
Scaling: A Design Pattern in Introductory Computer Science
Courses

Harriet J. Fell, Viera K. Proulx, and Richard Rasala
Northeastern University

College of Computer Science
Boston, MA 02115, USA

fell@ccs.neu.edu, vkp@ccs.neu.edu, rasala@ccs.neu.edu

Abstract

We present a series of programming exercises that use
scaling as a theme for teaching design techniques in the
introductory computer science course sequence. All
exercises are on the level easily mastered in the first year
of programming. Additionally, the exercises introduce a
rich variety of applications of computer science.

Introduction

Introductory computer science courses typically focused on
teaching basic programming language constructs, followed
by a study of basic algorithms and data structures. As the
field matured, the emphasis on design and decomposition
of a problem into smaller independent parts filtered into
the introductory curriculum. The framework for teaching
design is evolving. We believe that teaching is best done
in a framework of basic program patterns and design
threads that appear repeatedly in typical programs. Such a
setting provides both the motivation and the context for
illustrating design decisions and design practice.

In this paper we show how the concept of scaling
permeates computing today and present a suite of exercises
that explore and illustrate this concept throughout the
introductory computer science course sequence. In
addition to presenting several interesting applications of
computing, the exercises provide a framework for teaching
design. They provide a progression from implementing
scaling formulas locally, to designing a scaling function,
and finally to designing a scaling class.
 __

Partial support for this work has been provided by the
National Science Foundation Leadership in Laboratory
Development , award #DUE- 9650552

Permission to make digital or hard copies of all or part of
this work for personal or classroom use is granted without
fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and
the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.

SIGCSE’97.
Copyright 1997 ACM 1-58113-499-1/97/0006…$5.00.

Examples of scaling

Scaling is ubiquitous to computing. It appears in many
forms, not all of them immediately identifiable as simple
scaling. We give below a sample of the computing
activities in which a scaling type of computation plays a
role. These activities span a wide variety of applications
and provide a context for numerous interesting exercises.

Direct scaling examples

Typical unit conversions (°F to °C, kilos to pounds,
inches to centimeters) are the simplest examples of linear
transformation scaling. A similar computation is used to
convert random numbers supplied by a random number
generator (typically in a fixed standard range) into random
values within the particular range needed by the program.
Plotting a function graph in a rectangular frame also
requires linear scaling. The scale factors along the two
axes may be the same (shape preserving scaling) or may
be different allowing a better fit of the graph into the
available space. The scaling of images to fit into a given
region is the most obvious application of scaling. Here
the images may be bit mapped or be generated from a
collection of geometric objects (lines, rectangles, ovals, or
polygons). Typically, the scaling transformation
parameters (the offset and the scaling factor) are computed
from the given boundaries of the original image (a
rectangle given in real world coordinates) and the
boundaries of the target rectangle in the graphics window
area. In simple animations, sound may be generated
proportionately to the location of an object - another
example of scaling.

A colored contour map of a function of two variables
scales the function values into the color spectrum. If we
want to distinguish the values within a particular range,
we may use nonlinear scaling that will provide larger
variation among the values in this range. Examples of
the use of these techniques are medical imaging (CAT
Scan) and satellite image processing. Scaling of color is
also used to create the wonderful images we see of Julia
sets and the Mandelbrot set. An additional technique
sometimes used to further identify the details of such
contour maps is sonification. Here as a part of the image
displayed on a computer screen is traversed with a mouse,
the pixel color value is mapped into a frequency of a
sound. The sound is heard as the picture is traversed.

Subtle variations not identifiable by sight often become
prominent (for example small ripples).

Linear interpolation

LERPing [5] or linear interpolation is used to produce "in-
betweens" in animations, or “morphs” of Mona Lisa with
George Washington. “Given the values vs and ve, of
some attribute (position, color, size) in the starting and
ending frames, the value of vt at intermediate frames is vt
= (1-t)vs + tve; as the values of t range from 0 to 1, the
value of vt varies smoothly from vs to ve..” [2] Lerping
is just a special case of scaling, from [0, 1] to [vs , ve;].
Lerping can also be used to blend a weather satellite image
with a Mercator weather map [6], or to smoothly move a
sound from one frequency to another or one amplitude to
another.

When a lerping or scaling transform is set up to morph
two pictures, values of t greater than 1 result in a picture
with features similar to those of the end image but even
less like the start image. This can be used to produce
automatic caricatures of an image.

Changes in the frame of reference.

This type of transformation was be the bread and butter of
engineers who used a slide rule to perform multiplications
by converting two numbers into their logarithms, adding
the logarithms using the slide, and then converting the
result back into the original scale. Today, Fourier
transforms used in digital signal processing represent
another such example of the shift of reference. There are
simpler examples that are more suitable for introductory
courses. One is the conversion of character’s ASCII code
to the letter’s sequential position in the alphabet - used in
simple Ceasar shift coding. Another is the mapping of an
array in the range from 1 to maxindex to a range from
low to high.

Additionally, if a program is interactively using the
mouse to make a selection, be it from a menu or another
kind of display, the mouse location needs to be converted
to the value that represents the selection. Conversely, to
highlight a selection, the selection value needs to be
converted to the coordinates of its display on the screen.

Scaling design thread in the first year

In our introductory curriculum scaling forms a design
thread that is revisited several times in a different context.
We start with direct scaling performed as asimple
arithmetic operation every time it is needed. Several other
labs use scaling to implement interesting applications.
Later, students implement scaling computation as a
function. Finally, students learn to build a scaling
transform class that encapsulates the scaling factor and the
offset, making the scaling calls in the main program look
natural. The definition of the scaling transform class can

further be modified so that it implements nonlinear
scaling (e.g. logarithmic). We then use the scaling class
in several exercises to reinforce student's understanding of
the concept.

The Pumpkin Lab: Drawing simple scaled
images

This laboratory exercise is the first introduction to picture
scaling and uses learning by example approach. The
students are given a program that draws an image of a
pumpkin (jack-o-lantern) using graphics calls to paint
rectangles, ovals, and lines. The image is defined using an
anchor point that determines its position and a scale factor
that determines its size. All of the pumpkin features are
programmed relative to the anchor point and the scale.
Before doing any programming in the lab, students
explore drawing the pumpkin image in various scales and
at various locations on the screen. Using the draw grid
option, students can also determine the relative coordinates
of different features.

Students are asked to enhance the pumpkin image with
additional features that will scale properly with the
original image. After students complete this laboratory,
they are asked to design an entire scalable image of their
own. The images produced are often quite spectacular and
students feel very positive about their success early in the
first course.

Figure 1. Pumpkin Solution and Student Base Picture

Hidden scaling

In an early Loops Lab, students animate a moving ball
whose RGB color values are proportional to its physical
coordinates. In addition, as the ball moves, a changing
sound tone is produces whose amplitude and frequency is
also influenced by its position (Figure 2).. Each of these
effects is an instance of scaling.

In the Piano Keyboard Lab, students draw a keyboard on
the screen and play the notes by selecting a key with the
mouse. Here the mouse location must be scaled to
determine which key has been clicked and what note
(frequency) should be played.

Figure 2. Bounce with shading, Spiral with fading

In almost all applications of random numbers, the
numbers supplied by the random number generator must
be scaled to fit into a particular range before being used.

Exercises on scaling in one dimension only

To continue the theme of scaling, there are two
laboratories which consider scaling in one dimension
only. In the Sine Function Lab, students plot the function
sin(x) for x in degrees between 0 and 360. In a 400 x
400 drawing window, only the vertical component needs
to be scaled. In the Simple Array Lab, students are asked
to make a bar chart from array data (data selected to be in
the range between 0 and 400). Here the focus is on
horizontal scaling to define the bars and the spaces
between them. The array plot function designed in this
lab is then used as a visualization tool in several
subsequent labs on sorting. In both laboratories, the
emphasis is on direct methods so that students will
understand the issues correctly.

Image enhancement: Scaling the color

Several simple image enhancement algorithms are based
on scaling the range of color shade values so they would
be distributed more evenly across the available spectrum.
Our students implement these algorithms to enhance
grayscale images from the Viking Mars mission [2]. If
all pixel shades fall within the range (minx, maxx)
out of available 256 shades, the linear enhancement just
replaces each pixel shade of original shade value x by a
pixel shade (x-minx)*256/(maxx-minx). The
histogram equalization algorithm is a bit more complex,
but again applies a scaling transformation to every pixel
value.

In another lab students were asked to display a contour
map of a function in two variables representing each range
of values with a different color. This method is used in
scientific visualization of data such as CAT scan images
or satellite photographs of the Earth.

Morphing images

In a lab on simple array manipulation, students perform
simple morphing of one polygonal figure into another.
They use lerping on the coordinates of corresponding
points in the start and final polygons to produce the "in-
between" coordinates. This can be used either to create an
animation (transition between two positions of a running

person) or to represent morphing of one image into
another (fish to frog).

Figure 3. Running Robert

Working with bit map images, we can morph one image
into another - first scaling the original pictures to the
target rectangle, then lerping the corresponding grayscales
or colors. Once students know how to get mouse input
and maintain ordered lists of data, they can design and
build a moderately sophisticated morphing program. In
the example shown (Figure 4) the user matched eight
points in the Mona picture with eight points in the Fell
picture (e.g. eyes, tip of nose, chin). These points divide
each picture into 81 rectangles and corresponding pairs of
rectangles were morphed to form the central image. Since
rectangles are blended (instead of polygonal or spline
bounded regions as in a commercial morph program) the
mathematics remains simple but the results are striking.
As there are many bells and whistles that can be added or
left out, morphing makes a good software design project
at the end of CS1.

 Mona Fell
Figure 4. Bitmap piece wise morphing

Heapsort

While all sorting algorithms can easily sort any subrange
of an array, the basic format of heapsort expects the
indices to range from 1 to maxindex. In our previous
labs that included a display of the array values as a bar
chart, the driver's call of a sorting function included as
arguments the array reference, as well as the low and high
index of the subrange to be sorted. This was quite useful
for implementing quicksort. In trying to reuse the code

for heapsort, we needed to look for an elegant method that
will retain the original driver and that will not make the
heapsort code messy and unreadable.

Our solution was to use two conversion functions:
hindex(ai, lower) returns the heap index of the

array item at location ai
aindex(hi, lower) returns the array index

corresponding to the heap item at location hi.

To keep the heapsort code readable, we create three helper
functions:
long LeftChild(long i, long lower)
long RightChild(long i, long lower)
long Parent(long i, long lower)

For example LeftChild function is implemented as:
inline
long LeftChild(long i, long low){
return aindex(2*hindex(i, low),

low);}

The heapsort code then works in the standard way, using
indices between 1 and maxindex. Students learn to deal
with a shift in the frame of reference in a disciplined way.

Scaling class as a function object

Once students are familiar with scaling we introduce a
scaling transform class. Students learn how to define this
class and use it in several settings.

Scaling and tiling revisited: scaling
transform function object:

This laboratory on scaling images and tiling the graphics
window is given about midway through the year after
students have had an initial introduction to both objects
and templates. We return to the problem of drawing a
scaled image, but this time the scaling transform is
encapsulated in a function object.

A function object is an instance of a class for which the
function call operator() has been defined. The
definition of a linear scaling transfer operator with offset
offset and scale factor factor is quite simple:

int operator() (double x) const
{return (factor * x + offset);}

The two scaling parameters, offset and factor are
member variables initialized by the constructor. Once a
scaling transform object S is defined, it can operate on a
value x using function call notation S(x) which is
shorthand for the long-winded call S.operator()(x).
In other words, the function object S has the syntax and
behavior of an ordinary function. In languages like Java
that do not allow overloading of operators, this function
can be given a meaningful name (e.g. Scale). If we then
define Sx to be the scaling transform object for scaling
along the x axis, the function call to transform value x
will be Sx.Scale(x) - still a readable format.

In this lab students first define the scaling transform class,
then use it to scale several images. In the first part of the
completed program user can chose to display one of
several images (a pumpkin, a snowman, a black or white
oval, and a playing card - front or back). The user also
selects the location of the image by specifying its
bounding rectangle. In the second part, the program tiles
the drawing window with two selected images in a
checkerboard fashion. The user selects the number of
rows and columns in the tiling. Students can investigate
the behavior of a solution by running a compiled
application, before they start writing code themselves.

Figure 5. Tiling with snowmen and cards

Students are given the code that implements most of the
user interface. Each image drawing is encapsulated in a
function. Students are given a complete function that
draws a pumpkin, as well as functions for drawing playing
cards (bit map images) and colored ovals. Each image
drawing is encapsulated in a function. The function
signatures are identical, allowing the selection switch
statement to pass the function name as a parameter.

Students need to first implement the scaling transform
class. To make the scaling transform easier to use, it
provides three alternatives for the constructor. The first
two are default (offset = 0, scale factor =
1) and initialization of the offset and scale
factor directly. The third alternative allow the user to
specify the bounds of the real interval and the bounds of
the display interval and computes the offset and
scale factor from these values. When students
complete this task, the pumpkin image and the playing
cards will be displayed correctly.

Next students use the scaling class in several different
contexts. First they add a function DrawGrid that displays
a thin line grid with a given number of vertical and
horizontal lines across an existing image. Now the
scaling transform is used to determine the placement of
the lines that are then scaled to fit the picture size.
Finally, students implement a function that implements
the checkerboard tiling of the graphics window with two
images.

The Simple Plot Lab

In this lab students learn how to plot an arbitrary function
in any given interval with user selected number of

segments. They define a scaling transform object for the
horizontal axis, compute the minimum and the maximum
value of the function on the given interval, and define the
scaling transform object for the vertical axis. Once the
scaling in both directions has been defined, the plotting is
straightforward.

The Complex Lab: 2D plotting

This lab has a number of pedagogical goals and has been
described elsewhere [4]. The important design issue
related to scaling is the fact that it uses a toolkit Plot2D
that plots any list of (x, y) value pairs (points in a two-
dimensional plane) in a window of a given dimensions.
Students learn that it is possible and desirable to build
small toolkits that perform simple, often repeated tasks.
This is a very important design method. Students see the
evolution of the design decisions and the benefits of
creating a well designed toolkit.

The Fractal Grammar Lab

This lab has also been described in another paper. Here
students use the now familiar scaling transform class to
make sure the fractal image they create can be displayed
within the graphics window. it is necessary to traverse
the image twice - first to determine the real world
coordinate bounds that are used to define the scaling
transform, the second time to actually draw the image.

Conclusion and Acknowledgments

Students need to see examples of good design early in
their study of programming. They also need to see how
the design methods evolve from using simple direct
manipulation to building toolkits. We presented a suite
of exercises for introductory computer science courses that
use scaling in increasingly sophisticated way and described
the design lessons students learn.
We would like to acknowledge Erich Neuwirth, who
suggested (and implemented in a spreadsheet) the exercise
that generates a caricature.

References

1. Fell, H., and Proulx, V. K., Exploring Martian
Planetary Images: C++ Exercises for CS1, SIGCSE
Bulletin, February 1997, Vol 29(1), 30-34.

2. Foley, J. D., vanDam, A., Feiner, S. K., Hughes, J.
F., Computer Graphics, Principles and Practice,
Second Edition in C, Reading, MA, Addison-Wesley.

3. Proulx, V. K., Recursion and Grammars for CS2 ,
Proceedings, Integrating Technology into Computer
Science Education (ITiCSE 97), Uppsala, Sweden,
June 1997, (ACM Press), 74-76.

4. Proulx, V. K., Rasala, R., and Fell, H., Foundations
of Computer Science: What Are They and How Do
We Teach Them?, SIGCSE Bulletin, June 1996, Vol
28 Special Issue, 42-48.

5. Raymond, ed., The New Hacker's Dictionary - 3rd
Edition, Cambridge, MA, MIT Press, 1996. ISBN 0-
262-68092-0 or its on-line version:

http://locke.ccil.org/jargon/, "Jargon File"
6. Russ, J. C., The Image Processing Handbook,

Second Edition, Boca Raton, FL, CRC Press, 1995.

