Exercise Set 7 (©2005 Felleisen, Proulx, et. al.

7 Shortest Path; Accumulators

7.1 Problem

In the Lab 7 you were working on the following problem:

Finally, design the methods that will produce a list of stations
we need to go through to travel from this station to the given
station. Include the origin and destination in the list. Produce
an empty list of stations, if there is no way of getting there from
here.

1. Design the data definition of the routing from one station to another,
so that it includes fields that record not only the station we travel
through, but also the length of the route up to this station. It would
be appropriate to call is a Routing, because we no longer can add ar-
bitrary stations to the list, only those that are connected by a train
route.

For example, for the routea-3-c-4-s-6-p, the new routing would
be recorded as 04, 3 ¢, 7 s, 13 p. A route from a to a is recorded as 0 a.

On possible data definition would be:
A Routing is one of

- empty

- structure: length, Station, Routing

2. Add a method extendRouting to the classes that represent the routing
that adds a new station to the routing and increments the length of
the routing by the specified distance.

3. Add a method to the classes that represent the routing that deter-
mines whether this routing is better than some other, according to the
following criteria:

e any routing is better than an empty one

e anonempty routing is better that some other routing, if its length
is shorter

4. Design a new variant of your solution of the lab problem in which
you produced a list from one station to another. The new variant
produces a routing instead of just a list of stations. Use the number
of stops as your measure of the length.



(©2005 Felleisen, Proulx, et. al. Exercise Set7

5. Modify the solution above, so it produces the shortest routing.

6. Design the methods that now produce the shortest routing measured
by the time of travel.

7. Abstract over the two methods, by defining an interface for a function
object that computes the length of travel between two stations.

Remember, that the design recipe for abstractions asks you to imple-
ment the solutions to the original problem using the new abstraction.
Do so for the two ways of measuring the length of the routing. Add
another variant that measures the length of travel between two sta-
tions using the Manhattan distance between the locations of the sta-
tions. u

7.2 Problem

Repeat all of the previous tasks, using the data definitions from Part b of
Lab 7. You may find it helpful to design a method that produces a list of
zero, one, or two neighbors of a given station. s

7.3 Problem: Challenge

Make an example of a transit system where it is possible to return to the
same station. Design a class hierarchy that represents this transit system as
a list of stations, where each station has a list of neighbors. The neighbor
information includes the route, the time to travel, and the name of the next
station.

Design the method that produces the shortest path for this transit sys-
tem. You will need to keep track of the routes to the stations already visited,
as well as a list of stations you should visit next.

You may use either one of the three measures for computing the length
of a route. n

7.4 Problem

In the Maze game from Exercise Set 5 you computed the maximum amount
the girl can win. Produce a list of moves (left or right) the girl should do to
win the maximum amount.



Exercise Set 7 (©2005 Felleisen, Proulx, et. al.

Part 2
7.5 Problem

Return to the problem 3 from homework 3 where you designed the shape
class hierarchy. Modify the examples to test cases in Java 1.4 and run them
as a project in Eclipse. s

7.6 Problem

Run the Maze game in Eclipse. Again, modify the test cases as needed.

The instructions and the classes you need for representing the World
will be provided separately. You will learn to use Eclipse in the lab on
March 8th.



