
CSU213 Exam 1 – Spring 2005

Name:

Student Id (last 4 digits) :

Instructor’s Name:

High School/State:

• Write down the answers in the space pro-
vided.
• You may use all forms that you know from
ProfessorJ (Beginner). If you need a method
and you don’t know whether it is provided,
define it.
• Remember that the phrase “develop a
class” or “develop a method” means more
than just providing a definition. It means to
design them according to the design recipe.
You are not required to provide a method
template unless the problem specifically asks
for one. However, be prepared to struggle if
you choose to skip the template step.
• We will not answer any questions during
the exam.

Good luck.

Problem Points /

1 / 8

2 / 15

3 / 10

4 / 15

5 / 6

6 /5 extra

Total / 54



8 PointsProblem 1

Take a look at these structure and data definitions:

abstract class AMessage {}

class SymbolM extends AMessage {

String s;

SymbolM(String s) {

this.s = s;

}

}

class StringM extends AMessage {

String s;

StringM(String s) {

this.s = s;

}

}

class Message extends AMessage {

int slot;

String cont;

Message(int slot, String cont) {

this.slot = slot;

this.cont = cont;

}

}

Answer the following questions in this context:

1. Write down three distinct data examples, one per clause:

Solution [POINTS 3]

new SymbolM("hello")

new StringM("world")

new Message(10, "hello")

2



2. Write down the template for a method on AMessage:

Solution

[POINTS 3: 1 for abstract, 1 for three concrete, 1 for selector expres-
sions]

abstract class AMessage {

abstract ??? method();

}

class SymbolM extends AMessage {

String s;

SymbolM(String s) {

this.s = s;

}

??? method() {

... this.s ...

}

}

class StringM extends AMessage {

String s;

StringM(String s) {

this.s = s;

}

??? method() {

... this.s ...

}

}

class Message extends AMessage {

int slot;

String cont;

Message(int slot, String cont) {

this.slot = slot;

this.cont = cont;

}

??? method() {

... this.slot ... this.cont ...

}

3



}

4



3. Write down a purpose statement for the program that translates a
AMessage into a String:

Solution [POINTS 1]

abstract class AMessage {

// convert this message into a string

abstract ??? method();

}

4. Write down three method examples (one per variant) for the method
countMessage, which counts how many characters are contained in all
strings associated with a given AMessage.

Solution [POINTS 1]

new SymbolM("hello").countMessage() // should be

5

new StringM("world") // should be

5

new Message(10, "hello") // should be

5

5



15 Points
Problem 2

The main purpose of this exercise is to develop the method listOOS. It
consumes a list of basic event strings ("on", "off", "steady"); its result
is an OOS that represents how many times "on", "steady", and "off",
respectively, occur in the given list.

Here are the relevant class definitions:

// represent a sequence of events as strings

abstract class AEvents {}

class ConsE extends AEvents {

String first;

AEvents rest;

ConsE(String first, AEvents rest) {

this.first = first;

this.rest = rest;

}

}

class MtE extends AEvents {

MtE() { }

}

// represent a count of "on", "off", "steady" events

class OOS {

int on;

int off;

int steady;

OOS(int on, int off, int steady) {

this.on = on;

this.off = off;

this.steady = steady;

}

}

Answer the following questions in this context.

6



1. Provide a template for a method that consumes a String and processes
an OOS structure.

Solution

;; [POINTS 1, for all selector expressions]

// represent a count of "on", "off", "steady" events

class OOS {

int on;

int off;

int steady;

OOS(int on, int off, int steady) {

this.on = on;

this.off = off;

this.steady = steady;

}

OOS method(String e) {

... this.on ... this.off ... this.steady ...

}

}

2. Define the OOS method update, which consumes one of three strings:
”on”, ”off”, ”steady”. Its result is an OOS structure with the matching
counter bumped by one; the other two counters remain the same.

Solution

;; [POINTS 3, for all three branches correct]

OOS update(String e) {

if (e.equals("on")

new OOS(this.on+1,this.off,this.steady);

else if (e.equals("off")

new OOS(this.on,this.off+1,this.steady);

else (e.equals("steady")

new OOS(this.on,this.off,this.steady+1);

}

7



3. Formulate a contract and a purpose statement for listOOS:

Solution

abstract class AEvents {

// count how many times "on", "steady", "off"

// occur on this list [POINTS 1: this]

abstract OOS listOOS(); // [POINTS 1]

}

4. Provide two distinct method examples:

Solution [POINTS 2]

Given: Wanted:

new MtE() new OOS(0,0,0)

new ConsE("on",new ConsE("on",new MtE()))new OOS(2,0,0)

8



5. Define the method listOOS. Develop auxiliary methods as needed.

Solution [POINTS 5]

// represent a sequence of events as strings

abstract class AEvents {

// count how many times "on", "steady", "off"

// occur on this list

abstract OOS listOOS();

}

class ConsE extends AEvents {

String first;

AEvents rest;

ConsE(String first, AEvents rest) {

this.first = first;

this.rest = rest;

}

OOS listOOS() {

return this.rest.listOOS().update(this.first);

}

}

class MtE extends AEvents {

MtE() {

return new OOS(0,0,0);

}

}

6. Translate your examples for listOOS into tests.

Solution

;; TESTS: [POINTS 2, each one correctly; 0 if not examples]

--- I am stumped because I don’t know how you teach tests ---

9



10 PointsProblem 3

Here are data definitions from an environmental surveillance program for
rivers:

// a system of river tributaries (composite pattern)

class River {

String location;

int distance;

Tributary in;

River(String location, int distance, Tributary in) {

this.location = location;

this.distance = distance;

this.in = in;

}

}

abstract class Tributary {

String location;

}

class Well extends Tributary {

Well(String location) {

this.location = location;

}

}

class Joint extends Tributary {

int distance;

Tributary left;

Tributary right;

Joint(String location, int distance,

Tributary left, Tributary right) {

this.location = location;

this.distance = distance;

this.left = left;

this.right = right;

}

}

10



• Draw a class diagram of these definitions.
Solution

[POINTS 2]

/*

+-----------------+

| River |

+-----------------+

| String location |

| int distance |

| Tributary in |---+

+-----------------+ |

|

v

+-----------------+

| Tributary |<---------+

+-----------------+ |

| String location | |

+-----------------+ |

/ \ |

--- |

| |

------------------- |

| | |

+------+ +-----------------+ |

| Well | | Joint | |

+------+ +-----------------+ |

+------+ | int distance | |

| Tributary left |-+ |

| Tributary right |-+ |

+-----------------+ | |

| |

+--+

*/

11



• Provide a data example of a River that involves all three classes.
Solution

[POINTS 1: data example]

Tributary c = new Well("C");

Tributary d = new Well("D");

Tributary b = new Joint("B",20,c,d);

River e = new River("A",10,b)

12



• Develop a template for procesing river systems.
Solution

[POINTS 7]

class River {

String location;

int distance;

Tributary in;

...

??? method() {

... this.location ... this.distance ... this.in.method() ...

}

}

// a system of river tributaries

abstract class Tributary {

String location;

abstract ??? method();

}

class Well extends Tributary {

??? method() {

...

}

}

class Joint extends Tributary {

int distance;

Tributary left;

Tributary right;

...

??? method() {

... this.location ... this.distance ...

... this.left.method() ... this.right.method()

}

}

13



15 PointsProblem 4

Develop a program that counts the number of unknowns in a list of family
trees.

Here is the data definition in the form of a class diagram:

+------+ +-----+

| ALFT |<-----------+ +----------------->| AFT |<----------------+

+------+ | | +-----+ |

+------+ | | +-----+ |

/ \ | | / \ |

--- | | --- |

| | | | |

--------------- | | -------------------- |

| | | | | | |

+----+ +-----------+ | | +----------------+ +---------+ |

| Mt | | ConsFT | | | | Unknown | | Parents | |

+----+ +-----------+ | | +----------------+ +---------+ |

+----+ | AFT first |----|-+ | String anyInfo | | AFT mom |-+ |

| ALFT rest |-+ | +----------------+ | AFT dad |-+ |

+-----------+ | | +---------+ | |

| | | |

+--+ +--+

14



• Translate this diagram into a class hierarchy
Solution

[POINTS: 6]

// list of family trees

abstract class ALFT {}

class Mt extends ALFT {

Mt() { }

}

class ConsFT extends ALFT {

AFT first;

ALFT rest;

ConsFT(AFT first, ALFT rest) {

this.first = first;

this.rest = rest;

}

}

// a family tree

abstract class AFT {}

// the unknown ancestor

class Unknown extends AFT {

String anyInfo;

Unknown(String anyInfo) {

this.anyInfo = anyInfo;

}

}

class Parents extends AFT {

AFT mom;

AFT dad;

Parents(AFT mom, AFT dad) {

this.mom = mom;

this.dad = dad;

}

}

15



• Add the method for counting the number of Unknowns. You may employ
the following style if you are comfortable with in:

// in Unknown:

int countUnknown() {

return 1;

}

Solution

// [POINTS: 9, 5 for each and 4 for the four recursions]

// in AFT

// count the number of Unknowns in this AFT

abstract int countUnknown();

// in Parents

int countUnknown() {

return this.mom.countUnknown() + this.dad.countUnknown();

}

// in ALFT

// count the number of Unknowns in this list of AFTs

abstract int countUnknown();

// in Mt

int countUnknown() {

return 0;

}

// in ConsFT

int countUnknown() {

return this.first.countUnknown() + this.rest.countUnknown();

}

16



6 PointsProblem 5

Your boss, an electrical engineer who thinks he can program, wrote these
two classes:

class UP {

int x;

UP(int x) {

this.x = x; }

boolean zero() {

return 0 == this.x; }

UP count() {

return

new UP(this.x+1); }

}

class DOWN {

int x;

DOWN(int x) {

this.x = x; }

boolean zero() {

return 0 == this.x; }

DOWN count() {

if (this.zero())

return

new DOWN(this.x-1);

else

return this; }

}

First you naturally add purpose statements to each class and method.
You know that someone will have to read these things at some point and a
purpose statement is always a good idea.

Solution

[POINTS: 3]
UP: a class that counts up
zero: is this counter 0?
count: create a counter from x+1
DOWN: a class that counts down to 0
zero: is this counter 0?
count: create a counter from x-1, if it isn’t 0 yet

17



Second, you abstract the two classes as much as possible, because you
know that they both represent counters (and will need many more common
methods):

Solution

[POINTS: 3]

class COUNTER {

int x;

COUNTER(int x) {

this.x = x;

}

boolean zero() {

return 0 == this.x;

}

}

class UP extends COUNTER {

UP(int x) { super(x); }

UP count() {

return

new UP(this.x+1);

}

}

class DOWN extends COUNTER {

DOWN(int x) { super(x); }

DOWN count() {

if (this.zero())

return

new DOWN(this.x-1);

else

return this;

}

}

18



5 PointsProblem 6

Your boss struck again. This time he should have it right, it’s all about
boolean expressions, which is what these signals are all about. He is trying
to evaluate Boolean expressions like this:

(true /\ x) \/ false

where x is a variable that stands for booleans.
Here is how far he got:

// a representation for Boolean expressions

abstract class ABool {

// evaluate this expression as if it were a Java boolean expression

abstract boolean evaluate(String y);

}

class And extends ABool {

ABool left;

ABool right;

And(ABool left, ABool right) {

this.left = left;

this.right = right;

}

boolean evaluate(String y) {

return _________

}

}

class Or extends ABool {

ABool left;

ABool right;

Or(ABool left, ABool right) {

this.left = left;

this.right = right;

}

19



boolean evaluate(String y) {

return _________

}

}

class Not extends ABool {

ABool op;

Not(ABool op) {

this.op = op;

}

boolean evaluate(String y) {

return !(this.op.evaluate(y));

}

}

class Const extends ABool {

boolean b;

Const(boolean b) {

this.b = b;

}

boolean evaluate(String y) {

return this.b;

}

}

class Var extends ABool {

String x;

Var(String x) {

this.x = x;

}

boolean evaluate(String y) {

_________

}

}

20



His idea is that the string he passes to evaluate is the name of the variable
that is true. But now he doesn’t know how to finish the method. Can you
help?

Naturally you supplement the examples that he forgot to make:

class Ex {

ABool b1 = new Const(true);

ABool b2 = new Var("x");

ABool b3 = new And(this.b1,this.b2);

ABool b4 = new Or(this.b1,this.b2);

ABool b5 = new Not(this.b4);

boolean r1 = this.b3.evaluate("x"); // should be true

boolean r2 = this.b3.evaluate("y"); // should be false

Ex() {}

}

Solution [POINTS: 3 for the last one (it
needs equals), 1 each for the recursions]

21


