
Exercise Set 10 c©2005 Felleisen, Proulx, et. al.

10 Sorting out Sorting

In this problem set you will examine the properties of the different algo-
rithms we have seen as well as see and design new ones. The goal is to
learn to understand the tradeoffs between different ways of writing the
same program, and to learn some techniques that can be used to explore
the algorithm behavior.

Part 1: Sorting Algorithms

We have seen so far several different sorting algorithms. We have im-
plemented selection sort for ArrayList, an insertion sort that consumed an
iterator and produces either AListOfCities or ArrayList, and we have seen
in the Assignment 5 that we can use the binary search tree to sort the given
items. The algorithms are similar, yet they do not conform to the same
interface.

Our first task is to design wrappers for all these algorithms that will al-
lows us to use them interchangeably to sort any collection of data supplied
through an iterator. Of course, we want all of them to produce the data
in a uniform format as well. Therefore, we want all of these algorithms to
produce an iterator for the sorted list.

For each of the algorithms listed below design a class that implements
the SortAlgorithm interface, using the specified sorting algorithm.

The SortAlgorithm interface is defined as follows:

import java.util.Comparator;
interface SortAlgorithm {

// initialize the data to be consumed by the sort,
// perform the sorting algorithm,
// produce an iterator for the result
public IRange sort(IRange it, Comparator comp);
}

We provide an example of a class that implements a quicksort algo-
rithm. This implementation swaps the items within the ArrayList without
using additional space.

1



c©2005 Felleisen, Proulx, et. al. Exercise Set 10

10.1 Problem

Design the method in the Examples class that determines whether the data
generated by the given IRange iterator is sorted, with regard to the given
Comparator.

10.2 Problem

Design the class SelectionArrSort that performs the selection sort on an Ar-
rayList. The ArrayList is initialized from the data supplied by the IRange
iterator.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well.

10.3 Problem

Design the class InsertionArrSort that performs the insertion sort on an Ar-
rayList. The ArrayList is initialized from the data supplied by the IRange
iterator.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well.

10.4 Problem

Design the class InsertionListSort that performs the insertion sort on an AL-
istOfCities. The AListOfCities is initialized from the data supplied by the
IRange iterator.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well.

10.5 Problem

Design the class BinaryTreeSort that performs the binary tree sort on the data
supplied by the IRange iterator provided as an argument to the method .

The sort method first builds the binary search tree from the data pro-
vided by the iterator, then saves the data generated by the inorder traversal

2



Exercise Set 10 c©2005 Felleisen, Proulx, et. al.

in an ArrayList or in an AListOfCities data structure. The code you wrote
for the Assignment 5 can easily be adapted to solve this problem.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well.

10.6 Problem

Design the class QuickListSort that performs the quicksort on an AListOfC-
ities. The AListOfCities is initialized from the data supplied by the IRange
iterator.

Include in the class a self test in the form of a method testSort() that
provides a test for all methods in this class. Include the main method that
invokes this test and run the test as well.

Part 2: Time Trials

All of the tests we designed as the part of our code sorted only very
small collections of data. It is important to make sure that the programs
work well for large amounts of data as well. We have learned about the
analytical way to estimate the amount of time an algorithm should take.
However, we would like to verify these results on real data, and learn in the
process what other issues we need to take into consideration (for example,
the space the algorithm uses, and whether the data is already sorted or
nearly sorted).

The class TimerTests provides a framework for conducting timing ex-
periments. The constructor consumes an IRange and initializes an ArrayList
with this data, so we do not have to read the file of 29470 items for every
test. For most of our work, this data will come from the file citiesdb.txt that
contains data for 29470 cities throughout the USA.

The class TimerTests also contains two methods that generate a dataset
of the desired size from this initial database. One of them, buildData, just
selects a random contiguous subsequence of the original data (preserving
the original ordering by states) while the second one, buildRandomData, se-
lects the elements of the new data set randomly from the original one —
with possible repetitions.

Finally, the method runOneTest runs one test of a sorting algorithm. It
consumes a sorting algorithm (an instance of SortAlgorithm), a Comparator,
the size of the data set we wish to sort, and a boolean value that speci-

3



c©2005 Felleisen, Proulx, et. al. Exercise Set 10

fies whether we want a sequential subset of the original data, or randomly
selected elements. It runs the sorting algorithm with a stopwatch and pro-
duces the timing result.

10.7 Problem

Design the classes that implement the Java Comparator interface and allow
us to compare two cities by their zip codes (class ByZip) and by longitude
(class ByLongitude).

10.8 Problem

Design the class Result that holds the results of the timing tests. For each
test we want to remember that the name of the test (for example ”Inser-
tion sort with ArrayList”), the size of the data that we sorted, whether it
was sequentially or randomly selected data, and the time it took to run the
algorithm.

Modify the method runOneTest in the class TimerTests so it produces an
instance of Result.

Include the method toString in the class Result that produces a nicely
formatted String that represents the result.

10.9 Problem

Design the method runAllTests that consumes an ArrayList of instances of
SortAlgorithm, an ArrayList of instances of Comparators, and the size of the
data, and runs the timing tests for each algorithm, using each of the com-
parators, using both, sequential and random data. The results should be
produced as an ArrayList of Results.

10.10 Problem

Use the method runAllTests to learn about all these sorting algorithms.
Present your findings in a report that describes what you learned from run-
ning these experiments.

You should run all algorithms with all combinations of comparators on
large data (10000 or more items - if possible), explore how the performance
varies between random data and the sequentially selected data.

4



Exercise Set 10 c©2005 Felleisen, Proulx, et. al.

If one of the algorithms takes too much time or space, you may elimi-
nate it from further trials on larger datasets. However, try to understand
why that may be hapenning.

You may also modify the way the dataset is initialized. You may want
to see how your algorithm performs on sorted data, or you may want to
test several algorithms with identical data.

Produce your results in a professionally designed format — possibly
with charts. We care both about the results and about the way you present
them and explain what you learned from them.

5


