
Exercise Set 9 c©2005 Felleisen, Proulx, et. al.

9 Abstracting Traversals; Using Runtime Exceptions;

Introducing Collections

In this problem set you will work with several predefined classes that rep-
resent cities and lists of cities, as well as files that provide infrastructure for
the tests and for dealing with user input.

The focus of your work is on learning to use abstractions in building
reusable program components.

Part 1: Iterators, Loops, User input

Start by downloading the file HW9part1.zip and making an Eclipse
project HW9part1 that contains these files. Add jpt.jar as a Variable to your
project. Run the project, to make sure you have all pieces in place. The
main method is in the class Interactions.

The classes you will work with are the following:

• class City represents name, state and a zip code for one city

• AListOfCities and its subclasses represent lists of cities

• interface IRange to represent an iterator

• class Examples is the class that holds examples of data and the tests
for all your methods

• class Interactions is the class that facilitates user interactions and al-
lows you to explore the behavior of parts of your program

• class Algorithms contains methods that implement loops, such as our
orMap and filter as well as other algorithms, such as sorting algo-
rithms.

• interface ISelect and interface IObj2Obj represent function objects con-
sumed by the loop methods.

• interface ISame is our standard interface for implementing the usual
extensional equality comparison of objects

1



c©2005 Felleisen, Proulx, et. al. Exercise Set 9

9.1 Problem

For the given classes City, AListOfCities (and its subclasses), and the inter-
face IRange design the following classes and methods:

1. class ListRange that implements the IRange iterator for the list of cities.

2. In the class Algorithms design the method buildList that consumes an
IRange iterator and produces a list of cities. In one of your tests for
this method make a copy of a list of cities and compare the results.
(You may need to reverse the result.)

3. Explore the use of the method buildList in the class Interactions by us-
ing the InGuiRange, InConsoleRange and InFileRangeBuffered iterators.

4. Design the method orMapWhile that is a variant of orMap that uses
Java while statement instead of recursion. Use as a model the imple-
mentation of the filter and filterWhile methods.

5. Add the methods andMap and andMapWhile to the Algorithms class.

6. In the Examples class include the following additional tests for the
filter, orMap, and andMap methods:

• produce a list of all cities in a given state

• find out whether there are any cities in a given state in some list
of cities

• are all cities in some list in a given state

• is there a city with the given name in this list

• produce a list of all cities with the given name from some list of
cities

• do all cities in some list have the given name

9.2 Problem

Design the class ArrayListRange to provide a traversal of the data repre-
sented by Java ArrayList object.

Re-run the tests from the Part 5 of the previous problem using data
stored in an ArrayList.

2



Exercise Set 9 c©2005 Felleisen, Proulx, et. al.

9.3 Problem

Design a new variant of the class ArrayListRange that will allow the user
to decide at construction time what part of the given ArrayList should the
iterator traverse. So, for example, you may choose to only look at the con-
secutive elements of the ArrayList starting at index 5 and going up to index
14.

Re-run the tests from the Part 5 of the previous problem using data
stored in an ArrayList.

9.4 Problem

The goal here is to start thinking about systematic design of tests.
Read the code for the class SimpleTestHarness. Design a test suite for it.
Write a pragraph or two of documentation that describes what kinds of

tests can/cannot be done using this test harness.

Part 2

In this part you will implement several sorting algorithms possibly using
the iterators from the first part for the traversal. Use function objects that
implement Java Comparator interface to determine the ordering of two ob-
jects.

9.5 Problem

Implement the insertion sort in the class Algorithms and test it on both a list
of cities and an ArrayList that represents cities.

9.6 Problem

Implement the quick sort in the class Algorithms and test it on both a list of
cities and an ArrayList that represents cities.

9.7 Problem

The selections sort works as follows. Select the smallest item in the list
and remember its position. Swap the first item with the smallest one you
found. The first item is now in the correct position. Repeat these steps for
the remaining part of the list, until all items move into their correct places.

3



c©2005 Felleisen, Proulx, et. al. Exercise Set 9

• Design the method that finds the index of the smallest item in the
given array, traversed using the IRange iterator.

• With the given helper method, using the second variant of your iter-
ator for ArrayList, design the selection sort for ArrayList.

Part 3

9.8 Problem

We have the following data definitions:
A Reply consists of

• String question

• ArrayList answers that contains at least three elements, each of them
also a String

A CrystalBall consists of an ArrayList of Reply

Make a new project named Eliza, import the files from eliza.zip, and your
iterator classes for ArrayList

Add the jpt.jar variable to your project as well.

Now design the following methods

• in the class Reply design the method randomAnswer that produces at
random one of the answers available

• in the class CrystalBall design the method findReply that consumes a
String s and produces the Reply such that the question is a prefix of the
given String, or a special default Reply object, if it finds no match.

The method startsWith in the class String helps here.

Make an example of a CrystalBall object in the Interactions class.
In the Interactions class design a method that forever requests a String

s from the user and displays the answer given by the findReply method fo
the CrystalBall class. When the user aborts the input response, the method
prints Goodbye.

4


