
THE PEDAGOGY OF PROGRAM DESIGN.

VIERA KRŇANOVÁ PROULX, PHD.

College of Computer and Information Science, Northeastern University,
360 Huntington Ave, Boston, MA, USA, tel. ++1-617-3732225, e-mail: vkp@ccs.neu.edu

ABSTRACT
We describe the pedagogy, the curriculum, and the software support for teaching systematic program design with

emphasis on systematic testing and on understanding the connection between information and data. The curriculum begins
with the BOOTSTRAP curriculum for children in grades 5-8, follows with the TeachScheme! segment for secondary schools
and universities and extends to ReachJava, a full-scale object–oriented program design starting at the secondary level and
extending to the software design at the university level.

The software support enables students to work with a language appropriate for their current knowledge of programming,
it provides a framework for the design of interactive games that encourages creativity, and it supports the design and
evaluation of tests appropriate for a novice programmer. The curriculum has been used in classrooms for a number of years
and nearly all materials (software, the text, lab materials, worksheets, assignments) are available free on the web.

Keywords: informatics, program design, object-oriented design, testing, games

INTRODUCTION

Over the past fifteen years our team has been
designing curriculum for teaching introductory
programming and computing for students of all ages.
The original curriculum labelled TeachScheme! has
been used in secondary schools and universities
throughout the world. Since I joined the team seven
years ago I have worked on extending the
curriculum to include program design in the object-
oriented style, building a path to full scale software
design curriculum. At the same time, other tem
members designed a curriculum for children in
grades 6–8 that combines the learning of computing
and the basic algebra in the context of designing of a
simple interactive game.

Our curriculum provides a path for learning that
starts at the most introductory level, but leads to
understanding deep concepts of program design at a
very advanced level. The backbone of the
curriculum at all levels is the pedagogy for
describing the design process as a collection of
design recipes.

This paper provides an overview of how the
pedagogy of design recipes helps both the student
and the teacher in all stages of learning.

1. DESIGN RECIPES

The design recipe is a series of steps a
programmer should follow when designing a
program, regardless of the expected complexity of
the program. The recipe consists of several steps. At
each step the programmer explores the next problem
step by asking and answering a series of questions,
producing an answer, and verifying the correctness
of the answer. The pedagogical benefit to the learner
is in the self-regulatory learning style the design
recipe supports: the student is empowered to explore

and solve the problem on her own, knowing how to
proceed at each step. The benefit to the instructor is
in the support for pedagogical intervention. When a
student seeks help with a problem, the instructor can
determine what step of the design recipe caused the
difficulty, and lead the student through working out
that part of the design recipe.
1.1. Design Recipe for Designing Functions

We start the programming instruction by
designing functions. These are functions as seen in
mathematics: each takes one or more arguments and
produces a new value. Rather than changing the
state of variables, our programs produce new values
at each step. This type of programming (functional
programming) has the advantage that the outcome of
each function depends only on the values of the
arguments, not its position within the program. It is
easy to define the expected behavior of such
functions. The design recipe for functions takes
advantage of this functional behavior:
1. Analyze the problem, represent the relevant

information as data.
2. Write down the purpose statement for the

function, identifying clearly what data it
consumes and what value it should produce.
Write this information formally as a contract,
then design the function header.

3. Make examples of the data the function will
consume, write down the expected results. Do
as many of these as needed to understand the
problem.

4. Take an inventory of all available data and
functions already defined that could be used
in defining this function. This includes fields
of complex data and functions that consume
data of the type of data available to us as the
function arguments.

5. Now design the body of the function. If the
task looks to be too complex, divide it into
smaller parts and make a wish list of
functions you will need to solve the problem.
(These functions will be designed later,
following the same steps. For now we assume
they have been defined already.)

6. Convert the examples from part 3 into formal
tests and run them. Fix any errors and test
again.

1.2. Design Recipe for Data Definitions
Without a solid understanding how the relevant

information is represented as formal data students
cannot design programs. A great deal of our
curriculum focuses on understanding how
information can be represented as data and how a
piece of data can be interpreted to describe the
information encoded within.

The design recipe for defining data guides the
student through the process as follows:
1. Check if the information can be represented

by one simple piece of data, such as a number,
a symbol, or a String.

2. If several related pieces of information are
needed to describe one object, combine them
into a structure (later these become classes).
Define a composite structure with one field
per piece of information. (For example, a
book with a title represented as a String, and a
year of publication given as a number.)

3. If the information refers to another complex
object, use containment. (This will be a
structure or a class with a field that is an
instance of another class: A book with a title,
author (with name and year of birth), and a
year of publication.)

4. If the information consists of several related
object with some common features but with
several variants that distinguish between them
define a union (An shape is one of: a circle, a
rectangle, a triangle). The define each member
of the union separately. (In Java these turn
into classes that implement a common
interface or extend an abstract class.)

5. Connect fields with their data definitions as
appropriate drawing containment and
inheritance arrows.

1.3. Design Recipe for Designing Abstractions
Once the programs become sufficiently complex

students begin to see that certain sections of code
appear again and again, perhaps with a slight
variation.

This motivates the design of abstractions. A list
of books, or a list of persons is just a list of objects.
When we sort data, we need to compare the two
items and need a function that performs the

comparison. Given the comparison function, the
same sorting program works for any data.

The design recipe for abstractions provides the
following guideline:
1. Compare two pieces of code that are similar,

highlight their differences.
2. Replace each pair of differences with a

parameter and rewrite the general solution.
3. Implement the solution to each of the original

programs and run the tests.

2. COMPUTATION AND ALGEBRA

Our middle school curriculum is taught in the
after-school programs by volunteer teachers. The
class meets for 90 minutes for 10 weeks. Most of the
students are weak in math. This is a very short time,
yet the pupils design and implement an interactive
game and on the final day not only show off their
game, but talk about variables, conditionals, and
function evaluation.

The goal is to design a game with one object
moving as the time ticks and another object
controlled through the arrow keys pressed by the
game player. We restrict the movement of every
object to one dimension (left-right or up-down).
Collision of the two objects produces a special
effect: the game may end, an explosion is shown, or
the game score may be updated.

Children program the movement of the game
components by defining functions that compute the
position after one time tick, or the new position after
a key has been pressed. They detect collision of two
objects by computing the distance between them (we
give them the formula for this). They learn what is a
variable, how to evaluate expressions, learn a bit of
geometry by defining the positions of their game
components, learn about boolean values when
detecting collisions or making sure the game pieces
stay within the game canvas.
2.4. The Curriculum

The curriculum has been designed with two
goals in mind. It has to speak to the child in his
language, making sure the children are not distracted
or overwhelmed by the programming language
complexity. It also has to be divided into daily
lessons that can be taught by volunteer teachers with
a minimal training.

We use a special variant of the Scheme
programming language. All values are color-coded,
so that the children can easily distinguish between
Strings, booleans, numbers, and symbols.

To explain the evaluation of expressions and
functions we enclose each subexpression in a
CIRCLE OF EVALUATION. The operation (plus
sign, or a name of a function) is on the top and the
values that are needed for the computation are

shown below in the appropriate order. This
translates directly into Scheme functions. that are
evaluated immediately in the Interactions window of
the DrScheme programming environment:

> (- 9 5)
4
More complex expressions are drawn as circles

within circles and children learn to evaluate the
innermost circles first.

Children quickly learn to convert an expression
such as (+ (* 2 3) (- 8 6)) to the collection of circles
of evaluation and compute the value of the
expression. The variables are then shown with the
name above and the substituted value below a
horizontal line.

Fig. 1 Circles of Evaluation

Figure 1 shows the circle of evaluation for the

expression (x + (7 + 3)), with 5 substituted for x. In
Scheme this would be written as (+ (x (- 7 3)).

Students are motivated, as the goal is to design
their own game. Children brainstorm about the game
they want to design during the first lesson and the
teacher finds appropriate images for every student's
game by searching the clipart on the web. The
supporting software library allows students to draw
any image at the selected location. Children define
the function onKeyEvent that produces the game
scene after the player has hit the left or right arrow
key, the function onTick that produces the game
scene after one clock tick, and the function that
detects the collision of the two objects.

Fig. 2 A worksheet for Mario game

Children learn about conditionals, use the
distance formula that we provide, and test their
functions one by one as they design them. They
follow the design recipe with worksheets where each
step is carefully worked out and tested as a running
program. The last day of the session they show their
games to their parents, teachers, and friends, and
answer questions about conditionals, functions,
function evaluation, and their game design. We have
seen some of these children succeed in math in their
later years, but the number of students who have
completed our program is too small to provide a
statistically significant evidence of success.

3. UNDERSTANDING DATA

In the program design courses in the secondary
schools and at the college level the first one or two
weeks are similar to those of the younger children.
However, to design programs of any complexity one
must deal with sufficiently complex data. While the
typical language-based programming instruction
focuses on algorithmics, our curriculum is based on
the premise that most of the production programs are
driven by the structure of the data that they process.
The art of defining data that represents the given
information is the driving force behind program
design.

3.5. Designing Data

The design recipe for data definitions allows us
to define an ancestor tree as follows:

An Ancestor Tree (AT) is one of
- 'unknown
- Node : (make-node String AT AT)
(define-struct node (name mother father))

The struct definition allows us to build an

instance of a complex data, provides a constructor
(make-node "Jan" mom dad), a predicate (node? x)
to verify that a data item x is a node and a selector
function for every field: node-name, node-mother,
node-father.

For each new data definition we make sure
students make examples of data and can interpret the
data representation as information, as well as define
new data items that represent the given information.
For this example, students would convert their
ancestor tree into data and read their friend's data
and answer questions about the maternal
grandfather, great grandmother, etc.

3.6. Data Driven Design of Functions

The first step in designing function is to
identify the information that is available as well as
the desired outcome, and understand how it will be
represented as data.

In the second step students define the function
header, a purpose statement that explains what the
function will accomplish, and define the types of
data the function consumes as arguments as well as
the type of the result it will produce. We do not use
assignment in the early weeks of the curriculum and
every function produces a new value. This
restriction greatly simplifies the program students
write and allows us to reason about each function
independently of its place in the program.

Before attempting to design the actual function,
the third step of the design recipe asks that
students make examples of the data that the function
consumes, and explain the desired behavior by
showing sample function invocations together with
the expected outcomes.

To help define a function for more complex
types of data the fourth step of the design recipe
asks the students to decompose the problem into
parts by designing an inventory. An inventory for
the function that consumes complex arguments lists
the fields of the function arguments as well as the
functions that can be used with them (from earlier
definitions). The inventory for a function that
consumes an AT would be:

(define (fun at)
 (cond [(symbol? at) …]
 [(node? at)
 … (node-name at) …
 … (node-mother at) …
 … (node-father at) …
 … (fun (node-mother at))…
 … (fun(node-father at))…]

If this function was counting the nodes in the

tree (other than unknown) it would be clear that the
two function applications to the mother and father
subtrees will produce the count of known relatives in
each ancestor subtree, and the rest of the
computation trivially follows.

Only now, in the fifth step of the design recipe,
do the students proceed with the design of the
function body. If the task looks to be too complex, it
is divided into smaller parts, with subtasks delegated
to other functions, making up a wish list. Each
function on the wish list must have the function
header, contract, and purpose statement, so that it
can be used in completing the original function
design. Of course, later on we need to take care of
the functions on the wish list.

Once the function has been designed, the sixth
step of the design recipe directs the students to turn
the examples defined earlier into test cases that are
run and evaluated. Because every function produces
a new value and has no side-effects, the tests only
need to compare the expected value with the value
produced by the function. The test design is simple.
It is supported by a test harness that allows us to
define the tests simply as:

(check-expect (count-nodes my-at) 5)

The test harness then reports which tests failed
and shows the actual and expected values side-by-
side.

In the early curriculum the structure of the

functions students design follows exactly the
structure of the data the function consumes. A large
number of everyday programs are of this type:
parsers, interpreters, programs that manipulate
databases, GUI interactions programs, and more. We
introduce algorithms that require some additional
insight (e.g. quicksort) only after the students
understand the program design driven by the
structure of data.

3.7. Designing Abstractions

In order to build reusable programs we need to
generalize: we need to abstract over the data type,
over the functional behavior, the data structure
manipulation, or the traversals over the data in a
collection of data.

In both the early curriculum that uses DrScheme
functional languages, and the early part of the class-
based instruction we follow by introducing
abstractions that simplify the program design and
allow us to make the programs more general and
reusable as libraries. In the Scheme-like languages
we introduce the use of functions as arguments and
the generalized Scheme loops such as orMap, filter,
and fold.

We motivate abstractions by showing side-by-
side two programs that are very similar, highlighting
the places where they differ, and replacing the
differences with parameters. So, for example a
program that computes the sum of all numbers in a
list and a program that computes the product look
structurally the same, but differ in the base value and
in the operator used to accumulate the resulting
value. That means that the base value and the
operator (a function of two arguments) become
parameters for the generalized solution. The
resulting general program can be then used to
concatenate a list of Strings into one String, with the
base value given as an empty String and the operator
being the concatenation function.

To motivate the use of a function as an
argument to another function we show how a sort
function depends on the comparison function that
determines the ordering of two items. Therefore, the
comparison function becomes an argument to the
sort function.

The design of abstractions depends in a
substantial way on the language support for the
abstractions we wish to discuss. On the other hand,
the desire to design more general programs allows
us to motivate specific language features that have
been included in the language precisely to support
such abstractions.

3.8. Curriculum Support
The TeachScheme! curriculum, supported by the

DrScheme teaching languages and the text How to
Design Programs, is used in over 700 high schools
and universities both in the USA and in many
countries throughout the world. The supporting
software includes libraries for the design of
interactive graphics-based games as well as the
library for designing multi-player client games
managed by a server and played over the internet.

Our students design several games during their
first year. However, the functions that comprise the
game are all designed according to the design recipe
and are fully tested.

4. OBJECT-ORIENTED PROGRAM DESIGN

4.1. Understanding Data
The curriculum for our second course is known

as ReachJava. A draft of the textbook How to
Design Classes is nearly complete.

This course focuses on program design in a
class-based language with object-oriented
programming. Students already have a good
understanding of basic functional program design.
The first lectures of the course focus on designing
classes. The struct definitions from the Scheme turn
into class definitions. The unions of data defined in
Scheme become classes that implement a common
interface. The struct definitions that contain fields
that are also structs become classes with fields that
are objects of another class.

We represent the class hierarchy as class
diagrams using a simplified UML notation. Every
class includes a full constructor. Every field is
referenced as this.xxx. Students make examples of
data and get to see that the data representation is in
many ways similar to what they already know.

Fig. 3 Sample class diagram

Students define an Examples class (with the

default constructor) and write all examples of data
there. Before going any further, they must be able to

translate the given information into its representation
as data, and be able to interpret the data as the
information the data represents. The Examples class
acts as a client to student's code.

The main new idea in designing methods for the
object-oriented languages is that each method
belongs to a specific class and the object that
invokes the method is somewhat invisible in the
method definition. We require that students
formulate the method purpose statement by referring
to this object and the given arguments, so that the
role of all data the method consumes becomes clear.
Within the method definition we reference all fields
of the current class with the this. prefix:

// compute the price of this book
// with the given discount
double salePrice(double discount){
 return this.price * discount;
}

Again, we follow the same design recipe. The

examples of method invocation make it quite clear
how the method invocation works and what is the
role of the object that invokes the method. For the
first couple of weeks we still follow the mutation-
free style of programming where the outcome of the
method is always a new object or a primitive value.

The inventory part of the design recipe now lists
all the fields in this class as well as all arguments to
the method, any methods already defined for this
class, and any methods that can be invoked by any
of the fields already listed:

So, in the class Node that implements the AT
interface we would have:

// does this AT contain a person
// with the given name?
boolean contains(String name){

/* Inventory:
 Fields:
… this.name … -- String
… this.mother … -- AT
… this.father … -- AT

Methods:
… this.count() … -- int

Methods for fields:
… this.mother.count() … -- int
… this.father.count() … -- int

… this.name.equals(String) … -- boolean
*/
}

We can see that there is a great emphasis on

making sure students understand very clearly the
meaning of data and its structure. Combined with
the examples of data they defined earlier the design
of the actual method body becomes straightforward.

4.2. Test-First Design
The third step in the design recipe asks students

to make examples of the method invocation with the
expected results. In the absence of mutation this is
quite easy. Students just have to provide as expected
result the instance of an object with the expected
values.

When the examples turn into tests in the last
step of the design recipe, we just need to make sure
that the resulting object matches the expected one,
field by field. We would like the test to follow the
earlier style:

Cat cat = new Cat("Boots", "Sam");
check-expect (
 cat.newOwner("Jan")
 new Cat("Boots", "Jan"));

The problem is that the comparison of objects

by their value is not supported by the popular object-
oriented languages. All equality comparisons
besides the reference (identity) equality have to be
defined by the programmer. This may not be too
difficult for simple classes with just a few fields.
However, defining equality of two AncestorTree
objects is not a simple task for a novice programmer.
The problem is much worse if the classes allow for
circularly referential data (a Book with the Author
field, while the Author class has a Book field).

To make the test-first design possible we must
provide software support for the design and
evaluation of tests that matches student's knowledge
of the language and his program design maturity.

Our students start during the first couple of
weeks using ProfessorJ Beginner and ProfessorJ
Intermediate languages within the DrScheme IDE.
The Beginner language is a Java-like language that
allows for a class to implement a single interface, it
has no loop constructs and no assignment statement.
It also does not support any field or method
modifiers. However, it provides support for the test
design similar to that available for the Scheme
programs. The test case for the newOwner method
mentioned earlier would be written as:

boolean testNewOwner =
 check cat.newOwner("Jan")
 expect new Cat("Boots", "Jan");

The program definitions are written in the

Definitions window of the DrScheme IDE. The
results of running the program are shown in the
Interactions window. For Java-like programs the
Interactions window shows pretty-printed display of
all fields defined in the Examples class. Any failed
test cases are shown in a separate TestCase window
and show not only the failed test but also the values
that have been compared together with a link to the
failed test. There is almost no new syntax needed to
define the tests, there is no work involved in

evaluating the test cases or understanding how to
report the results.

After about three weeks we move on to standard
Java language using one of the common IDEs. (We
have chosen Eclipse, but other schools use
NetBeans, or even BlueJ). Without a similar support
for test design, evaluation, and reporting, it would be
impossible to continue with the systematic use of the
design recipe. To support this test-first design
throughout the curriculum we have designed and
implemented a tester library for standard Java that
provides support for the design of tests appropriate
for a novice programmer. The tester library
examines the user's program through Java reflection
support and evaluates every test method defined in
the Examples class. The test cases shown above
would be written as:

boolean testNewOwner(Tester t){
 return
 t.checkExpect(cat.newOwner("Jan"),
 new Cat("Boots", "Jan")) &&
 t.checkExpect(cat.newOwner("Martin"),
 new Cat("Boots", "Martin"));}

The tester library compares the objects by their

values, reports any failed test cases, pretty-prints
both the actual and the expected value of the failed
test and provides a link to the failed test. Optionally,
it pretty-prints every field in the Examples class, or
prints all test results (successes as well as failures).

4.3. Understanding Test Design

The industry has embraced Test Driven Design
(TDD) as leading to a more granular,
comprehensible, and testable design. The pedagogy
of the design recipe is not TDD (we do not build
stubs that are further refined until the method is
designed) but designing tests first is the common
basis for both, and the benefits are similar.

Teaching students to design tests before they
design the body of a method helps students think
about the problem and understand what data is
involved in the computation. The examples help
them understand what is the method expected to
accomplish. The examples also point out the
situations when the desired method is too complex
and is trying to do too many tasks at once. This
suggest to students to design helper methods that
provide solution to some of the needed sub-tasks.
Running the tests and observing the test reports
helps students diagnose errors and design programs
that behave as expected. We teach students good
programming practice from the beginning.

Practicing test-first design in introductory

courses is impossible without proper software
support. There are three parts that have to work
together when designing tests. First, the programmer
must define what actual and expected values should

be compared. This part is a natural part of program
design and with the proper support should be an
inseparable component of program design for all
students.

The second part concerns the test evaluation.
This requires that the actual and expected values are
compared in the manner that is consistent with the
user's expectations. This part is very difficult and
would be an undue burden for a beginner student.
Novice programmers cannot define correctly the
equality comparison methods until they understand
very well the underlying object model, know how to
compare different types of data, how to detect
circularity, etc. In Java, overriding the equals
method also requires that the programmer overrides
the hashCode method, adding another layer of
complexity. While learning about the different levels
of equality should be a part of learning how to
design programs, such instruction should proceed in
a gradual manner as appropriate for the students'
level of competence. Meanwhile, the test evaluation
should be managed by a library that matches
students' understanding of equality and their mastery
of the test case design.

The third step in practicing test-first design is
the reporting of the test results. Typical test libraries
may report that certain tests failed, and possibly
provide links to the failed tests. However, they do
not show the actual and expected values that have
caused the failed test. The programmer can provide
methods that display the data in a readable format
(toString method), but again, this adds another
burden, another routine task that student must do
just to get the program running. Without the library
support, student would have to do this before writing
the first method, when the syntax overhead of just
defining one class with a constructor is huge.
Additionally, when the data may be circularly
referential, the student must worry about breaking
the circularity.

Our tester library has been designed to provide
robust support for test design for students at all
stages of their programming instructions. As student
learn how to override the equals method, and how to
define their own toString method, the tester library
allows them to use their methods when needed,
while using the library support for classes without
their customized methods. Over the past year we
have added new types of test scenarios to the library,
responding to the needs of students using the first
versions of the tester library. There are test methods
that check whether the actual value matches one of
the several possible random outcomes, whether the
actual value falls within the given range of values,
whether the invocation of a method by a given
object throws the expected exception, and more. The
latest version of the library provides a test coverage
tool. We are working on designing special support
for tests that change the state of an object and tests
that verify changes in the structure of data.

The library has been used by students in five
different schools (secondary schools and
universities) and by over 200 students in our classes.
At this time we use the tester library for our own
software development on a daily basis.

5. EXPANDING HORIZONS

Most of the programs our students write rely on
the tester library to display the results of the test
evaluation and the values of the objects defined in
the program. We do not process user input, as that is
a task for a seasoned programmer who understands
the intricacies of parsing the input String and
converting it to meaningful data. Additionally,
programs with the user input are very difficult to
test, and are typically first tested with the simulated
inputs. We add some exercises that handle user
inputs later in the course, but still require that the
program be tested on sample data apart from the
actual input.

5.1. Creative Design

To make sure students see programs with user
interactions and practice their independent design
skills on interesting problems, we again provide a
library that supports the design of interactive games.
Our students focus on the game engine and a simple
display of the game components on a canvas. We
provide three libraries for Java programs. The first
one supports the functional style of programming
where students design the classes that represent the
game state and implement methods that produce the
new game state after a tick of the clock, onTick, and
in response the key press by the user, onKeyEvent.
They define the draw method that shows the game
components as simple graphics objects on the given
Canvas. Their game world extends our abstract
World class that provides a Canvas for drawing,
abstract methods onKeyEvent, onTick, and draw,
and a bigBang method that starts the game on a
Canvas of the given size running the clock at the
given speed. Students do not worry about display
panels, layouts, listeners, actions, etc., but instead,
they concentrate on the design of the game logistics.

The second, imperative library is very similar,
but the state of the World changes onTick and
onKeyEvent. The third library provides the same
user interface as the imperative one, but allows the
students to convert their games into Java Applets.

The game assignments give the students
motivation and an opportunity to decide for
themselves how to organize the game components
into classes, decide which class should be
responsible for each task, where the collisions
should be detected, etc. We conduct individual
project reviews with every student after they have
completed their first game and comment on their
design flaws, the program style, and the test
coverage of their programs.

Fig. 4 Crossing Huntington Avenue game

5.2. Abstractions and Libraries: Reusable Code

Once the students understand the fundamentals
of designing classes to represent data and designing
methods for their class hierarchies, we use the
repetition in their code as a motivation for
introducing abstractions. Rather than starting with
Java library classes, we first learn how to define
abstract classes, interfaces that represent functional
behaviour, interfaces that represent a traversal over a
collection of data, classes that implement an
interface that represents an abstract data type, and
how to design generic algorithms that leverage the
traversal and function objects.

Students who understand how to design
programs with generalized behaviours learn quickly
how to use libraries that have been designed on the
same principles.

At this point we look at the cost of computation,
learn about different data structures that support
more elegant and efficient program design, learn
about the complexity of algorithms, and run stress
tests on large amounts of data to experience
firsthand the differences between various algorithms
and the underlying data structures they use.

5.3. User Interactions and GUIs

We believe that user interactions should be
designed in a systematic way, just like the rest of
model part of the program. At the end of the
semester we introduce students to the JPT library
that supports user interactions and GUI design
through a cleanly designed abstraction layer.
Students build an interactive GUI program with text
fields, action buttons, sliders, colour choosers, radio
buttons, graphics, key and mouse interactions, and a
parsed console input after just one two hour lab
session.

Fig. 5 A sample GUI panel

The JPT library includes Java Power

Framework (JPF). Any class that extends JPF
automatically generates a GUI with a Canvas for
drawing and a panel that contains one button for
every method with no arguments that returns void. A
button click runs the method in the context of the
class where it has been defined. This provides some
for some interaction and supports experimentation.

The simplicity of the level of abstraction
presented by the JPT library and the JPF tools makes
it possible for students to master quickly the basics
of GUI design and to incorporate user interactions
into their final project of the semester.

Fig. 6 Java Power Framework (JPF) window

6. CONCLUSION

The pedagogy of program design that drives our
curriculum empowers the student and the instructor.
In the early stages of learning to program the design
recipes guide the students though the design process
in clearly defined steps. Students learn to analyze
the problem, define data, decompose complex
problems into simpler ones, and they understand
well the expected behaviour of every program they
write. When students encounter a problem the
instructor knows what questions to ask and how to

help the student discover the answer and the
solution.

The same pedagogy, the same design recipe that
works for young children and novice programmers,
helps seasoned programmers to find a well-
structured solution. By writing tests for every
method all students acquire a lifelong design
discipline that will make their programs better and
safer.

7. ACKNOWLEDGEMENTS

The TeachScheme! curriculum has been
designed by Matthias Felleisen, with the support of
the coauthors of the text How to Design Programs:
Robby Findler, Matthew Flatt, and Shriram
Krishnamurthi. They are also the founders of the
PLT team that continues to develop the DrScheme
programming environment and languages.

The ProfessorJ languages and their support for
testing have been implemented by Kathryn Gray and
Matthew Flatt.

Matthias Felleisen designed the curriculum for
the ReachJava component that Viera Proulx
implemented in the classroom for the past seven
years. Felleisen is also the lead author of the draft
How to Design Classes. Proulx has developed a
large collection of laboratory materials,
programming assignments and projects and a
collection of lecture notes and sample programs.

Viera Proulx designed and implemented the
tester library. Weston Jossey has joined the tester
library team last year and has since designed and
implemented numerous enhancements to the tester
library.

The JPT (Java Power Tools) has been
developed jointly by Richard Rasala and Viera
Proulx. Richard Rasala has been working on the
library enhancement and maintenace for the past
seven years.

Useful links:
How to Design Programs: http://htdp.org
TeachScheme/ReachJava: http://teach-scheme.org
Java Libraries: (tester, draw, idraw, adraw,
geometry, colors): http://www.ccs.neu.edu/javalib
How to Design Classes materials:
http://www.ccs.neu.edu/home/vkp/HtDC/
JPT and JPF: http://www.ccs.neu.edu/jpt

REFERENCES

[1] Felleisen, M., Findler, R.B., Flatt, M.,
Krishnamurthi, S.: TeachScheme! project:
Computing and programming for every student.
Computer Science Education, vol. 14, no. 1,
2004, pp. 55-77.

[2] Felleisen, M., Findler, R.B., Flatt, M., Gray,
K.E., Krishnamurthi, S., Proulx, V. K.: How to
Design Classes. in preparation.

[3] Felleisen, M., Findler, R.B., Flatt, M.,
Krishnamurthi, S.: How to Design Programs.
MIT Press, Cambridge, MA, 2001.

[4] Findler, R.B., Flanagan, C., Flatt, M.,
Krishnamurthi, S., Felleisen, M.: DrScheme: A
pedagogic programming environment for
Scheme. In H. Glaser, P. Hartel, and H. Kuche,
editors, Programming Languages:
Implementations, Logics, and Programs,
volume 1292 of LNCS, Southhampton, UK,
September 1977, Springer, pp. 36-388.

[5] Gray, K.E., Flatt, M.: ProfessorJ: a gradual
introduction to Java through language levels. In
Companion of the 18th annual ACM-
SIGPLAN Conference on Object Oriented
Programming Systems, Languages, and
Applications, Anaheim, CA, Oct. 2003, pp.
170-177.

[6] Gray, K.E., Felleisen, M.: Linguistic support
for unit testing: Report uucs-07-013.
http://www.cs.utah.edu/research/techreports.sht
ml

[7] Proulx, V.K.: Test-Driven Design for
introductory OO programming. In SIGCSE
Bulletin, vol. 41, no. 1, 2009.

[8] Proulx, V.K., Gray, K.E.: Design of class
hierarchies: An introduction to OO program
design. In SIGCSE Bulletin, vol. 38, no. 1,
2006, pp. 288-292.

[9] Proulx, V.K., Rasala, R.: Java IO and testing
made simple. In SIGCSE Bulletin, vol. 36, no.
1, 2004, pp. 161-165.

[10] Rasala, R., Raab, J., Proulx, V.K.: Java Power
Tools: Model software for teaching object-
oriented design. In SIGCSE Bulletin, vol. 33,
no. 1, 2001, pp. 297-301

APPENDIX: SAMPLE CODE WITH TESTS

import tester.*;

// to represent a traffic light color
class Light{
 String color;
 int time = 0;

 Light(String color){
 this.color = color; }

 Light(String color, int time){
 this.color = color;
 this.time = time; }

 void setTime(int time){
 this.time = time; }

 // reduce the time available by one
 void tick(){
 if (this.time > 0)
 this.time = this.time - 1; }

 boolean off(){
 return this.time == 0; }

}

// to represent a traffic light
class Traffic{
 Light current;
 int currIndex;
 int[] times;
 Light[] lights =
 new Light[]{new Light("Red"),
 new Light("Yellow"),
 new Light("Green")};

 // the constructor
 Traffic(int red, int yellow,
 int green){
 this.times =
 new int[]{red, yellow, green};
 this.currIndex = 0;
 this.current =
 this.lights[this.currIndex];
 this.current.setTime(
 this.times[this.currIndex]); }

 // change the light:
 // make the next light current
 void newCurrent(int index){
 this.currIndex = index;
 this.current =
 this.lights[this.currIndex];
 this.current.setTime(
 this.times[this.currIndex]); }

 // update the clock by one
 // change light if necessary
 void tick(){
 this.current.tick();
 if (this.current.off()){
 this.newCurrent(
 (this.currIndex + 1) % 3); }
 }
}

// a class for sample data and tests
class Examples{
 Examples(){}

 // test the method setTime
 // in the class Light
 void testSetTime(Tester t){

 Light r = new Light("Red");
 r.setTime(5);
 t.checkExpect(r,
 new Light("Red", 5)); }

 // test the method tick
 // in the class Light
 void testTick(Tester t){
 Light r5 = new Light("Red", 5);
 Light r0 = new Light("Red", 0);
 r5.tick();
 t.checkExpect(r5,
 new Light("Red", 4));

 r0.tick();
 t.checkExpect(r0,
 new Light("Red", -1)); }

 // test the method off

 // in the class Light
 void testOff(Tester t){

 Light r5 = new Light("Red", 5);
 Light r0 = new Light("Red", 0);
 t.checkExpect(r5.off(), false);
 t.checkExpect(r0.off(), true); }

 // test the method newCurrent
 // in the class Traffic
 void testNewCurrent(Tester t){

 Traffic tr = new Traffic(5, 2, 7);
 tr.newCurrent(2);
 t.checkExpect(tr.currIndex, 2);
 t.checkExpect(tr.current,
 new Light("Green", 7)); }

 // test the method tick
 // in the class Traffic
 void testTickTraffic(Tester t){

 Traffic tr = new Traffic(5, 2, 7);
 tr.tick();
 t.checkExpect(tr.currIndex, 0);
 t.checkExpect(tr.current,
 new Light("Red", 4));

 tr.tick();
 tr.tick();
 tr.tick();
 tr.tick();
 t.checkExpect(tr.currIndex, 1);
 t.checkExpect(tr.current,
 new Light("Yellow", 2));

 tr.newCurrent(2);
 tr.tick();
 tr.tick();
 tr.tick();
 tr.tick();
 tr.tick();
 tr.tick();
 tr.tick();
 t.checkExpect(tr.currIndex, 0);
 t.checkExpect(tr.current,
 new Light("Red", 5)); }

 // start to run program here
 public static void
 main(String[] argv){

 // make an instance of Examples
 Examples e = new Examples();

 // report all test results
 // show all data in Examples class
 Tester.runReport(e, true, true); }
}

