
Exercise Set 5 c©2005 Felleisen, Proulx, et. al.

5 Binary Search Trees; Graphics and Interactions

Binary Search Trees

We have the following data definition:
A Binary Search Tree is one of

• Empty Tree

• a Node

A Node consists of

• data of the type String,

• left Binary Search Tree,

• right Binary Search Tree.

Additionally, every Node has the property that all data in the left subtree
contains strings that appear in the dictionary before the data in the Node,
and all data in the right subtree are strings that appear in the dictionary
after the data in this node. The string that is identical to the field data can be
in either the left or in the right subtree — it is not important.

The following are examples of such trees:

ppp mmm
------ --------
/ \ / \

ggg ttt ddd rrr
----- ----- ----- -----

/ \ / \ / \ / \
bbb * sss * aaa kkk * xxx
----- ----- ----- ----- -----

/ \ / \ / \ / \ / \
* * * * * * * * * *

Tree-1 Tree-2

Your task is to design classes that represent this data as Java classes, and
to design several methods to manipulate this data. You will also need an
auxilliary classes that represent a list of Strings. You may read more about
binary search tree in HtDP.

5.1 Problem

Design the classes that represent binary search trees of Strings. Make exam-
ples of data.

1



c©2005 Felleisen, Proulx, et. al. Exercise Set5

5.2 Problem

Design the method same that determines whether two binary search trees
are the same, i.e. they have the same structure and contain the same Strings.

5.3 Problem

Design the method insert that insert a String into a binary search tree, pre-
serving the tree property stated earlier.

Java provides the following method for String comparison:

// compare this String with that String lexicographically
// return <0 --- if ’this’ is before ’that’
// return 0 --- if ’this’ is the same String as ’that’
// return >0 --- if ’this’ is after ’that’
int compareTo(String that) ...

If you do not understand how to do it, try some examples by hand, or
read about the problem in HtDP.

5.4 Problem

Design the classes that represent a list of Strings. Add the method sort that
sorts the list in lexicographical order. Add the method same that determines
whether two lists contain the same Strings in the same order. You should
just modify your solutions to the previous homework.

5.5 Problem

Design the method inorder that produces a list of Strings that appear in the
nodes of this tree, ordered so that all strings in the left subtree appear in
the list before the data in the root node, and all strings in the right subtree
appear in the list after the data in the root node.

For example, our two examples would produce the lists in the following
order:

Tree-1: bbb ggg ppp sss ttt
Tree-2: aaa ddd kkk mmm rrr xxx

The method consumes a list of Strings, initially empty, that represents the
list of strings that come after all the nodes in this subtree have been entered

2



Exercise Set 5 c©2005 Felleisen, Proulx, et. al.

into the list. So, for our Tree-2, in the Node ddd, the given list of strings
will contain (mmm rrr xxx). The nodes in this subtree, ddd, aaa, and
kkk, still have to be added to the list. It is clear, that when we start at the
node mmm, there is nothing in the list.

Again, make examples until you understand the problem. Follow the
design recipe!

5.6 Problem

Design the method contains for both, the classes that represent the binary
search trees, and the classes that represent lists of Strings. The method de-
termines whether the given String appears in the tree or list repsectively.

5.7 Problem

Explore the power of the methods you designed through the following ex-
amples:

1. insert the same items into a binary search tree several times in differ-
ent order, then produce the result from the inorder method and check
that they are the same.

2. insert the same items into a list of Strings, again several times in a
different order, and sort these lists.

3. design a comparison between a binary search tree and a list of Strings
to determine whether they contain the same Strings.

4. design the method sameData for the classes that represent binary
search trees, that determines whether two trees contain the same
Strings, not necessarily organized the same way. For example, any
pair of the following three trees would pass this test:

bb cc aa
/ \ / \ / \

aa cc aa * * bb
/ \ / \ / \ / \
* * * * * bb * cc

/ \ / \
* * * *

3



c©2005 Felleisen, Proulx, et. al. Exercise Set5

5. design the method buildTree for the classes that represent
binary search trees that consumes a list of Strings and produces a bi-
nary search tree, with all Strings in the list inserted in the tree. Verify
that you produced the correct list by comparing the result of invoking
the inorder method with the given list in sorted order.

5.8 Problem: Challenge - will not be graded

Design the method delete that deletes the given String from the binary search
tree, while preserving the binary search tree property. If the tree does not
contain the String, the method just returns the original tree.

5.9 Analytical Problem

The height of the binary tree is the longest path from the root Node to an
Empty Tree. So for example, Tree-1 and Tree-2 in the first set of examples
both have height 3, while the first tree in the Problem 5.7 has height 2.

1. What is the smallest and what is the greatest height of a binary serch
tree with 63 nodes?, with 31 nodes?

2. Make examples of the binary search tree of minimum and maximum
height with 15 nodes.

3. Show all possible binary search trees that contain the following
Strings and no others: aa bb cc dd

4



Exercise Set 5 c©2005 Felleisen, Proulx, et. al.

Maze Game

Refer to Problem 2.3 and Problem 3.9 from Assignments 2 and 3.

5.10 Problem

Design the methods that computes the maximum money the player can
win, when starting with the given amount.

5.11 Problem

Design the methods that determines whether two rooms are the same. Two
wizard rooms are considered the same if they use the same formula to com-
pute the reward.

5.12 Problem

Design the method nextMove for the class that represents the girl player.
The method produces a new girl player. If the game is over, the method just
returns the girl player unchanged. Otherwise, the girl’s fortune is either
increased by the elf or a wizard, or plundered by the monster. The method
consumes a String "left" or String "right" that determines the choice of
doors, left or right, and the player moves to that room. The player should
not move anywhere, if the input is different from these two values. Of
course, there are no doors in the wizard room.

5.13 Problem

Design the methods that draw the three different rooms for the Maze Game,
i.e. the Monster room, the Elf room, and the Wizard room in the World. They
can be just rectangles of different color, but you may use some creativity
along the way.

This problem will not be graded, but you need some graphical repre-
sentation of the different rooms to proceed with the rest of the problems.

5.14 Problem

Design the methods that draw some representation of the amount of money
the girl player has. It can be as simple as a yellow circle of increasing or

5



c©2005 Felleisen, Proulx, et. al. Exercise Set5

decreasing radius, or a fancy pile of gold nuggets.
This problem will not be graded, but you need some graphical repre-

sentation of the money to proceed with the rest of the problems.

5.15 Problem

Add the girl player to the World. Define the two methods needed to play
the interactive game — draw and move and onKeyEvent.

• The draw method should paint some background, draw the current
fortune of the girl player, and draw the room where the player is cur-
rently.

• The move method produces a new World with the player that has
made the next move, given a String with values "left" or "right"
as its argument. If the argument is not one of these two strings, the
world remains the same.

• The onKeyEvent method takes one argment, a String that represents
the key that has been hit. The left and right arrow keys are repre-
sented by Strings "left" and "right". This method just invokes
the above move method with the argument it received.

You shold now be able to play the game.

6


