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ABSTRACT 
We describe the pedagogy, the curriculum, and the software support for teaching systematic program design with 

emphasis on systematic testing and on understanding the connection between information and data. The curriculum begins 
with the BOOTSTRAP curriculum for children in grades 5-8, follows with the TeachScheme! segment for secondary schools 
and universities and extends to ReachJava, a full-scale object–oriented program design starting at the secondary level and 
extending to the software design at the university level. 

The software support enables students to work with a language appropriate for their current knowledge of programming, 
it provides a framework for the design of interactive games that encourages creativity, and it supports the design and 
evaluation of tests appropriate for a novice programmer. The curriculum has been used in classrooms for a number of years 
and nearly all materials (software, the text, lab materials, worksheets, assignments) are available free on the web. 
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INTRODUCTION 

Over the past fifteen years our team has been 
designing curriculum for teaching introductory 
programming and computing for students of all ages. 
The original curriculum labelled TeachScheme! has 
been used in secondary schools and universities 
throughout the world. Since I joined the team seven 
years ago I have worked on extending the 
curriculum to include program design in the object-
oriented style, building a path to full scale software 
design curriculum. At the same time, other tem 
members designed a curriculum for children in 
grades 6–8 that combines the learning of computing 
and the basic algebra in the context of designing of a 
simple interactive game. 

Our curriculum provides a path for learning that 
starts at the most introductory level, but leads to 
understanding deep concepts of program design at a 
very advanced level. The backbone of the 
curriculum at all levels is the pedagogy for 
describing the design process as a collection of 
design recipes.  

This paper provides an overview of how the 
pedagogy of design recipes helps both the student 
and the teacher in all stages of learning. 

1. DESIGN RECIPES 

The design recipe is a series of steps a 
programmer should follow when designing a 
program, regardless of the expected complexity of 
the program. The recipe consists of several steps. At 
each step the programmer explores the next problem 
step by asking and answering a series of questions, 
producing an answer, and verifying the correctness 
of the answer. The pedagogical benefit to the learner 
is in the self-regulatory learning style the design 
recipe supports: the student is empowered to explore 

and solve the problem on her own, knowing how to 
proceed at each step. The benefit to the instructor is 
in the support for pedagogical intervention. When a 
student seeks help with a problem, the instructor can 
determine what step of the design recipe caused the 
difficulty, and lead the student through working out 
that part of the design recipe. 
1.1. Design Recipe for Designing Functions 

We start the programming instruction by 
designing functions. These are functions as seen in 
mathematics: each takes one or more arguments and 
produces a new value. Rather than changing the 
state of variables, our programs produce new values 
at each step. This type of programming (functional 
programming) has the advantage that the outcome of 
each function depends only on the values of the 
arguments, not its position within the program. It is 
easy to define the expected behavior of such 
functions. The design recipe for functions takes 
advantage of this functional behavior: 
1. Analyze the problem, represent the relevant 

information as data.  
2. Write down the purpose statement for the 

function, identifying clearly what data it 
consumes and what value it should produce. 
Write this information formally as a contract, 
then design the function header. 

3. Make examples of the data the function will 
consume, write down the expected results. Do 
as many of these as needed to understand the 
problem. 

4. Take an inventory of all available data and 
functions already defined that could be used 
in defining this function. This includes fields 
of complex data and functions that consume 
data of the type of data available to us as the 
function arguments. 



5. Now design the body of the function. If the 
task looks to be too complex, divide it into 
smaller parts and make a wish list of 
functions you will need to solve the problem. 
(These functions will be designed later, 
following the same steps. For now we assume 
they have been defined already.) 

6. Convert the examples from part 3 into formal 
tests and run them. Fix any errors and test 
again. 

1.2. Design Recipe for Data Definitions 
Without a solid understanding how the relevant 

information is represented as formal data students 
cannot design programs. A great deal of our 
curriculum focuses on understanding how 
information can be represented as data and how a 
piece of data can be interpreted to describe the 
information encoded within.   

The design recipe for defining data guides the 
student through the process as follows: 
1. Check if the information can be represented 

by one simple piece of data, such as a number, 
a symbol, or a String. 

2. If several related pieces of information are 
needed to describe one object, combine them 
into a structure (later these become classes). 
Define a composite structure with one field 
per piece of information. (For example, a 
book with a title represented as a String, and a 
year of publication given as a number.) 

3. If the information refers to another complex 
object, use containment. (This will be a 
structure or a class with a field that is an 
instance of another class: A book with a title, 
author (with name and year of birth), and a 
year of publication.) 

4. If the information consists of several related 
object with some common features but with 
several variants that distinguish between them 
define a union (An shape is one of: a circle, a 
rectangle, a triangle). The define each member 
of the union separately. (In Java these turn 
into classes that implement a common 
interface or extend an abstract class.) 

5. Connect fields with their data definitions as 
appropriate drawing containment and 
inheritance arrows.  

1.3. Design Recipe for Designing Abstractions 
Once the programs become sufficiently complex 

students begin to see that certain sections of code 
appear again and again, perhaps with a slight 
variation. 

This motivates the design of abstractions. A list 
of books, or a list of persons is just a list of objects. 
When we sort data, we need to compare the two 
items and need a function that performs the 

comparison. Given the comparison function, the 
same sorting program works for any data. 

The design recipe for abstractions provides the 
following guideline: 
1. Compare two pieces of code that are similar, 

highlight their differences. 
2. Replace each pair of differences with a 

parameter and rewrite the general solution. 
3. Implement the solution to each of the original 

programs and run the tests.  

2. COMPUTATION AND ALGEBRA 

Our middle school curriculum is taught in the 
after-school programs by volunteer teachers. The 
class meets for 90 minutes for 10 weeks. Most of the 
students are weak in math. This is a very short time, 
yet the pupils design and implement an interactive 
game and on the final day not only show off their 
game, but talk about variables, conditionals, and 
function evaluation. 

The goal is to design a game with one object 
moving as the time ticks and another object 
controlled through the arrow keys pressed by the 
game player. We restrict the movement of every 
object to one dimension (left-right or up-down).  
Collision of the two objects produces a special 
effect: the game may end, an explosion is shown, or 
the game score may be updated. 

Children program the movement of the game 
components by defining functions that compute the 
position after one time tick, or the new position after 
a key has been pressed. They detect collision of two 
objects by computing the distance between them (we 
give them the formula for this). They learn what is a 
variable, how to evaluate expressions, learn a bit of 
geometry by defining the positions of their game 
components, learn about boolean values when 
detecting collisions or making sure the game pieces 
stay within the game canvas.  
2.4. The Curriculum 

The curriculum has been designed with two 
goals in mind. It has to speak to the child in his 
language, making sure the children are not distracted 
or overwhelmed by the programming language 
complexity. It also has to be divided into daily 
lessons that can be taught by volunteer teachers with 
a minimal training. 

We use a special variant of the Scheme 
programming language. All values are color-coded, 
so that the children can easily distinguish between 
Strings, booleans, numbers, and symbols. 

To explain the evaluation of expressions and 
functions we enclose each subexpression in a 
CIRCLE OF EVALUATION. The operation (plus 
sign, or a name of a function) is on the top and the 
values that are needed for the computation are 



shown below in the appropriate order. This 
translates directly into Scheme functions. that are 
evaluated immediately in the Interactions window of 
the DrScheme programming environment: 

> (- 9 5) 
4 
More complex expressions are drawn as circles 

within circles and children learn to evaluate the 
innermost circles first.  

Children quickly learn to convert an expression 
such as (+ (* 2 3) (- 8 6)) to the collection of circles 
of evaluation and compute the value of the 
expression. The variables are then shown with the 
name above and the substituted value below a 
horizontal line.  

 

Fig. 1  Circles of Evaluation 
 
Figure 1 shows the circle of evaluation for the 

expression (x + (7 + 3)), with 5 substituted for x. In 
Scheme this would be written as (+ (x (- 7 3)). 

Students are motivated, as the goal is to design 
their own game. Children brainstorm about the game 
they want to design during the first lesson and the 
teacher finds appropriate images for every student's 
game by searching the clipart on the web. The 
supporting software library allows students to draw 
any image at the selected location. Children define 
the function onKeyEvent that produces the game 
scene after the player has hit the left or right arrow 
key, the function onTick that produces the game 
scene after one clock tick, and the function that 
detects the collision of the two objects. 

  
Fig. 2  A worksheet for Mario game 

Children learn about conditionals, use the 
distance formula that we provide, and test their 
functions one by one as they design them. They 
follow the design recipe with worksheets where each 
step is carefully worked out and tested as a running 
program. The last day of the session they show their 
games to their parents, teachers, and friends, and 
answer questions about conditionals, functions, 
function evaluation, and their game design. We have 
seen some of these children succeed in math in their 
later years, but the number of students who have 
completed our program is too small to provide a 
statistically significant evidence of success. 

 

3. UNDERSTANDING DATA 

In the program design courses in the secondary 
schools and at the college level the first one or two 
weeks are similar to those of the younger children. 
However, to design programs of any complexity one 
must deal with sufficiently complex data. While the 
typical language-based programming instruction 
focuses on algorithmics, our curriculum is based on 
the premise that most of the production programs are 
driven by the structure of the data that they process. 
The art of defining data that represents the given 
information is the driving force behind program 
design.  

 
3.5. Designing Data 

The design recipe for data definitions allows us 
to define an ancestor tree as follows: 

 
An Ancestor Tree (AT) is one of 
- 'unknown 
- Node : (make-node String AT AT) 
(define-struct node (name mother father)) 
 
The struct definition allows us to build an 

instance of a complex data, provides a constructor 
(make-node "Jan" mom dad), a predicate (node? x) 
to verify that a data item x is a node and a selector 
function for every field: node-name, node-mother, 
node-father.  

For each new data definition we make sure 
students make examples of data and can interpret the 
data representation as information, as well as define 
new data items that represent the given information. 
For this example, students would convert their 
ancestor tree into data and read their friend's data 
and answer questions about the maternal 
grandfather, great grandmother, etc. 

 
3.6. Data Driven Design of Functions 

The first step in designing function is to 
identify the information that is available as well as 
the desired outcome, and understand how it will be 
represented as data. 



In the second step students define the function 
header, a purpose statement that explains what the 
function will accomplish, and define the types of 
data the function consumes as arguments as well as 
the type of the result it will produce. We do not use 
assignment in the early weeks of the curriculum and 
every function produces a new value. This 
restriction greatly simplifies the program students 
write and allows us to reason about each function 
independently of its place in the program. 

Before attempting to design the actual function, 
the third step of the design recipe asks that  
students make examples of the data that the function 
consumes, and explain the desired behavior by 
showing sample function invocations together with 
the expected outcomes.  

To help define a function for more complex 
types of data the fourth step of the design recipe 
asks the students to decompose the problem into 
parts by designing an inventory. An inventory for 
the function that consumes complex arguments lists 
the fields of the function arguments as well as the 
functions that can be used with them (from earlier 
definitions). The inventory for a function that 
consumes an AT would be: 

(define (fun at) 
  (cond [(symbol? at) …] 
            [(node? at)    
                  … (node-name at) … 
                  … (node-mother at) … 
                  … (node-father at) … 
                  … (fun (node-mother at))… 
                  … (fun(node-father at) )…  ] 
 
If this function was counting the nodes in the 

tree (other than unknown) it would be clear that the 
two function applications to the mother and father 
subtrees will produce the count of known relatives in 
each ancestor subtree, and the rest of the 
computation trivially follows.  

Only now, in the fifth step of the design recipe, 
do the students proceed with the design of the 
function body. If the task looks to be too complex, it 
is divided into smaller parts, with subtasks delegated 
to other functions, making up a wish list. Each 
function on the wish list must have the function 
header, contract, and purpose statement, so that it 
can be used in completing the original function 
design. Of course, later on we need to take care of 
the functions on the wish list.  

Once the function has been designed, the sixth 
step of the design recipe directs the students to turn 
the examples defined earlier into test cases that are 
run and evaluated. Because every function produces 
a new value and has no side-effects, the tests only 
need to compare the expected value with the value 
produced by the function. The test design is simple. 
It is supported by a test harness that allows us to 
define the tests simply as: 

(check-expect (count-nodes my-at)  5) 

The test harness then reports which tests failed 
and shows the actual and expected values side-by-
side. 

 
In the early curriculum the structure of the 

functions students design follows exactly the 
structure of the data the function consumes. A large 
number of everyday programs are of this type: 
parsers, interpreters, programs that manipulate 
databases, GUI interactions programs, and more. We 
introduce algorithms that require some additional 
insight (e.g. quicksort) only after the students 
understand the program design driven by the 
structure of data. 

 
3.7. Designing Abstractions 

In order to build reusable programs we need to 
generalize: we need to abstract over the data type, 
over the functional behavior, the data structure 
manipulation, or the traversals over the data in a 
collection of data. 

In both the early curriculum that uses DrScheme 
functional languages, and the early part of the class-
based instruction we follow by introducing 
abstractions that simplify the program design and 
allow us to make the programs more general and 
reusable as libraries. In the Scheme-like languages 
we introduce the use of functions as arguments and 
the generalized Scheme loops such as orMap, filter, 
and fold.  

We motivate abstractions by showing side-by-
side two programs that are very similar, highlighting 
the places where they differ, and replacing the 
differences with parameters. So, for example a 
program that computes the sum of all numbers in a 
list and a program that computes the product look 
structurally the same, but differ in the base value and 
in the operator used to accumulate the resulting 
value. That means that the base value and the 
operator (a function of two arguments) become 
parameters for the generalized solution. The 
resulting general program can be then used to 
concatenate a list of Strings into one String, with the 
base value given as an empty String and the operator 
being the concatenation function.  

To motivate the use of a function as an 
argument to another function we show how a sort 
function depends on the comparison function that 
determines the ordering of two items. Therefore, the 
comparison function becomes an argument to the 
sort function.  

The design of abstractions depends in a 
substantial way on the language support for the 
abstractions we wish to discuss. On the other hand, 
the desire to design more general programs allows 
us to motivate specific language features that have 
been included in the language precisely to support 
such abstractions.  

 



3.8. Curriculum Support 
The TeachScheme! curriculum, supported by the 

DrScheme teaching languages and the text How to 
Design Programs, is used in over 700 high schools 
and universities both in the USA and in many 
countries throughout the world. The supporting 
software includes libraries for the design of 
interactive graphics-based games as well as the 
library for designing multi-player client games 
managed by a server and played over the internet.  

Our students design several games during their 
first year. However, the functions that comprise the 
game are all designed according to the design recipe 
and are fully tested. 

4. OBJECT-ORIENTED PROGRAM DESIGN 

4.1. Understanding Data 
The curriculum for our second course is known 

as ReachJava. A draft of the textbook How to 
Design Classes is nearly complete.  

This course focuses on program design in a 
class-based language with object-oriented 
programming. Students already have a good 
understanding of basic functional program design. 
The first lectures of the course focus on designing 
classes. The struct definitions from the Scheme turn 
into class definitions. The unions of data defined in 
Scheme become classes that implement a common 
interface. The struct definitions that contain fields 
that are also structs become classes with fields that 
are objects of another class.  

We represent the class hierarchy as class 
diagrams using a simplified UML notation. Every 
class includes a full constructor. Every field is 
referenced as this.xxx. Students make examples of 
data and get to see that the data representation is in 
many ways similar to what they already know. 

 

 
Fig. 3 Sample class diagram 

 
Students define an Examples class (with the 

default constructor) and write all examples of data 
there. Before going any further, they must be able to 

translate the given information into its representation 
as data, and be able to interpret the data as the 
information the data represents. The Examples class 
acts as a client to student's code. 

The main new idea in designing methods for the 
object-oriented languages is that each method 
belongs to a specific class and the object that 
invokes the method is somewhat invisible in the 
method definition. We require that students 
formulate the method purpose statement by referring 
to this object and the given arguments, so that the 
role of all data the method consumes becomes clear. 
Within the method definition we reference all fields 
of the current class with the this. prefix: 

// compute the price of this book  
// with the given discount 
double salePrice(double discount){ 
  return this.price * discount; 
} 
 
Again, we follow the same design recipe. The 

examples of method invocation make it quite clear 
how the method invocation works and what is the 
role of the object that invokes the method. For the 
first couple of weeks we still follow the mutation-
free style of programming where the outcome of the 
method is always a new object or a primitive value. 

The inventory part of the design recipe now lists 
all the fields in this class as well as all arguments to 
the method, any methods already defined for this 
class, and any methods that can be invoked by any 
of the fields already listed: 

So, in the class Node that implements the AT 
interface we would have: 

// does this AT contain a person  
// with the given name? 
boolean contains(String name){ 
 
/* Inventory: 
 Fields: 
… this.name …     -- String 
… this.mother …  -- AT 
… this.father …    -- AT 
 
Methods: 
… this.count() …   -- int 
 
Methods for fields: 
… this.mother.count() …  -- int 
… this.father.count() …    -- int 
 
… this.name.equals(String) … -- boolean 
*/ 
} 
 
We can see that there is a great emphasis on 

making sure students understand very clearly the 
meaning of data and its structure. Combined with 
the examples of data they defined earlier the design 
of the actual method body becomes straightforward. 



4.2. Test-First Design 
The third step in the design recipe asks students 

to make examples of the method invocation with the 
expected results. In the absence of mutation this is 
quite easy. Students just have to provide as expected 
result the instance of an object with the expected 
values.  

When the examples turn into tests in the last 
step of the design recipe, we just need to make sure 
that the resulting object matches the expected one, 
field by field. We would like the test to follow the 
earlier style: 

 
Cat cat = new Cat("Boots", "Sam"); 
check-expect ( 
    cat.newOwner("Jan") 
    new Cat("Boots", "Jan")); 
 
The problem is that the comparison of objects 

by their value is not supported by the popular object-
oriented languages. All equality comparisons 
besides the reference (identity) equality have to be 
defined by the programmer. This may not be too 
difficult for simple classes with just a few fields. 
However, defining equality of two AncestorTree 
objects is not a simple task for a novice programmer. 
The problem is much worse if the classes allow for 
circularly referential data (a Book with the Author 
field, while the Author class has a Book field).  

To make the test-first design possible we must 
provide software support for the design and 
evaluation of tests that matches student's knowledge 
of the language and his program design maturity. 

Our students start during the first couple of 
weeks using ProfessorJ Beginner and ProfessorJ 
Intermediate languages within the DrScheme IDE. 
The Beginner language is a Java-like language that 
allows for a class to implement a single interface, it 
has no loop constructs and no assignment statement. 
It also does not support any field or method 
modifiers. However, it provides support for the test 
design similar to that available for the Scheme 
programs. The test case for the newOwner method 
mentioned earlier would be written as: 

 
boolean testNewOwner =  
    check cat.newOwner("Jan") 
    expect new Cat("Boots", "Jan"); 
 
The program definitions are written in the 

Definitions window of the DrScheme IDE. The 
results of running the program are shown in the 
Interactions window. For Java-like programs the 
Interactions window shows pretty-printed display of 
all fields defined in the Examples class. Any failed 
test cases are shown in a separate TestCase window 
and show not only the failed test but also the values 
that have been compared together with a link to the 
failed test. There is almost no new syntax needed to 
define the tests, there is no work involved in 

evaluating the test cases or understanding how to 
report the results. 

After about three weeks we move on to standard 
Java language using one of the common IDEs. (We 
have chosen Eclipse, but other schools use 
NetBeans, or even BlueJ). Without a similar support 
for test design, evaluation, and reporting, it would be 
impossible to continue with the systematic use of the 
design recipe. To support this test-first design 
throughout the curriculum we have designed and 
implemented a tester library for standard Java that 
provides support for the design of tests appropriate 
for a novice programmer. The tester library 
examines the user's program through Java reflection 
support and evaluates every test method defined in 
the Examples class. The test cases shown above 
would be written as: 

 
boolean testNewOwner(Tester t){ 
  return 
  t.checkExpect(cat.newOwner("Jan"), 
       new Cat("Boots", "Jan")) && 
  t.checkExpect(cat.newOwner("Martin"), 
       new Cat("Boots", "Martin"));} 
 
The tester library compares the objects by their 

values, reports any failed test cases, pretty-prints 
both the actual and the expected value of the failed 
test and provides a link to the failed test. Optionally, 
it pretty-prints every field in the Examples class, or 
prints all test results (successes as well as failures).  

 
4.3. Understanding Test Design 

The industry has embraced Test Driven Design 
(TDD) as leading to a more granular, 
comprehensible, and testable design. The pedagogy 
of the design recipe is not TDD (we do not build 
stubs that are further refined until the method is 
designed) but designing tests first is the common 
basis for both, and the benefits are similar. 

Teaching students to design tests before they 
design the body of a method helps students think 
about the problem and understand what data is 
involved in the computation. The examples help 
them understand what is the method expected to 
accomplish. The examples also point out the 
situations when the desired method is too complex 
and is trying to do too many tasks at once. This 
suggest to students to design helper methods that 
provide solution to some of the needed sub-tasks. 
Running the tests and observing the test reports 
helps students diagnose errors and design programs 
that behave as expected. We teach students good 
programming practice from the beginning. 

 
Practicing test-first design in introductory 

courses is impossible without proper software 
support. There are three parts that have to work 
together when designing tests. First, the programmer 
must define what actual and expected values should 



be compared. This part is a natural part of program 
design and with the proper support should be an 
inseparable component of program design for all 
students.  

The second part concerns the test evaluation. 
This requires that the actual and expected values are 
compared in the manner that is consistent with the 
user's expectations. This part is very difficult and 
would be an undue burden for a beginner student. 
Novice programmers cannot define correctly the 
equality comparison methods until they understand 
very well the underlying object model, know how to 
compare different types of data, how to detect 
circularity, etc. In Java, overriding the equals 
method also requires that the programmer overrides 
the hashCode method, adding another layer of 
complexity. While learning about the different levels 
of equality should be a part of learning how to 
design programs, such instruction should proceed in 
a gradual manner as appropriate for the students' 
level of competence. Meanwhile, the test evaluation 
should be managed by a library that matches 
students' understanding of equality and their mastery 
of the test case design. 

The third step in practicing test-first design is 
the reporting of the test results. Typical test libraries 
may report that certain tests failed, and possibly 
provide links to the failed tests. However, they do 
not show the actual and expected values that have 
caused the failed test. The programmer can provide 
methods that display the data in a readable format 
(toString method), but again, this adds another 
burden, another routine task that student must do 
just to get the program running. Without the library 
support, student would have to do this before writing 
the first method, when the syntax overhead of just 
defining one class with a constructor is huge. 
Additionally, when the data may be circularly 
referential, the student must worry about breaking 
the circularity. 

Our tester library has been designed to provide 
robust support for test design for students at all 
stages of their programming instructions. As student 
learn how to override the equals method, and how to 
define their own toString method, the tester library 
allows them to use their methods when needed, 
while using the library support for classes without 
their customized methods. Over the past year we 
have added new types of test scenarios to the library, 
responding to the needs of students using the first 
versions of the tester library. There are test methods 
that check whether the actual value matches one of 
the several possible random outcomes, whether the 
actual value falls within the given range of values, 
whether the invocation of a method by a given 
object throws the expected exception, and more. The 
latest version of the library provides a test coverage 
tool. We are working on designing special support 
for tests that change the state of an object and tests 
that verify changes in the structure of data. 

The library has been used by students in five 
different schools (secondary schools and 
universities) and by over 200 students in our classes. 
At this time we use the tester library for our own 
software development on a daily basis. 

 

5. EXPANDING HORIZONS 

Most of the programs our students write rely on 
the tester library to display the results of the test 
evaluation and the values of the objects defined in 
the program. We do not process user input, as that is 
a task for a seasoned programmer who understands 
the intricacies of parsing the input String and 
converting it to meaningful data. Additionally, 
programs with the user input are very difficult to 
test, and are typically first tested with the simulated 
inputs. We add some exercises that handle user 
inputs later in the course, but still require that the 
program be tested on sample data apart from the 
actual input. 

 
5.1. Creative Design 

To make sure students see programs with user 
interactions and practice their independent design 
skills on interesting problems, we again provide a 
library that supports the design of interactive games. 
Our students focus on the game engine and a simple 
display of the game components on a canvas. We 
provide three libraries for Java programs. The first 
one supports the functional style of programming 
where students design the classes that represent the 
game state and implement methods that produce the 
new game state after a tick of the clock, onTick, and 
in response the key press by the user, onKeyEvent. 
They define the draw method that shows the game 
components as simple graphics objects on the given 
Canvas. Their game world extends our abstract 
World class that provides a Canvas for drawing, 
abstract methods onKeyEvent, onTick, and draw, 
and a bigBang method that starts the game on a 
Canvas of the given size running the clock at the 
given speed. Students do not worry about display 
panels, layouts, listeners, actions, etc., but instead, 
they concentrate on the design of the game logistics. 

The second, imperative library is very similar, 
but the state of the World changes onTick and 
onKeyEvent. The third library provides the same 
user interface as the imperative one, but allows the 
students to convert their games into Java Applets.  

The game assignments give the students 
motivation and an opportunity to decide for 
themselves how to organize the game components 
into classes, decide which class should be 
responsible for each task, where the collisions 
should be detected, etc. We conduct individual 
project reviews with every student after they have 
completed their first game and comment on their 
design flaws, the program style, and the test 
coverage of their programs. 



 

 
Fig. 4  Crossing Huntington Avenue game 

 
5.2. Abstractions and Libraries: Reusable Code 

Once the students understand the fundamentals 
of designing classes to represent data and designing 
methods for their class hierarchies, we use the 
repetition in their code as a motivation for 
introducing abstractions. Rather than starting with 
Java library classes, we first learn how to define 
abstract classes, interfaces that represent functional 
behaviour, interfaces that represent a traversal over a 
collection of data, classes that implement an 
interface that represents an abstract data type, and 
how to design generic algorithms that leverage the 
traversal and function objects. 

Students who understand how to design 
programs with generalized behaviours learn quickly 
how to use libraries that have been designed on the 
same principles.   

At this point we look at the cost of computation, 
learn about different data structures that support 
more elegant and efficient program design, learn 
about the complexity of algorithms, and run stress 
tests on large amounts of data to experience 
firsthand the differences between various algorithms 
and the underlying data structures they use. 

 
5.3. User Interactions and GUIs 

We believe that user interactions should be 
designed in a systematic way, just like the rest of 
model part of the program. At the end of the 
semester we introduce students to the JPT library 
that supports user interactions and GUI design 
through a cleanly designed abstraction layer. 
Students build an interactive GUI program with text 
fields, action buttons, sliders, colour choosers, radio 
buttons, graphics, key and mouse interactions, and a 
parsed console input after just one two hour lab 
session. 

 

 
Fig. 5  A sample GUI panel 

 
The JPT library includes Java Power 

Framework (JPF). Any class that extends JPF 
automatically generates a GUI with a Canvas for 
drawing and a panel that contains one button for 
every method with no arguments that returns void. A 
button click runs the method in the context of the 
class where it has been defined. This provides some 
for some interaction and supports experimentation. 

The simplicity of the level of abstraction 
presented by the JPT library and the JPF tools makes 
it possible for students to master quickly the basics 
of GUI design and to incorporate user interactions 
into their final project of the semester. 

 

 
 

Fig. 6  Java Power Framework (JPF) window 
 

6. CONCLUSION 

The pedagogy of program design that drives our 
curriculum empowers the student and the instructor. 
In the early stages of learning to program the design 
recipes guide the students though the design process 
in clearly defined steps. Students learn to analyze 
the problem, define data, decompose complex 
problems into simpler ones, and they understand 
well the expected behaviour of every program they 
write. When students encounter a problem the 
instructor knows what questions to ask and how to 



help the student discover the answer and the 
solution.  

The same pedagogy, the same design recipe that 
works for young children and novice programmers, 
helps seasoned programmers to find a well-
structured solution. By writing tests for every 
method all students acquire a lifelong design 
discipline that will make their programs better and 
safer.  
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Useful links: 
How to Design Programs: http://htdp.org 
TeachScheme/ReachJava: http://teach-scheme.org 
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JPT and JPF: http://www.ccs.neu.edu/jpt 
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APPENDIX: SAMPLE CODE WITH TESTS 

import tester.*; 
 
// to represent a traffic light color 
class Light{ 
  String color; 
  int time = 0;  
   
  Light(String color){ 
    this.color = color; } 
   
  Light(String color, int time){ 
    this.color = color; 
    this.time = time; } 
   
  void setTime(int time){ 
    this.time = time; } 
 
  // reduce the time available by one 
  void tick(){ 
    if (this.time > 0) 
     this.time = this.time - 1; } 
   
  boolean off(){ 
    return this.time == 0; } 



} 
 
// to represent a traffic light 
class Traffic{ 
  Light current; 
  int currIndex; 
  int[] times; 
  Light[] lights =  
    new Light[]{new Light("Red"), 
                new Light("Yellow"), 
                new Light("Green")}; 
   
  // the constructor 
  Traffic(int red, int yellow,  
          int green){ 
    this.times =  
      new int[]{red, yellow, green}; 
    this.currIndex = 0; 
    this.current =      
      this.lights[this.currIndex];  
    this.current.setTime( 
      this.times[this.currIndex]); } 
   
  // change the light:  
  // make the next light current 
  void newCurrent(int index){ 
    this.currIndex = index; 
    this.current =  
       this.lights[this.currIndex];  
    this.current.setTime( 
      this.times[this.currIndex]); } 
   
  // update the clock by one 
  // change light if necessary 
  void tick(){ 
    this.current.tick(); 
    if (this.current.off()){ 
      this.newCurrent( 
        (this.currIndex + 1) % 3); } 
  } 
} 
 
 
// a class for sample data and tests 
class Examples{ 
  Examples(){} 
   
  // test the method setTime  
  // in the class Light 
  void testSetTime(Tester t){ 
 
    Light r = new Light("Red"); 
    r.setTime(5); 
    t.checkExpect(r,  
        new Light("Red", 5)); } 
   
  // test the method tick  
  // in the class Light 
  void testTick(Tester t){ 
    Light r5 = new Light("Red", 5); 
    Light r0 = new Light("Red", 0); 
    r5.tick(); 
    t.checkExpect(r5,  
        new Light("Red", 4)); 
 
    r0.tick(); 
    t.checkExpect(r0,  
        new Light("Red", -1)); } 
   
  // test the method off  

  // in the class Light 
  void testOff(Tester t){ 
 
    Light r5 = new Light("Red", 5); 
    Light r0 = new Light("Red", 0); 
    t.checkExpect(r5.off(), false); 
    t.checkExpect(r0.off(), true); } 
   
  // test the method newCurrent  
  // in the class Traffic 
  void testNewCurrent(Tester t){ 
 
    Traffic tr = new Traffic(5, 2, 7); 
    tr.newCurrent(2); 
    t.checkExpect(tr.currIndex, 2); 
    t.checkExpect(tr.current,  
        new Light("Green", 7)); } 
   
  // test the method tick  
  // in the class Traffic 
  void testTickTraffic(Tester t){ 
 
    Traffic tr = new Traffic(5, 2, 7); 
    tr.tick(); 
    t.checkExpect(tr.currIndex, 0); 
    t.checkExpect(tr.current,  
        new Light("Red", 4)); 
 
    tr.tick(); 
    tr.tick(); 
    tr.tick(); 
    tr.tick();     
    t.checkExpect(tr.currIndex, 1); 
    t.checkExpect(tr.current,  
        new Light("Yellow", 2)); 
 
    tr.newCurrent(2); 
    tr.tick(); 
    tr.tick(); 
    tr.tick(); 
    tr.tick(); 
    tr.tick(); 
    tr.tick(); 
    tr.tick(); 
    t.checkExpect(tr.currIndex, 0); 
    t.checkExpect(tr.current,  
        new Light("Red", 5)); } 
   
  // start to run program here 
  public static void  
      main(String[] argv){ 
  
    // make an instance of Examples 
    Examples e = new Examples(); 
 
    // report all test results 
    // show all data in Examples class 
    Tester.runReport(e, true, true); } 
} 


