
Exercise Set 11 c©2005 Felleisen, Proulx, et. al.

11 Using Java Collections; JUnit

Goals

This assignment consists of a small program that uses interfaces and
classes either from Java’s standard libraries, or from our earlier labs and
assignments. The goal is to give you a bit of design freedom: You get to
decide which parts of the standard libraries, or which classes and interfaces
we already designed are the most suitable to use. If you design well, this
assignment should be fairly straightforward.

The second goal is to complete the introduction to Java program de-
sign standards. The program you produce will eventually use the JUnit
test tools and will include documentation in the style that allows you to
produce Javadoc documentation for your program.

Hints

Some or all of the following interfaces and classes are likely to prove
useful. In the java.lang package: Comparable, Iterator, List, Map, Set, Collec-
tions.

The Application

Have you ever wondered about the size of Shakespeare’s vocabulary?
For this assignment you will write a program that reads its input from a text
file and lists the words that occur most frequently, together with a count of
how many different words occur in the file. If this program were to run
on a file that contains all of Shakespeare’s works, it would tell you the ap-
proximate size of his vocabulary, and how often he uses the most common
words.

Hamlet, for example, contains about 4542 distinct words, and the word
”king” occurs 202 times.

Part 1: The Assignment

Start by downloading the file HW11.zip and making an Eclipse project
HW11 that contains these files. Add jpt.jar as a Variable to your project. Run
the project, to make sure you have all pieces in place. The main method is

1



c©2005 Felleisen, Proulx, et. al. Exercise Set 11

in the class Examples.

You are given the file test.txt that contains the entire text of Hamlet and
a file Week11.java that contains the code that generates the words from the
file test.txt one at a time, via an iterator.

The classes Tester and Examples contain a test harness similar to the Sim-
pleTestHarness used in the previous two assignments, but improved to catch
exceptions raised whie running the tests. More about this later...

Your tasks are the following:

1. Design the class Word to represent one word of Shakespeare’s vocab-
ulary, together with its frequency counter. The constructor takes only
one String (for example the word ”king”) and starts the counter at one.
We consider one Word instance to be equal to another, if they repre-
sent the same word, regardless of the value of the frequency counter.
That means that you have to override the method equals() as well as
the method hashCode().

2. Include in the class Word an inner class that implements the Com-
parator interface, so that the words can be sorted by frequencies. (Be
careful!)

3. Include in the class Word the method that allows you to increment the
counter (using mutation), and a method toString that prints one line
with the word and its frequency.

4. Design the class WordCounter that keeps track of all the words we
have seen so far. It should include the following methods:

// records the Word objects generated by the given Iterator.
void countWords (Iterator it) { . . . }

// How many different Words has this WordCounter recorded?
int words() { . . . }

// Prints the n most common words and their frequencies.
void printWords (int n) { . . . }

Here are additional details:

2



Exercise Set 11 c©2005 Felleisen, Proulx, et. al.

5. countWords consumes an iterator that generates the words and builds
the collection of the appropriate Word instances, with the correct fre-
quencies.

6. words produces the total count of different words that have been con-
sumed.

7. printWords consumes an integer n and prints the top n words with the
highest frequencies (using the toString method defined in the class
Word).

Part 2: The Testing

Of course, you need to test all methods as you are designing them. Design
the tests in three stages:

1. For the class Word use a technique similar to what was done in the
past two asisgnments, i.e. design a class SimpleTests that instantiates
the class Tester as well as the necessary sample data and collects all
tests in a method void run(). At the end of this method it invokes ei-
ther the testReport or the fullTestReport method to report on the results.

2. When designing the class WordCounter, upgrade to the next level of
the test harness. The class Tester contains the following driver for the
tests:

// run the tests, accept the class to be tested as a visitor
void runTests(Testable f ) {

this.n = 0;
try {

f.tests(this);
}
catch (Throwable e) { // catch all exceptions

this.errors = this.errors + 1;
console.out.println("Threw exception during test " + this.n);
console.out.println(e);

}
finally {

done();
}

}

3



c©2005 Felleisen, Proulx, et. al. Exercise Set 11

// to be run after all tests have been performed
public void done(){

if (this.errors > 0)
console.out.print("Failed " + this.errors + " out of ");

else

console.out.print("Passed all ");
console.out.println (this.n + " tests.");

}

The class Examples implements the Testable interface that contains just
one method:

void tests(Tester t);

Inside of this method the class Examples invokes the appropriate test
methods on the instance t of the Tester.

So we have a chicken and egg problem here. The class Tester wants to
know what is the Examples instance that is running the tests, so that
it can invoke the method tests(Tester t) defined in the Examples class
inside of the Tester’s try clause.

The class Examples in turn needs an instance of the class Tester so that
it can invoke each test method inside of the method tests(Tester t).

The main gain is that every invocation of the methods test is wrapped
inside of the try clause and if an exception is thrown, the error report
indicates which one of the tests failed.

The only thing you need to do is to include all your tests and the
needed sample data inside of the tests(Tester t) method in the class
Examples.

This prepares us for the third way of running tests, namely using
JUnit - Java’s standard test framework.

3. Introducing JUnit. You will now rewrite all your tests using the JUnit.
In the File menu select New then JUnitTestCase. When the wizard
comes up, select to include the main method, the constructor, and the
setup method. The tests for each of the methods will then become one
test case similar to this one:

4



Exercise Set 11 c©2005 Felleisen, Proulx, et. al.

/∗∗
∗ Testing the method toString
∗/

public void testToString(){
assertEquals("Hello: 1\n", this.hello1.toString());
assertEquals("Hello: 3\n", this.hello3.toString());

}

We see that assertEquals is basically the same as the test methods for
our test harnesses, they just don’t include the name of the test. Try to
see what happens when some of the tests fail, when a test throws an
exception, and finally, make sure that at the end all tests succeed.

Part 3: The Documentation

You may have noticed that the style in which we write documentation for
this assignment has changed. When written in the well formatted javadoc
style, the comments can used to generate web pages of documentation with
cross-references and browsing capabilities. There are a few basic rules, the
rest you should learn on your own, gradually, as you become more and
more skilled Java programmers.

Here are comments to specify the name of the file, and the class defini-
tion:

/∗
∗ @(#)Word.java 28 March 28 2005
∗
∗/

/∗∗
∗
∗ <P><CODE>Word</CODE> represents one word and its
∗ number of occurrences counted in the
∗ <CODE>{@link WordCounter WordCounter}</CODE> class.</P>

∗
∗ @see Comparable
∗
∗ @author Viera K. Proulx
∗/

public class Word implements Comparable {

5



c©2005 Felleisen, Proulx, et. al. Exercise Set 11

The @author and @see identify the author and provide a cross-reference
to other classes as specified.

Each field in the class has its own comment:

/∗∗
∗ the frequency counter
∗/

public int counter;

Each method has a comment that includes a separate line for each pa-
rameter as well as for the return value:

/∗∗
∗ Compare two <CODE>Object</CODE>s for equality
∗
∗ @param obj the object to compare to
∗ @return true if the two objects have the same contents
∗/

public boolean equals(Object obj){

The @param has to be followed by the identifier used for that param-
eter. The <CODE> and < /CODE> tags specify the formatting for the
document to be the teletype font for representing the code.

Eclipse helps you to write the documentation. If you start the comment
line with /∗∗ and hit the return, the beginnings of remaining comment lines
are generated automatically, and you only need to add the relevant infor-
mation.

When you have finished all the documentation, select the item Gener-

ate Javadoc... in the Project menu. To see your web pages, just open the tab
doc in the Package Explorer window under your project and double click
on the index.html.

6


