
The SIGCSE 2001 Maze Demonstration Program

Richard Rasala, Jeff Raab, Viera K. Proulx

College of Computer Science

Northeastern University

Boston MA 02115

{rasala,jmr,vkp}@ccs.neu.edu

Abstract

This article will describe the SIGCSE 2001 Maze Demo

program that may be used as a CS2 laboratory exercise on

traversal algorithms. The article will also describe the

object-oriented design of the program and the Java Power

Tools that were used to enable rapid development of its

graphical user interface. Finally, the quality of the

program and the speed of its development shows that it is

now practical to teach freshmen using full graphical user

interfaces rather than interfaces that use the console or a

small restricted set of interface widgets.

1. Introduction

At the opening reception for the SIGCSE 2001 conference,

the authors were speaking with Michael Goldweber of

Xavier University about the Java Power Tools (JPT)

toolkit. These tools enable very rapid development of

graphical user interfaces in Java. Prof. Goldweber decided

to propose a challenge. He suggested that we develop an

animated maze traversal program with a full graphical user

interface before the end of the SIGCSE conference. He

specified that the traversal algorithm should intentionally

be simple so that the program could be used as the basis for

a student laboratory in which the given algorithm is

replaced by a more powerful one designed by the student.

The authors accepted the challenge.

The authors met for breakfast the next morning and

discussed the design of the classes for about an hour. Two

of the authors then worked throughout the morning to build

the maze program and by lunchtime a correct working

version was finished. The programming time was two and

a half hours.
__

This work was partially supported by NSF grant DUE-9950829.

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGCSE 2002.

Copyright 2002 ACM 1-58113-499-1/02/0006…$5.00.

The next day the program was demonstrated to Prof.

Goldweber and he confirmed that the maze program more

than fulfilled his requirements and expectations.

In this article, we will describe a refined version of the

SIGCSE Maze Demo program. After the conference, we

carefully examined and refactored the code [1] to make it

as clean as possible. We added a second algorithm so that

a student could learn how to select an algorithm in the user

interface. Finally, we made it possible to perform several

maze animations in parallel.

We believe that the SIGCSE Maze Demo program will be

important to CS faculty for several pedagogical reasons:

As a CS2 laboratory exercise on traversal algorithms,

the SIGCSE Maze Demo may be used immediately

without modifications.

The SIGCSE Maze Demo shows that with the proper

toolkits it is quite feasible to build a laboratory that has

a full graphical user interface in a very short period of

time and that it is therefore no longer necessary to

teach freshmen using more primitive interfaces.

The SIGCSE Maze Demo illustrates in a simple

manner how to execute algorithms in separate threads.

The SIGCSE Maze Demo web site comes with an

extensive tutorial on the design of the program, the

class structure, and the use of the Java Power Tools to

create the GUI extremely rapidly. This should be of

interest both to those who want to learn more about the

Java Power Tools and to those who want a quality

case-study in object-oriented design.

2. Overview of the Maze Demo Classes

The Maze Demo program is designed using five classes in

addition to the classes provided in the Java Power Tools or

JPT. Let us describe these five classes and their

responsibilities.

MazeApplication:

The MazeApplication class launches the program,

creates the frame for the maze and the controls,

defines the control buttons, and starts and stops

the traversal algorithms.

Maze:

The Maze class creates the maze in a panel using a

2-dimensional array of MazeCell objects for the

contents.

MazeCell:

The MazeCell class creates an individual cell in the

maze that can respond to mouse clicks to set its

state in coordination with the Maze object.

Bug:

The Bug class defines the animated creature or

“bug” that traverses the maze.

MazeAlgorithm:

The abstract MazeAlgorithm class organizes the

algorithmic code for maze traversal. Its cycle

method must be defined in a derived class to

implement a specific algorithm. In this demo

program, the algorithms used are so simple that

they are defined via static factory methods within

the MazeAlgorithm class.

3. The Maze Demo User Interface

Four screen snapshots of the Maze Demo program are

shown below:
__

The screen snapshots illustrate the two inadequate

algorithms that are provided as the starting point for the

student laboratory exercise. The SimpleWalker algorithm

goes straight ahead until it hits a wall where it turns left.

The WallHugger algorithm seeks a wall and then follows

that wall to the left indefinitely. For each algorithm, an

instance is shown in which the algorithm is successful and

another instance in which it fails.

The graphical interface is designed as follows. There are

three major panels each with titles: Algorithms, Maze, and

Controls. In the Algorithms panel, there are radio buttons

that permit the user to select the traversal algorithm. In

the Maze panel, there is an array of maze cell objects

arranged in a grid layout. In the Controls panel, there are

five action buttons that permit the user to Start or Stop the

algorithm, Clear the maze, create a Random maze, or

bring up a New Maze window with up to 20x20 cells.

The maze cells have four colors that encode their current

state: free (white), wall (black), start (green), or goal

(red). The user can edit the cell state using the mouse. A

simple click will toggle a free or wall state to its opposite.

A control-click will turn a cell into the start state and a

shift-click will turn it into the goal state. The program

maintains the invariant that there is always precisely one

start state and one goal state. It would be possible to

modify the program to allow multiple goal states if that

possibility is desired.

When the window opens the Stop button is disabled since

no algorithm is running. When the Start button is clicked,

the algorithm begins, the Stop button is enabled, and the

Start, Clear, Random, and algorithm radio buttons are

disabled. It is always possible to create a New Maze

window since that operation has no effect on a running

algorithm. Therefore, the New Maze button is always

enabled.

A maze algorithm is always executed in a separate thread

since in general it is a very bad idea to execute anything

that requires substantial time in the thread that listens to

the user interface. The problem with executing a time

intensive algorithm in the user interface thread is that the

user interface appears to freeze and will not respond to the

user. In particular, in this program, the Stop button would

not respond so that there would be no way to stop a

runaway algorithm short of aborting the program.

Since a maze algorithm is executed in a separate thread, it

is possible for the user to edit the maze as an algorithm is

running by adding or removing walls or even by changing

the goal state. In this manner, the user can help a weak

algorithm by changing the maze in such a way that the

algorithm can succeed in finding the goal state. Of

course, for a robust algorithm, the maze state should be

constant and this option may be specified in the algorithm

constructor.

4. Building the Maze Demo User Interface

The key to the rapid development of the Maze Demo user

interface is the use of the Java Power Tools that we have

created over a period of two years [3,6,7]. The problem

with pure Java for building user interfaces is that you are

presented with a collection of widgets that require

substantial effort to be coaxed into a working interface. It

is comparable to being given an expensive automobile

with the catch that you must assemble it from thousands

of parts. The fact that the same sequences of code occur

over and over in Java texts is a sure sign that essential

encapsulations have not been made in pure Java.

The fundamental goal of the Java Power Tools is to make

the creation of graphical user interfaces extremely rapid.

The correspondence between an idea and its expression in

code should if possible be 1-to-1: one idea, one line. If

several lines of code are required they should be required

for conceptual reasons not because some boilerplate code

must be added. In the case of interface elements, we see

precisely four such conceptual steps:

construct the element

position the element in the interface

send user data from the element to the model

update the element using data sent from the model

The ideal of the Java Power Tools is that these four steps

should take four lines of code.

In [6], we stated: “The fundamental design principles of

the JPT are that the elements of a graphical user interface

should be able to be combined recursively as nested views

and that the communication between these views and the

internal data models should be as automatic as possible.”

We achieve these goals by systematic encapsulation of

data, of interface elements, and of the methods that enable

communication in the system. Our Java programming

style is a subtle combination of object-oriented principles

and the functional style of LISP and Scheme that

encourages the use of recursive nesting.

Let us now explain how these general ideas play out in

the creation of the Maze Demo user interface.

First of all, each of the main panels in the interface is

enclosed with titled border. We have a decorator class

Display that can wrap another panel with a title and/or an

annotation. Hence we can add titles in the same step that

we use to add the panels to the main window.

The Algorithms panel consists of 2 radio buttons. To

build this panel, we create a String array with the 2 button

strings “Simple Walker” and “Wall Hugger”. We then

pass this array to the constructor of the JPT OptionsView

class that knows how to build a radio button panel

together with the methods needed to extract the current

user selection.

The Controls panel consists of 5 action buttons. From the

conceptual viewpoint, the only important information for

a button is its name and its action, that is, what will be

done when the button is clicked. All of the usual extras

that you see repeated in pure Java code concerning “add”

methods and “listeners” is implementation detail that

should not be seen. Therefore, to create the Controls

panel using JPT, we first create 5 action objects that

encapsulate both a button name and its action using the

JPT class SimpleAction. For example, to define the start

action, we use the following pattern:

 protected Action start =
 new SimpleAction("Start") {
 public void perform() { start(); }
 };

Notice that the action start (which is an object) defers the

work of its standard perform() method to the method start()

of the MazeApplication class. This idiom is the standard

way in Java to implement the design pattern:

Encapsulate action as object.

The idiom converts methods which are not first class in

Java to objects which are first class and may be stored and

passed around. The idiom also permits the details of the

action to be deferred to the methods section of the class.

Once all 5 actions objects have been created, we bundle

them into an array of actions. We pass this array to the

JPT ActionsPanel class that knows how to build a panel

with action buttons, button listeners, and all of the

implementation detail. In addition to the 5 action

definitions, this requires 2 lines of code.

The Maze panel uses the Maze constructor to build an nxn

grid of MazeCell objects where 2 <= n <= 20. Each maze

cell must refresh itself as needed, change its state when

clicked by the mouse, and maintain its communication

with its maze. The first two requirements can be easily

obtained by deriving the MazeCell class from the JPT

BufferedPanel class. In a BufferedPanel, graphics commands

paint to a hidden BufferedImage object. This buffer is used

to automate the graphics refresh process. In addition, a

BufferedPanel comes with a mouse listener that uses the

JPT MouseAct ionAdapter class. To make the panel

responsive to the mouse, it is sufficient to supply the

actions to perform corresponding to various mouse

events. In this case, the MazeCell mouse behavior can be

defined simply by defining the change-of-state actions

that must be performed when the mouse is clicked on a

cell.

This completes the definition of the Maze Demo graphical

user interface. Hopefully, it is now clear how the entire

original program was finished in two and a half hours.

The interface was completed and functioning in an hour

and the rest of the time was spent on the basic

algorithmics. The same development speed would have

been impossible using only pure Java.

5. The Maze Demo Algorithmics

The most interesting aspect of algorithmics of the Maze

Demo is how the MazeAlgorithm abstract class is defined

and how the MazeApplication class runs an algorithm.

The crucial features of the MazeAlgorithm definition are:

public abstract class MazeAlgorithm
 implements Runnable, JPTConstants {
 // some details omitted ...
 public void run() {
 initMazeAlgorithm();
 while(isRunning) {
 cycle();
 if (atGoal()) break;
 JPTUtilities.
 pauseThread(PAUSE_TIME);
 }
 }
 public abstract void cycle();
 public void initMazeAlgorithm() {
 isRunning = true;
 maze.setEnabled(enableChange);
 }
 public void stopMazeAlgorithm() {
 isRunning = false;
 maze.setEnabled(true);
 }
 public boolean atGoal() {
 return bug.atGoal();
 }
}

The MazeAlgorithm class is prepared to run in a separate

thread by declaring that it implements the Runnable

interface and by defining its run() method. The run()

method definition follows the template method pattern of

[2], that is, it uses three methods initMazeAlgorithm(), cycle(),

and atGoal() to define its behavior. The cycle() method is

abstract and so must be defined in a class that extends

MazeAlgorithm. The other methods may optionally be

redefined to provide additional behavior.

For example, the SimpleWalker algorithm has an almost

trivial cycle() method:

 public void cycle() {
 if (bug.freeToStep()) bug.step();
 else bug.turn(bug.left());
 }

The WallHugger is more complex since it must find the

wall and then travel along it. In an even more robust

algorithm, the method in i tMazeAlgor i thm() would

presumably perform a graph traversal algorithm to

determine the “best” path and then create a sequence of

steps and turns that would move the bug from the start to

the goal cell one move at a time in the cycle() method.

It is also of interest to see how a maze algorithm is run in

the MazeApplication class. This is accomplished by the

start() method that is associated with the Start button:

 protected void start() {
 start.setEnabled(false);
 clear.setEnabled(false);
 random.setEnabled(false);
 algorithmOptions.setEnabled(false);

 maze.refresh();

 strategy = createMazeAlgorithm();

 stop.setEnabled(true);

 Thread t = new Thread(strategy) {
 public void run() {
 super.run();
 MazeApplication.this.stop();
 }
 };

 t.setDaemon(true);
 t.start();
 }

This method disables the buttons that should be inactive

during the execution of the algorithm, refreshes the maze

to remove the bug tracks from any earlier traversal, calls

the method createMazeAlgorithm() to create a new instance

of the algorithm currently selected by the user, enables the

Stop button, and starts a new thread. The thread runs the

algorithmic strategy and ensures that when the algorithm

is done then the stop() method will be called to reset the

user interface to its original state. Notice that the thread is

made into a daemon so that if the application halts then

the thread will halt as well.

From a pedagogical viewpoint, this thread code is simple

enough that a freshman student can learn the pattern

without needing a full discussion of processes such as

would occur in an operating systems course. It is good to

introduce threads in this simple manner rather than in a

fashion that immediately emphasizes complications.

6. Conclusions

We have presented a Maze Demo program with an

elegant graphical user interface that is ready to be used as

a traversal-algorithms exercise in CS2 courses. One goal

of this article is to make this laboratory known to CS

faculty.

Our goals in writing this article are much more general

however. In [4,5], we have argued that toolkits are

fundamental for CS education. Roberts [8] made the

same argument. The point is that the pedagogical goals of

the CS1 and CS2 courses should be:

To introduce the fundamental principles of computer

science: information, algorithmics, encapsulation,

recursion, interaction, language, and formalism.

To introduce modern programming methods and

practices including graphics and graphical user

interfaces whenever possible.

The point of freshman CS education is not to teach some

particular programming language (C, C++, Java) in its

“pure” form so students will be “prepared for industry”.

The best preparation we can give students is to teach them

how to program in an elegant, thoughtful manner that

makes them comfortable with both creating and using

abstractions and encapsulations. As educators, our task is

to educate students about what can be and not just about

what is commonly done in industry today.

When we made the decision to switch from C++ to Java

in the freshman year at our university, we were

determined to use graphical user interfaces. It is too hard

to do that using pure Java. We have invented the Java

Power Tools to solve this problem. We believe that the

Maze Demo program shows that we have been successful.

7. Online Materials

The Java Power Tools and related sample files may be

found at:

http://www.ccs.neu.edu/teaching/EdGroup/JPT/

The SIGCSE Maze tutorial, source code, and application

may be found at:

http://www.ccs.neu.edu/teaching/EdGroup/JPT/Maze/

References

[1] Fowler, Martin, Refactoring: Improving the Design

of Existing Code, Addison-Wesley, Reading MA,

1999.

[2] Gamma, Erich, Helm, Richard, Johnson, Ralph, and

Vlissides, John, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-

Wesley, Reading, MA, 1995.

[3] Raab, Jeff, Rasala, Richard, and Proulx, Viera K.,

Pedagogical Power Tools for Teaching Java,

SIGCSE Bulletin, 32(3), 2000, 156-159.

[4] Rasala, Richard, Design Issues in Computer Science

Education, SIGCSE Bulletin, 29(4), 1997, 4-7.

[5] Rasala, Richard, Toolkits in First Year Computer

Science: A Pedagogical Imperative, SIGCSE

Bulletin, 32(1), 2000, 185-191.

[6] Rasala, Richard, Raab, Jeff, and Proulx, Viera K.,

Java Power Tools: Model Software for Teaching

Object-Oriented Design, SIGCSE Bulletin, 33(1),

2001, 297-301.

[7] Rasala, Richard, Exploring Recursion in Hilbert

Curves, SIGCSE Bulletin, 33(1), 2001, 194.

[8] Roberts, Eric, Using C in CS1: Evaluating the

Stanford Experience, SIGCSE Bulletin, 25(1), 1993,

117-121.

