
Unit Test Support for Java via Reflection and Annotations

Viera K. Proulx
College of Computer and Information Science

Northeastern University
Boston, MA

vkp@ccs.neu.edu

Weston Jossey
College of Computer and Information Science

Northeastern University
Boston, MA

wjossey@ccs.neu.edu

ABSTRACT
Novice Java programmers face great difficulties when learn-
ing to design unit tests for any nontrivial cases. Deciding
whether the result of a method, or the effect the method pro-
duced represents the expected result one must understand
the difference between equality based on the values an object
represents versus the reference equality (identity) — and be
able to define the correct equals method.

We describe the tester library that supports test design,
evaluation, and reporting of the results in the manner that
supports a novice programmer. The library uses Java reflec-
tion and annotation to compare any two data items (primi-
tive types or objects) by the value they represent, produces
report where the expected and actual values are pretty-
printed, and a failed test report includes a link to the failed
test.

The library has been used in classrooms and is used daily
in our program design.

Categories and Subject Descriptors
K.3.2[Computer and Information Science Education];
D.1.5 [Programming Techniques]: Object-oriented Program-
ming]; D3.3 [Programming Languages]: Language Con-
structs and Features—classes and objects

General Terms
Design, Reliability, Verification

Keywords
CS1/2, Design, Testing

1. MOTIVATION
Most of the introductory textbooks that focus on program

design in Java (with or without emphasis on data structures)
contain a section on software testing. But unlike other top-
ics, in all but two of the surveyed textbooks [2, 3, 4, 5, 6, 7,
8, 11, 12, 16, 21, 22, 23, 24, 25, 26, 31, 32, 33, 34, 35, 38, 41]

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
PPPJ ’09, August 27–28, 2009, Calgary, Alberta, Canada.
Copyright 2009 ACM 978-1-60558-598-7 ...$10.00.

testing is only described in general terms with no real ex-
planation how the students should design and evaluate the
test cases or report the test results. The two texts that ask
the students to practice testing from the beginning do not
provide examples of tests, nor do they provide a support for
running the tests — or for reporting the test results. 1

Of course, knowing what it takes to design a test using
the JUnit [19], the industry de-facto standard, this is no sur-
prise. In order to use JUnit, the programmer must have a
good understanding of how to design methods that compare
two objects for equality exactly in the sense that the pro-
grammer desires. It also involves extending the Test class,
and so the programmer should know something about classes
and subclasses. If the programmer wants to get meaning-
ful error messages, she must also implement the toString

method. And, finally, Java requires that when the equals

method is overridden the hashCode method must also be
overridden in a manner consistent with the behavior of the
equals method. All of these concepts are far beyond what
a beginner Java programmer can handle. The fact that im-
plementing the equals method for more complex class hier-
archies is a non-trivial and error-prone process itself exacer-
bates the situation.

1.1 Related work
Over the past several years a number of papers reported

on testing in the introductory object-oriented programming
instruction [9, 10, 14, 15, 17, 20, 27, 28, 29, 30, 36, 37, 39,
40]. A majority of papers investigates students’ experiences
with designing tests using JUnit, a testing environment de-
signed for a professional programmer. Overall, the papers
report some improvement in the test coverage, but no se-
rious effect on the code quality or on acquiring a habit of
writing tests. Most papers comment on the negative impact
of the increased complexity of the programming tasks and
the resulting code. Even the BlueJ Unit Test support suffers
from increased complexity of the overall programming task.
Furthermore, when the test cases must refer to already de-
fined classes and methods, it is difficult to enforce test-first
design practice.

Two papers [29, 36] define the test cases in a special Test
class that emulates the client to the program — our cho-
sen approach. But even here, there is no test harness that
supports the novice programmer in defining the test cases,
evaluating them, or reporting the results. The only paper
that presents testing support for a novice programmer is

1BlueJ software supports unit testing in the JUnit style, but
is not discussed in the textbook [5].

presented by Thornton et.al. [37], but they focus only on
testing of GUI programs.

A special case is the Java Bat web site [18] that provides
practice problems for students to write programs that satisfy
the given tests. All problems focus on the design of a single
function with a predetermined purpose, practicing just the
specific aspect of expression evaluation.

1.2 Project history
Seven years ago we launched a radically different curricu-

lum (known as ReachJava) that introduces object-oriented
program design in a systematic way. The draft of the text-
book How to Design Classes is nearly complete. The curricu-
lum asks the student to use the Design Recipe when design-
ing any method. The six steps of the Design Recipe ask the
student to analyze the problem and define all the relevant
data as the first step; to write down the method header and
a short purpose statement that identifies the method argu-
ments and what is it expected to produce in the second step;
and to make examples of the method use with the expected
outcomes in step three. The fourth step asks the student to
analyze all available data and list all accessible fields or any
methods these fields can invoke (including this object and
its fields). The design of the body is the fifth step; and fi-
nally, step six, requires that the examples from step three be
turned into runnable tests, and that the tests are evaluated.
Additional tests are defined as needed.

It is clear, that the Design Recipe teaches the student to
practice test-first design. We start with mutation-free meth-
ods — every method produces a new value and has no side-
effects. This makes the test design conceptually easier: one
only needs to compare the value of the new object (or prim-
itive type data) with the expected value. However, there
is no support in Java for this type of equality comparison
(extensional equality).

We have already seen the clearly positive impact of en-
forcing the use of the Design Recipe in our introductory
course that focuses on functional programming in a Scheme-
like languages and were hoping to achieve the same results
in Java-like environment. It became clear from the first
semester we taught the course that the problem of defining
tests in a novice-appropriate manner needs to be resolved
before students truly believe in the power of test-first design
and before we can seriously enforce the use of the Design
Recipe throughout the semester.

In the early weeks of the course we have used a special en-
vironment, ProfessorJ within the DrScheme IDE. ProfessorJ
provides a beginner Java-like language that has no visibility
modifiers, no assignment statement (just field initialization
statements or field assignment within the constructor) and
no loop statements. It allows for a class to implement an
interface, but does not allow for an interface to extend an-
other interface, or for a class to extend another class. By en-
forcing this simple functional style of programming students
concentrate on designing classes that represent the given in-
formation, and learn to design methods that dispatch over
the union of classes that implement a common interface (for
example, a binary search tree interface with the Leaf and
Node classes within the union). We have worked with Kathy
Gray, the implementor of ProfessorJ in defining the desired
behavior for the testing library. Once the ProfessorJ testing
support was reasonably stable, we have seen a noticeable

improvement in students’ ability to define tests and their
understanding of the need for systematic testing.

However, the move to the standard Java after four or five
weeks of the course quickly erased any gains. Faced with
the added burden of defining equality for every class, and
especially for unions of classes, together with the desired
toString method overshadowed anything students were try-
ing to learn. As the course introduced stateful methods with
the need for testing the effects, and adding to the tests the
setup and tear-down code, testing was no longer a benefit,
but has become a major hurdle.

For the past three years we have worked on designing a
testing library for standard Java that allows the program-
mer to compare the values represented by any two objects,
reports the results in a novice-appropriate manner, pretty-
prints the values of the expected value and the actual result,
taking over the task of defining and evaluating the exten-
sional equality of two pieces of data. The tester library has
been used by students at several colleges and high school
not only in the context of our curriculum but also in pro-
gramming classes that follow a more traditional route.

In the next section we describe the initial design of the
library that relied on Java support for reflection. Third
section describes the additional functionality of the tester
enabled by the use of annotations. We then present our ex-
periences with using the tester both in the classes and in
our own work, follow with a list of challenges and planned
extensions, and conclude with acknowledgments.

2. REFLECTION

2.1 Tester library: User’s view
A novice programmer needs to see how the program that

consists of a collection of class definitions is actually used
by the intended client. This includes seeing the code that
defines instances of these classes as well as the actual code
where methods in the class are invoked by the appropriate
instances of this class. This has motivated our decision to
define all needed data as well as all tests within the Exam-
ples class. The Examples class represents the client to the
code student has designed. Our Design Recipe for Data Def-
inition requires that students construct examples of data for
every class they design. When the student designs the first
method, instances of the class that can be used to invoke
the method are already available in the Examples class.

The tests are grouped into a method whose name starts
with test and consumes an instance of the class Tester.
The method either returns a boolean value (to support our
mutation-free style at the beginning) or it is void.

The test case syntax is straightforward and illustrates the
actual method invocation in any client code. So, if the
method discount reduces the price of the book by the given
amount, the data example and the test case will be:

Book b = new Book("Orwell", "1984", 20);

// test the method discount in the class Book
boolean testDiscount(Tester t){

return t.checkExpect(b.discount(3),
new Book("Orwell", "1984", 17),
"test book discount");

}

The String argument that explains the purpose of the
test is optional. If the above test fails the report will be:

Found 1 test method
..
..............
Ran 1 test.
1 test failed.

Test results:

Error in test number 1
test book discount
tester.ErrorReport: Error trace:
at Examples.testDiscount(Examples.java:19)
at Examples.main(Examples.java:29)

actual: expected:
Book: Orwell, by 1984 Book: Orwell, by 1984
new Book:1(new Book:1(
this.title = "Orwell" this.title = "Orwell"
this.author = "1984" this.author = "1984"
this.price = 16)............this.price = 17)

--- END OF TEST RESULTS ---

It pretty-prints both the actual and the expected values,
marks the first place where the two values differ, and in-
cludes a link to the failed test case. (Both Examples.java:19

and Examples.java:29 are live links).

It is clear, that the design of tests poses no additional
burden. Quite the contrary, the student can see clearly how
the classes he defines will be used to define the needed data,
and how the methods will be invoked.

The library is distributed as a single jar file and the class
that includes the tests must include the import tester.*;

statement.
The name of the Examples class is not mandatory — it

is the default class name when using the simplest options
for running the tests. We provide a number of choices for
the user for invoking the test evaluation. The simplest is
by launching the main method in the tester.Main class.
If the user changed the name of the Examples class, the
new name can be supplied to the tester.Main as a run
time argument. There are several static methods within the
Tester class that also launch the test evaluation and test
reporting. These give the user the choices whether or not
all data defined in the Examples class should be displayed,
and whether to report only the failed tests or all test results.

2.2 Core features
The following tests are invoked by a checkExpect method

with the actual and expected values and the (optional) test
description String.

We include in the test comparison all relevant fields: we
exclude static fields, and fields declared as volatile or
transient. Before considering the general case the tester
considers the following special cases:

• Verify the neither of the two objects is null. If both
values are null the test succeeds, otherwise it fails.

• If the two objects are identical instances the test suc-
ceeds.

• If the two objects are instances of the String, use the
equals method for Strings to evaluate the test.

• For data of the primitive type use the equals method
for the wrapper classes to evaluate the test, unless
these are inexact numbers.

• The comparison of two values of the types double or
float requires special handling (described in the next
section). Unless the two values are identical, the de-
sired comparison requires a specification of allowable
tolerance. Furthermore, the equality within a given
tolerance (whether absolute or relative) is not transi-
tive, violating the definition of the equality relation.

• Two instances of the wrapper classes and handled in
a similar manner. Comparison between a primitive
type and a data in the corresponding wrapper class is
permitted.

• Two Arrays are first compared by their length, then
item-by-item.

• Two instances of Java Collections classes which imple-
ment the Iterable interface are traversed and com-
pared item-by-item.

• Two instances of a class that implements the Map in-
terface are compared by their EntrySets.

• Finally, two instances of any other class are compared
field-by-field, invoking the same comparison strategy
for the values of every field.

• At the start of each test we clear a hash map that is
used to store links to all data items already compared.
It is consulted before each additional comparison to
detect circularity in data definitions.

2.3 Special handling
Using the tester library with our students identified several

test scenarios that should be represented by a single test
statement. This motivated us to extend the tester library
to handle these special cases. For each of them we provide
motivation and describe the behavior of the test evaluation.

• checkInexact

The comparison of two objects that contain a field with
the values of the types double or float (or their wrap-
per classes) must invoke the appropriate Inexact vari-
ant of the test method, and must provide the desired
relative TOLERANCE to determine the desired accuracy
of the comparison.

Inexact numbers (double and Double or float and
Float) are considered the same if their values val1

and val2 satisfy the formula:

(Math.abs(val1 - val2) /
(Math.max (Math.abs(val1), Math.abs(val2))))

< TOLERANCE;

If a comparison between two objects involves inex-
act comparison of any two fields, the test case report,
whether successful or not, includes a warning that an
inexact comparison has been involved in evaluating
this test case.

Note: It is important to note that a comparison of two
numbers of the types double or float could succeed
through direct comparison. For example when evaluat-
ing new Double(5.0) == 5.0 the comparison succeeds
and no warning of inexact comparison is issued.

If the comparison of any two objects involves inexact
comparison, and the test method required exact com-
parison, (the programmer failed to use the Inexact

variant) the test case fails and the warning is displayed
as well.

The objects involved in the inexact comparison may
contain several inexact fields, where the magnitude of
the inexact values is significantly different. Using the
relative TOLERANCE allows us to define meaningful tests
for these scenarios.

• checkFail

At times we may want to include a test that we expect
to fail. This variant evaluates the test case in the usual
manner, and reports success if the comparison failed.

• checkIterable

While the Java Collections Framework classes that im-
plement the Iterable interface are compared item-by-
item, we do not impose this limitation on user-defined
classes of this type. If the programmer defines class
hierarchy (or a single class) that represents a binary
search tree and implements the Iterable interface, he
may want to compare the data structurally at one time,
and by the sorted collection of data the tree represents
at other times.

• checkTraversal

The tester library defines a functional iterator interface
Traversal as follows:

// a functional iterator interface
public interface Traversal<T>{

// is this dataset empty?
boolean isEmpty();

// produce the next element in this dataset
T getFirst();

// produce a traversal over the rest of this dataset
Traversal<T> getRest();

}

We find this useful, especially while programming in
the functional style at the beginning of our course.
The test evaluation traverses over all data in the actual
and expected datasets for which the Traversal objects
have been provided.

• checkException

The checkException method tests whether the pro-
gram throws an Exception at the specified time. The
arguments to the checkException method include:

– the object that should invoke the method that
throws an Exception

– the name of the method that should be invoked

– A list of arguments to the method that should be
invoked, supplied at the end of the argument list
as an Array or as ellipsis arguments

– an instance of the expected Exception that in-
cludes the expected message.

The test not only verifies that the method invocation
as specified throws the Exception of the desired class,
but also compares the actual and expected error mes-
sages.

• Testing the desired method invocation

It is impossible to invoke a private method within the
Examples class. To enable tests of such methods, the
programmer can supply the checkExpect method with
the object that should invoke the method, the method
name, the expected result the method produces, and a
list of arguments to be used in the method invocation.

This problem has been eliminated in the newer version
of the tester library that uses Annotations to aid in
selection of the test methods.

• checkOneOf

Our students design simple games where part of the
action is the movement of an object by a short ran-
dom distance (for example in the range from -3 to 3,
horizontally). This test allows the student to verify
that the actual value is one of the several expected
values.

The expected values can be specified either as an Array

or as a collection of ellipsis arguments at the end of the
argument list.

• checkNoneOf

This is just the reverse of the previous scenario and is
handled in the same manner.

• checkRange

At times we may want to know that the given value
(numeric or not) is within the given range. We may
want to check that the daily temperature is in the
range from -120 to 150, or that after we filter a list
of names every name starts with the letters between A

and G. The checkRange method has several variants.
It covers all numerical types, as well as instances of
any class that implements the Comparable interface.
Another variant allows the user to provide the Com-

parator object to be used in evaluating the test. User
supplies the lower and the upper bound. By default
the lower bound is inclusive and the upper bound is
exclusive, but the user may override this default. Fi-
nally, the method checkNumRange allows the user to
mix the primitive (or the wrapper) types used to spec-
ify numeric ranges. So, one can check whether 7.5 is
in the range between 3 and 9.

2.4 Extensibility

2.4.1 User defined toString method
At times we would like to ask students to design toString

method for their class hierarchies. For example, we may
want the toString method for a binary search tree produce

all data in the tree following the inorder traversal. Or when
working with classes that deal with expression evaluation, we
may want to see the expressions displayed as mathematical
formulas.

To make this possible, but still allow for the informed
error reporting, the tester library checks whether the user
has overridden the toString method. If that is the case the
relevant data is displayed in two ways — first using the user-
defined toString method, then using the standard pretty-
printing process.

2.4.2 User defined equality comparison
While it is desirable to provide automatic test evaluation

for our students at the beginning, they need to understand
what is involved in designing equality comparison at various
levels.

The tester library provides two ways in which the user
can define equality comparison. The user may define the
equality comparison for a specific class, leaving the rest of
the equality comparison to the tester library. The tester
library defines the ISame interface as follows:

// an equality comparison interface
public interface ISame<T>{

// is this item the same as the given one?
boolean same(T t);

}

The test evaluation for any pair of objects checks first
whether the class in which the objects were defined imple-
ments the ISame interface. If that is the case, the appropri-
ate same method is used to determine the equality of these
two objects only, and the rest of the test evaluation proceeds
in the normal manner.

To provide a complete flexibility and extensibility, the
tester library provides the checkEquivalencemethod, where
the user needs to supply a function object that is an instance
of the class that implements the Equivalence interface.

The Equivalence interface is defined as follows:

// an equivalence comparison interface
public interface Equivalence<T>{

// is t1 item the equivalent to t2?
boolean equivalent(T t1, T t2);

}

We have decided not to rely on the Java equal method
for two reasons. First, there is no need here to worry about
implementing the hashCode method as well. Second, this
technique allows the user to define several different measures
of equality between the same two objects.

3. ANNOTATIONS
After a student has designed twenty classes named Exam-

ples it would be nice to have the name mean something with
respect to the program whose examples and tests it contains.
Also, it may be tedious to use for every test method a name
that starts with test. Java Annotation support allows us
to solve this problem.

There are two uses of Annotations in the tester library.
User may annotate the class definition with the @Example

annotation. Doing so alerts the tester to search for test

methods defined within this class. So, if the current project
contains several classes with this annotations, all test meth-
ods within all the annotated classes will be performed when
the test suite runs. The only restriction is that the anno-
tated class must contain a default constructor. However,
there is no requirement that the default constructor be vis-
ible outside the class, and so, by declaring it private the
client APIs remain unchanged. It is perfectly fine if the de-
fault constructor does not initialize any fields.

User may also annotate individual methods as test meth-
ods by adding the @TestMethod annotation.

The advantage of using annotations is manifold. Not only
do we gain the flexibility of naming the test classes and test
methods, but we now can include tests for private methods
and tests that access private fields within that class.

The following example illustrates the use of Annotations.
To run the tests one must invoke the main method in the
class tester.Main, providing no run time arguments.

import tester.*;

// a sample class --- it is not called ’Examples’
@Example public class AnnotateExample {

// private field
private int n;

// the required default constructor
private AnnotateExample(){}

// publicly available constructor
public AnnotateExample(int n){
this.n = n;

}

// a sample private method
// is this number bigger than the given one?
private boolean biggerThan(int m){
return n > m;

}

// test method: the name does not start with ’test’
@TestMethod public boolean doIt(Tester t){

AnnotateExample foo = new AnnotateExample(3);
AnnotateExample bar = new AnnotateExample(8);

return
t.checkExpect(foo.biggerThan(5), false) &&
t.checkExpect(foo.biggerThan(2), true) &&
t.checkExpect(bar.biggerThan(5), true) &&
t.checkExpect(bar.biggerThan(10), true,

"test will fail");
}

}

The test results are as expected:

Tester Results
Found 1 test methods

Ran 4 tests.
1 test failed.

Test results:

Error in test number 4
test will fail
tester.ErrorReport: Error trace:

at AnnotateExample.doIt(AnnotateExample.java:34)

actual: expected:
true false

--- END OF TEST RESULTS ---
AnnotateExample

4. EXPERIENCES
We have been developing our test-first curriculum for the

past seven years. In the Spring 2007 we had a testing frame-
work that evaluated all test cases defined with the Examples
class, using student-implemented same method (i.e. requir-
ing that every class implements the ISame interface. The
test coverage on the final projects was minimal and mostly
very disorganized. In the Spring 2008 we had a prototype
of the tester library in place. While about half of the final
projects still had only a minimal test coverage, in the other
half there were several projects with hundreds of test cases.
This semester, in the Spring 2009, it was very rare that a
project did not have a substantial well-designed test suite.

But, as we well know, that is not the only benefit of the
test-first design strategy. Programs where the tests are de-
signed before the method bodies tend to be more granular,
the methods tend to be shorter, and the tasks are delegated
to other classes and methods more readily.

Our final project reviews confirm this as well. Our final
project review involve a 15 minute demonstration and code
walk for every one of the 50 pairs of students. Only a few
contained convoluted code, the majority of programs was
readable, consisted of clearly defined classes and methods
and had a substantial test suite.

We still need to work on a better organization of imper-
ative tests. The following example shows how the tester
library can be used to design imperative tests:

// to represent a bank account
public class Acct{
int acctNo;
int balance;

Acct(int acctNo, int balance){
this.acctNo = acctNo;
this.balance = balance;

}

// EFFECT: update the balance by the deposit amount
void deposit(int amt){
this.balance = this.balance + amt;

}
}

// examples of accounts
Acct acct1 = new Acct(34, 100);
Acct acct2 = new Acct(77, 1000);

// reset the accounts to the original values
void resetAccts(){
acct1 = new Acct(34, 100);
acct2 = new Acct(77, 1000);

}

// test the method deposit in the class Acct
void testDeposit(Tester t){
this.acct1.deposit(20);
t.checkExpect(this.acct1, new Acct(34, 120));

this.acct2.deposit(1000);

t.checkExpect(this.acct2, new Acct(77, 2000));
resetAccts(); // TEST FAILS IF MISSING

this.acct1.deposit(20);
t.checkExpect(this.acct1, new Acct(34, 120));
this.acct2.deposit(1000);
t.checkExpect(this.acct2, new Acct(77, 2000));
resetAccts();

}

The important concept that the students need to learn
here is that every test case should be designed to run inde-
pendently of the other tests. Without resetting the account
states to the original values the second series of tests would
fail, even though the test case code is identical.

5. CHALLENGES
This project is a work in progress. With each new addition

we also ask new questions and see new problems with unit
testing that need to be addressed systematically.

The first is a formal definition of each of the test scenarios
we have already implemented as well as any new scenarios
we may add in the future. Next is a careful study of tests for
imperative (state-changing) methods. Suppose the expected
effect of the method is the change of the value of two fields.
Most of the test designers today verify in two separate test
cases that each of the two values has been set to the desired
value. Rarely does anyone bother to make sure that no other
unintended changes have happened. Robert Glass cites an
example where a C++ program dealing with sets of data
passed the test for repeated add — if the item was in the
set already, a correct message was displayed. However, the
item has been added to the set as well. But this has been
discovered only after the program has been running for a
while.

Kathy Gray and Alan Mycroft [13] describe a solution
based on taking a snapshot of the object value before the
test and only updating the value once the test against the
old value has been performed. Our experimental advanced
version of the tester library (Avanti) accomplishes this task
by implementing deep cloning of the object values and ver-
ifying that no unspecified changes have been made. While
this is not going to be the ultimate solution, we plan to work
further on this problem.

There are several other directions we wish to pursue. We
have implemented the first version of a test coverage tool,
adopting the cobertura [1] open software tool.

We plan to look carefully at the test scenarios that com-
pare the changes in the contents and the structure of the
typical classes and class hierarchies that represent collec-
tions of data.

We also plan to further investigate the use of Annotations
to provide the user with a way to define how the automated
testing library should implement the equality comparison.
This direction seems to lead to defining a language exten-
sion that supports unit test design — approaching from a
different direction the path taken by Gray and Mycroft.

Michael Sperber and his team at the University of Tübin-
gen adopted the tester library to run each test case as a
JUnit test within their version of the BlueJ programming

environment. While we believe that a novice programmer
benefits from the simple infrastructure of our library, we
plan to add the support for JUnit style of tests in the fu-
ture version of the library — both to support the transision
to the less supportive environment found in the industry,
and to gain access to the various tools and add-on features
already available within the JUnit community.

6. CONCLUSION

6.1 Resources
The tester library has been used successfully by hundreds

of students at several institutions and is used daily in all of
our Java programming tasks. The http://ccs.neu.edu/javalib
website contains the tester library tutorial, sources, docu-
mentation and download jar files.

6.2 Acknowledgments
The design of the library is based on the testing support

for ProfessorJ. The author wishes to thank her colleagues
on the TeachScheme/ReachJava team, especially Matthias
Felleisen for his support, to Kathy Gray for her work on Pro-
fessorJ and its testing framework, and to the first adopters
of the tester library, especially Todd O’Bryan, Marc Smith,
and Glynis Hamel for their support and feedback.

7. REFERENCES
[1] Cobertura.

http://cobertura.sourceforge.net/.

[2] D. A. Bailey. Java Structures. McGraw Hill, 2 edition,
2003.

[3] D. A. Bailey and D. W. Bailey. Java Elements:
Principles of Programming. Mc Graw Hill, 2000.

[4] D. Baldwin and G. W. Scragg. Algorithms and Data
Structures: The Science of Computing. Charles River
Media, 2004.

[5] D. J. Barnes and M. Koelling. Objects First with Java:
A Practical Introduction Using BlueJ. Prentice Hall,
2003.

[6] J. Cohoon and J. Davidson. Java 1.5 Program Design.
Mc Graw Hill, 2004.

[7] N. Dale, D. Joyce, and C. Weems. Object-Oriented
Data Structures Using Java. Jones and Bartlett, 2
edition, 2006.

[8] P. J. Deitel and H. M. Deitel. Java How to Program.
Pearson Prentice Hall, 7 edition, 2007.

[9] S. H. Edwards. Rethinking computer science
education from a test-first perspective. In Companion
of the 18th annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, Anaheim, CA, pages 148–155, Oct, 2003.

[10] S. H. Edwards. Using software testing to move
students from trial-and-error to reflection-in-action.
SIGCSE Bulletin, 36(1):26–30, 2004.

[11] J. Farrell. Java Programming. Thomson Course
Technlogy, 2008.

[12] W. H. Ford and W. R. Topp. Data Structures with
Java. Pearson Prentice Hall, 2005.

[13] K. E. Gray and A. Mycroft. Logical testing:
Hoare-style specification meets executable validation.
FASE 2009, 2009.

[14] D. Gries. A principled approach to teaching OO first.
SIGCSE Bulletin, 40(1), 2008.

[15] B. Hanks, T. Reichlmayr, C. Wellington, and
C. Coupal. Integrating agility in the CS curriculum:
Practices through Values. SIGCSE Bulletin, 40(1),
2008.

[16] C. Horstman. Java Concepts. John Wiley & Sons, 5
edition, 2008.

[17] D. S. Janzen and H. Saiedian. Test-driven learning in
early programming courses. SIGCSE Bulletin, 40(1),
2008.

[18] JavaBat. http://www.javabat.coms.

[19] JUnit. http://www.junit.org.

[20] M. Koelling. Unit testing in BlueJ.
http://www.bluej.org/tutorial/testing-tutorial.pdf.

[21] E. B. Koffman and U. Wolz. Problem Solving with
Java. Addison Wesley, 2 edition, 2002.

[22] K. Lambert and M. Osborne. Java A Framework for
Program Design and Data Structures. Brooks-Cole,
2004.

[23] J. Lewis and W. Loftus. Java Software Solutions:
Foundations of Program Design. Addison Wesley, 6
edition, 2008.

[24] Y. D. Liang. Introduction to Java Programming.
Prentice Hall, 3 edition, 2001.

[25] M. Main. Data Structures and Other Objects Using
Java. Addison Wesley, 1999.

[26] D. S. Malik. Java Programming From Problem
Analysis to Program Design. Thomson Course
Technology, 3 edition, 2008.

[27] G. Melnik and F. Maurer. The practice of specifying
requirements using executable acceptance tests in
computer science courses. In Companion of the 20th
annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
San Diego, CA, pages 365–370, Oct, 2005.

[28] L. Murphy, G. Lewandowski, R. McAuley, B. Simon,
L. Thomas, and C. Zander. Debugging: The good, the
bad, and the quirky - a quantitative analysis of
novice’s strategies. SIGCSE Bulletin, 40(1), 2008.

[29] R. Pecinovský, J. Pavĺıčkova, and L. Pavliček. Let’s
modify the objects-first approach into
design-patterns-first. SIGCSE Bulletin, 40(1), 2008.

[30] V. K. Proulx and R. Rasala. Java IO and testing
made simple. SIGCSE Bulletin, 36(1), 2004.

[31] D. D. Reily. The Object of Data Abstraction and
Structures Using Java. Pearson Education/Addison
Wesley, 2003.

[32] D. D. Riley. The Object of Java: Introduction to
Programming Using Software Engineering Principles.
Addison Wesley, 2002.

[33] K. E. Sanders and A. van Dam. Object-Oriented
Programming in Java A Graphical Approach. Addison
Wesley, 2006.

[34] W. Savich. An Introduction to Computer Science and
Programming. Prentice Hall, 5 edition, 2008.

[35] R. Sedgewick and K. Wayne. Introduction to
Programming in Java: An Interdisciplinary Approach.
Addison Wesley, 5 edition, 2008.

[36] J. Spacco and W. Pugh. Helping students appreciate
test-driven development (TDD). In Companion of the

21st annual ACM SIGPLAN conference on
Object-oriented programming, systems, languages, and
applications, Portland OR, pages 907–913, Oct, 2006.

[37] M. Thornton, S. H. Edwards, R. P. Tan, and
M. Peréz-Quinones. Supporting student-written tests
of GUI porgrams. SIGCSE Bulletin, 40(1), 2008.

[38] P. T. Tymann and G. M. Schneider. Modern Software
Development Using Java. Brooks/Cole, 2004.

[39] D. West, P. Rostal, and R. P. Gabriel. Apprenticeship
agility in academia. In Companion of the 20th annual
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
San Diego, CA, pages 371–373, Oct, 2005.

[40] M. Wick, D. Stevenson, and P. Wagner. Using testing
and JUnit across the curriculum. SIGCSE Bulletin,
37(1), 2005.

[41] C. T. Wu. A Comprehensive Introduction to
Object-Oriented Programming with Java. Mc Graw
Hill, 2008.

