include the Circle
and Dot classes described in the textbook. Be sure to provide examples of
data and test cases for these functions too.

3.4 Problem (12.1.2)

Draw a class diagram for the classes of problem 3.3.

3.5 Problem (12.1.3)

Extend and the class hierarchy in figures 3.1 and 3.2 to include Rectangles.
The extension must implement all the abstract methods in AShape.

3.6 Problem (12.1.4)

Implement an extension of the class hierarchy of problem 3.5 to include a
perimeter method.

2

Exercise Set 3 c©2005 Felleisen, Proulx, et. al.

// represents an abstract shape
abstract class AShape {
CartPt loc;

// to compute the area of this shape
abstract double area();

// to compute the distance of
// this shape to the origin
abstract double distTo0();

// is the given point is within
// the bounds of this shape
abstract boolean in(CartPt p);

// compute the bounding box
// for this shape
abstract Square bb();

}

// represents a square (this.loc at top left)
class Square extends AShape {

int size;

Square(CartPt loc, int size) {
. . . // omitted

}

double area() {
return this.size ∗ this.size;

}

double distTo0() {
return this.loc.distTo0();

}

boolean in(CartPt p){
return

this.between(this.loc.y, p.y, this.size)
&&
this.between(this.loc.x, p.x, this.size);

}

Square bb() {
return this;

}

// is x in the interval [lft,lft+wdth]?
boolean between(int lft, int x, int wdth) {

return lft <= x && x <= lft + wdth;
}

}

Figure 1: Classes for geometric shapes with methods (part 1)

3

c©2005 Felleisen, Proulx, et. al. Exercise Set3

class CartPt {
int x;
int y;

CartPt(int x, int y) { . . . // omitted . . . }

// to compute the distance of this point to the origin
double distTo0(){

return Math.sqrt((this.x ∗ this.x) + (this.y ∗ this.y));
}

// compute the distance between this CartPt and p
double distanceTo(CartPt p){

return

Math.sqrt((this.x − p.x) ∗ (this.x − p.x) + (this.y − p.y) ∗ (this.y − p.y));
}

// create a new point that is deltaX, deltaY off-set from this point
CartPt translate(int deltaX, int deltaY) {

return new CartPt(this.x + deltaX, this.y + deltaY);
}

}

Figure 2: Classes for geometric shapes with methods (part 2)

4

Exercise Set 3 c©2005 Felleisen, Proulx, et. al.

3.7 Problem (12.4.2)

A software house that is working with a grocery chain receives this prob-
lem statement:

Develop a program that keeps track of the items in the grocery
store. For now, assume that the store deals only with ice cream,
coffee, and juice. Each of the items is specified by its brand
name, weight (grams) and price (cents). Each coffee is also la-
beled as either regular or decaffeinated. Juice items come in
different flavors, and can be packaged as frozen, fresh, bottled,
or canned. Each package of ice cream specifies its flavor.

Design the following methods:

1. unitPrice, which computes the unit price (cents per gram) of some
grocery item;

2. lowerPrice, which determines whether the unit price of some grocery
item is lower than some given amount;

3. cheaperThan, which determines whether one grocery item is cheaper
than some other, given in terms of the unit cost.

3.8 Problem

Recall Problem 2.2 that dealt with reading lists. Design to following meth-
ods for these classes:

1. hasOldBooks which determines whether there are any old books in the
list of books (books published before 1950).

2. allNewBooks which check if all books in the list are new books.

3. aCount which computes how many books in the list were written by
a given author.

5

c©2005 Felleisen, Proulx, et. al. Exercise Set3

3.9 Problem

Recall Problem 2.3 that dealt with a maze game. We revise the game a
little bit, so that the girl starts the game with no fortune in a room with
elf. We also add the requirement that each wizard has a unique name. The
wizards are are parameterized by two magic numbers a and b and compute
the girl’s final fortune as a function of her incoming fortune x, using the
formula ax + b. As before, the game ends when a monster leaves the girl
with no fortune, or when the girl lands in a room containing a wizard.

Each move in the game consists of the following steps:

• The elf, the monster, or the wizard adjusts girl’s fortune.

• A check is made whether the game is over.

• If the game is not over, the girl moves to the next room of her choice
(either left or right).

First, modify your existing class hierarchy to match the updated design
specification.
Second, design and implement the following methods for the class hierar-
chy:

1. reward which determines the girl’s new fortune, based on her current
fortune and the fact that she is currently in ’this’ room.

2. gameOver which checks if the game is over - again, it needs to know
the girl’s current fortune and the room.

3. countRooms which counts how many rooms are in the maze.

4. countElfRooms, countMonsterRooms and countWizardRooms which count
how many rooms of each kind are there in the maze.

6

