
Java Power Tools:

Model Software for Teaching Object-Oriented Design

Richard Rasala, Jeff Raab, Viera K. Proulx

College of Computer Science

Northeastern University

Boston MA 02115

{rasala,jmr,vkp}@ccs.neu.edu

Abstract

The Java Power Tools or JPT is a Java toolkit designed to

enable students to rapidly develop graphical user interfaces

in freshman computer science programming projects.

Because it is simple to create GUIs using JPT, students can

focus on the more fundamental issues of computer science

rather than on widget management. In a separate article[4],

we will discuss with examples how the JPT can help

freshman students to learn about the basics of algorithms,

data structures, classes, and interface design. In this

article, we will focus on how the JPT itself can be used as

an extended case study of object-oriented design principles

in a more advanced course.

The fundamental design principles of the JPT are that the

elements of a graphical user interface should be able to be

combined recursively as nested views and that t h e

communication between these views and the internal data

models should be as automatic as possible. In particular, in

JPT, the totality of user input from a complex view can be

easily converted into a corresponding data model and any

input errors will be detected and corrected along the way.

This ease of communication is achieved by using string

objects as a lingua franca for views and models and by

using parsing when appropriate to automatically check for

errors and trigger recovery. The JPT achieves its power by

a combination of computer science and software design

principles. Recursion, abstraction, and encapsulation are

systematically used to create GUI tools of great flexibility.

It should be noted that a much simpler pedagogical package

for Java IO was recently presented in [9].

__

This work was partially supported by NSF grant DUE-9950829.

Permission to make digital or hard copies of all or part of this work

for personal or classroom use is granted without fee provided that

copies are not made or distributed for profit or commercial

advantage and that copies bear this notice and the full citation on the

first page. To copy otherwise, or republish, to post on servers or to

redistribute to lists, requires prior specific permission and/or a fee.

SIGCSE 2001.

Copyright 2001 ACM 1-58113-499-1/02/0006…$5.00.

1. The MVC Paradigm and the JPT

The Java Power Tools are based on the well-known model-

view-controller paradigm. In this paradigm, the internal

data models are separate from the interface views that set

or display the data. This design allows the models to be

represented by a variety of views as desired. In addition, in

the MVC paradigm, the algorithmic logic of the model is

separate from the widget management of the view thus

creating a much simpler program design.

In order for MVC design to work, the views must maintain

their own state and there must be communication in which

the models update the views or the views update the

models. This communication may be initiated by internal

processes or by the user activation of controls. The

controls may also trigger the internal processes that lead to

an update of both the models and the views.

Although the model-view-controller paradigm provides a

general framework for interface design, there are several

issues that remain problematic:

• The communication mechanism between the models

and the views is not specified and may vary from view

to view. This means that communication does not

scale automatically to more complicated views.

• The relation between the controls and the model-view

communication is also not specified and must often be

arranged manually for each model-view pair.

• Views do not have a common data representation that

will facilitate communication.

• The model-view-controller paradigm has a missing

piece which may be illustrated by the following table:

Internal Element Interface Element

Model View

? Control

To mirror controls on the internal side there needs to

be an encapsulation of the corresponding actions.

• The model-view-controller paradigm does not specify

an error handling strategy.

In the current implementation of Java using the elegant

Swing components, the above problems are still present.

Although the Swing widgets provide a starting point for

interface design and implementation, much repetitive work

must be done to craft a working program. In many books

on Java, the same code sequences occur over and over.

This is a sure sign that fundamental abstractions and

encapsulations have not been recognized.

The design goal of the Java Power Tools is to articulate

these abstractions and encapsulations so that building a

graphical user interface can be made smooth and easy.

Furthermore, because building user interfaces is a central

issue in modern software development, we believe that the

problems addressed by the JPT and the techniques used for

their solution form an excellent case study in a course on

methods of object-oriented design.

2. Fundamental Design Features of the JPT

The Java Power Tools actually support three levels of user

interface design:

• A traditional console model for input-output.

• Simple dialog boxes for input of basic types.

• Full graphical user interfaces that are built from basic

view components using recursive concatenation and

nesting and that adhere to the MVC paradigm.

To maintain an economy of code, to support all three levels

of interface design, to solve the problems with the MVC

paradigm, and to remain as close as possible to pure Java,

the JPT meets the following design constraints:

• The input of basic types must use a common parsing

technology and error detection strategy that applies to

all three levels of user interface design.

• User interface views must be extensible by the

operations of concatenation and nesting.

• Views must be displayable either within frames or in

dialog boxes.

• Model-view communication must scale as views of

greater complexity are built.

• The error correction strategy for graphical interfaces

must itself be graphical.

• User interface controls must be easy to install and

connect with internal actions.

• Whenever possible, JPT objects must extend Java

objects so that no Java functionality is obscured or lost

by using JPT.

We will now describe the JPT design in detail.

2.1 Strings: The Key to Model-View Communication

In Java, different interface widgets deliver different types

of data. For example, a JTextField produces a String while

a JSlider produces an integer in a bounded range. Such

type differences tend to work against a recursive model for

building graphical user interfaces since it is difficult to deal

directly with the multiple types in a uniform manner.

Perhaps the most critical design decision in all of the JPT is

the realization that to support a recursive paradigm all

views must be able to transmit data information using a

single type, namely, String.

The type String is fundamental for several reasons. All of

the primitive data types may be represented using strings.

Similarly, the essential state information in primitive views

may also be represented using strings. This means that

more complicated models and views that are created by

concatenation and nesting may be represented by suitable

combinations of strings.

The key point is that we have 1-to-1 maps of models to

strings and of views to strings. This is the basis for the

model-view communication. If we have a model, we

compute its string and then use this string to set the state of

the corresponding view. In the reverse direction, if we

have a view, we compute its string and then attempt to use

the string to set the data in the model. In this direction,

input errors may occur since the user may have improperly

set the view state. These errors will be detected during the

parsing operations that set the data in the model and

appropriate recovery actions will be invoked by JPT

automatically.

Our decision to use structured String objects to capture the

essence of model-view communication is similar to the

decision made by Tim Berners-Lee [1] in his choice of a

structured text based language, HTML, as a foundation for

web communication:

“I expected all kinds of data formats to exist on the Web. I

also felt there had to be one common lingua franca that any
computer would be required to understand.”

The use of structured text as an extensible mechanism to

enable communication of diverse kinds of information is a

design technique that should be highlighted in courses on

software design.

2.2 The Stringable Interface

The Stringable interface defines the required behavior of

data model objects whose state may be encapsulated into a

String. This interface has just two methods:

String toData()

void fromData(String data)

The toData method encapsulates the state of the model into

a String. The fromData method reverses this process by

attempting to set the state of the model from the data

String. If fromData cannot set the state of the model from

the string then a ParseException is thrown. This exception

will set in motion the error handling strategies.

Because the fromData method changes the state of a

Stringable object, a Stringable object must be mutable.

This means that String itself cannot be made Stringable and

that the Java object wrappers for the primitive types also

cannot be made Stringable. This is unfortunate.

With some reluctance, we made the decision to define 9

Stringable base types corresponding to the String class and

to the 8 primitive Java types. We call these types XString,

XBoolean, ..., where the X stands for “extra”. These X-

types form the base objects for building more general

Stringable objects by recursion.

The X-types incorporate sophisticated parsing within the

fromData method so that arithmetic/boolean expressions

may be evaluated as easily as pure constants. This means

that expression evaluation is available for input of the

primitive types in all contexts: console or graphical.

To use the X-types recursively to make more complicated

Stringable data models, we have codecs (encoders and

decoders) that bundle and unbundle concatenated String

objects without loss of information.

The result of these design decisions and features is that it is

easy to create Stringable data models of arbi trary

complexity.

2.3 The Displayable Interface

The Displayable interface defines the required behavior of

input objects that will be displayed on the screen. This

interface has five methods:

String getViewState()

void setViewState(String data)

void setDefaultViewState(String data)

void reset()

void setEnabled(boolean setting)

The getViewState method encapsulates the state of the

view into a String. The setViewState method reverses this

process and sets the state of the view from the data String.

The setDefaultViewState method sets the default contents

of the view for the reset method. The setEnabled method

recursively enables or disables nested views.

The most important class that implements the Displayable

interface is the DisplayPanel. This class extends the Java

class JPanel so that all features of standard panels may be

used including layout managers and borders. The

DisplayPanel class is a container class that is intended to

hold Java components. The active components that are

added to a DisplayPanel should be Displayable. The inert

components (labels, icons) may be arbitrary.

The DisplayPanel is fundamental because it implements the

recursive strategy for building GUIs. The view state of a

DisplayPanel is defined as the concatenation of the view

states of its Displayable components using the current

codec of the panel for encoding-decoding. This means that

we have the basic tool for aggregating many smaller view

objects into one large view object.

There are three classes that extend DisplayPanel and

provide special services: Display, DisplayCollection, and

ArrayPanel. The Display class encapsulates a view

together with an optional annotation (text and/or icon) and

an optional titled border. The DisplayCollection class

specializes the DisplayPanel class by restricting the layout

to horizontal or vertical. The ArrayPanel class focuses on

the display of a dynamic array whose size may be changed

by either the user or the program. This class supports

automatic scrolling as needed.

The various classes that directly implement Displayable

provide the recursive tools for building GUI’s. We will

next focus on some of the ingredients for the GUI’s.

2.4 Displays with Type Information

If we have a Stringable model M and a Displayable view V

then we can use V to set M via the code:

M.fromData(V.getViewState());

Of course, we need to deal with a possible ParseException

that may be thrown by fromData. This means wrapping the

above line of code in a try...catch... clause and dealing with

the potential error using dialog boxes. This code sequence

follows a pattern and therefore begs to be encapsulated.

This key to this encapsulation is to have V know the class

of the object M that it must define or update.

The TypedView interface extends the Displayable interface

with the following five methods:

Class getDataType()

Stringable demandObject()

Stringable requestObject()

InputProperties getInputProperties()

void setInputProperties(InputProperties p)

If V is a TypedView then it has an associated data type that

represents the type of object it can provide input for. This

is the class returned by the method getDataType. If this

class inherits from the data type T of M then we can use the

following code to perform the input operation:

M = (T) V.demandObject();

or

M = (T) V.requestObject();

Notice that rather than modify the current object M we now

use a hidden factory method to create a replacement object

that is assigned to M via the method calls.

The two methods, demandObject and requestObject, both

handle input errors detected in the view but correspond to

different input paradigms. When using demandObject, the

method call must succeed and a valid data object must be

stored in M. When using requestObject, we permit the user

to cancel the input operation if an error is detected. In this

situation, requestObject will throw an exception to notify

the caller so that any action that depends on successful

input must be halted.

The InputProperties for a TypedView maintain a property

list that records certain information needed if the

TypedView is placed in a dialog box.

Some views such as text fields are capable of providing the

state information for more than one type of object. In this

case it is critical that the type of object be a settable

parameter. This leads to the GeneralView interface which

extends TypedView by adding one additional method to

permit the class of the associated model object to be set:

void setDataType(Class dataType)

2.5 Basic Views

We will now summarize the basic views that are currently

available in the Java Power Tools.

The most important view is the TextFieldView which is a

GeneralView directly capable of obtaining the String data

needed to initialize String objects or any of the 8 primitive

types. Technically, a TextFieldView produces one of the

nine X-types discussed above. Static methods allow direct

conversion to the built-in types. In theory, it is possible to

use a TextFieldView for a more general Stringable object.

However, it is easier to use multiple annotated text fields

than to ask the user to encode data in a single text field.

The TextAreaView is used for multiples lines of text that

may be automatically wrapped. Since it is not clear what

the application program will do with this text, the text in

this view is simply returned as an XString object.

The views that support interface widgets are as follows:

View Widget

BooleanView Check box

OptionsView Radio button group

DropdownView Dropdown text list

ColorView Color sample & chooser

SliderView Slider

2.6 Controls and Encapsulation of Actions

Just as we wish to encapsulate the creation of models and

views and their communication, we also wish to make the

creation of controls and the specification of their actions as

simple as possible. A critical design technique is to make

actions into objects using the AbstractAction class defined

by Java.

Tha AbstractAction class provides in its constructors the

ability to set a name and an icon for the action object. All

that needs to be done is to instantiate the actionPerformed

method that is initially abstract. This best way to do this is

to define the action object within a class in such a way that

the actionPerformed method calls a member function of the

class as its only task. Then the action can take full

advantage of the state of the enclosing class and all of its

methods.

Frequently in user interfaces, actions are attached to

buttons. To streamline the creation of buttons and their

associated actions, the JPT introduces an ActionsPanel

class that accepts actions. When an action is fed to an

ActionsPanel, a button with the name or icon of the action

is created automatically and a button listener is established

that will perform the action when the button is pressed. In

general, the JPT philosophy is to use various kinds of

actions to hide the widget details as much as possible.

2.7 Dialogs and Error Handling

The JPT has three levels of dialog box: JPTDialog,

InputDialog, and ErrorDialog. The JPTDialog class is a

general class for building dialogs. Its constructor requires a

TypedView that handles the user input. The InputDialog

class extends JPTDialog to provide a modal input dialog.

The internal TypedView is used to obtain the user data.

This class predefines four actions that manage the input

process: OK, Reset, Suggest, and Cancel. The ErrorDialog

class extends InputDialog and makes certain adjustments

appropriate to error handling. In general, a TypedView is

responsible for its error handling and will create an

ErrorDialog if an error is discovered by its input methods.

This encapsulated code manages the error resolution.

3. Pedagogical Applications of the JPT

In the practical world, object-oriented programming is most

valuable in large projects that make extensive use of

libraries that are adapted and extended. One pedagogical

problem in teaching OOP is that the small-scale textbook

examples are not of a size that convinces a student that

OOP is worth all of the fuss. Until a student experiences a

large project in which the value of OOP is evident there is

skepticism that the complications of defining classes and

methods are valuable.

The pedagogical value of the JPT derives from the fact that

the tools demonstrate the power of OOP by dramatically

simplifying the creation of GUI’s. A comparison of

programs written using the Java Power Tools with those

written in pure Java shows that there are enormous

reductions in both the size and the complexity of the code.

This gives a student strong motivation to ask the question:

How is this power achieved?

The one sentence answer to this question is that the Java

Power Tools utilize fundamental principles of computer

science and object-oriented design to enable GUI software

to be developed quite rapidly. Using the Java Power Tools

as a case study, one can enumerate these principles and

illustrate them with many examples. Here are the most

important ones:

• Recursion: Recursion is a technique that is honored in

the field of algorithms and is a way of life for the LISP

and Scheme communities. It is less well known that

the same principles underlie the use of container

classes in data structures and that these methods can be

adapted to building GUI’s. The JPT shows that if you

think of the ingredients of a GUI in a recursive manner

then you can achieve great power. The simple views

are the base objects for recursion and the Displayable

container objects are the means for recursive growth.

• Abstraction: The use of Java interfaces in combination

with traditional inheritance illustrates how abstraction

is maximally leveraged in an object-oriented context.

For example, all of the views in JPT inherit state and

behavior from different Java Swing widgets but

become joined together by implementing common

interfaces.

• Encapsulation: Encapsulation is the means by which

we organize our thinking and avoid the dangerous

practice of code repetition. In creating the JPT, any

time we observed a common code sequence, it was

abstracted and encapsulated. For example, the process

of adding several views to a panel is encapsulated in

DisplayCollection and the process of dynamically

changing the number of views of a given type is

encapsulated in ArrayPanel.

• Actions: The model-view-controller paradigm should

really be called the model-view-action-controller

paradigm since it as important to abstract and

encapsulate actions as it is to organize the other three

GUI ingredients. In the JPT, when we feed an action

to an ActionsPanel, we encapsulate the entire process

of defining a button, locating it in the panel, and

defining a listener that will respond to the button press

by performing the desired action.

• Factories: Object factories are used in a number of

places in the JPT. The most notable example is the

StringableFactory which can build a Stringable object

given its Java class and the encoded String that defines

its state.

In general, many specific object-oriented design patterns

[3] may be found by looking at the JPT.

Finally, we should emphasize the code quality of the JPT.

From the very beginning, we planned that the JPT would be

used not only to enable freshman education but also to

illustrate object-oriented design for upper level courses.

All code is fully provided with Java docs. Painstaking care

has been taken with the naming of classes, methods, and

variables. The code has been formatted so that it can be

displayed in a classroom at 16 point font for easy viewing

by students. Finally, after one year of development, the

team spent two months on code review and refactoring [2]

so that the quality of the code and its abstractions would be

the best that we could deliver. We believe that there is

probably no code on the planet of its size (300 pages) that

is as well suited for a case study as the Java Power Tools.

4. Conclusions

As educators, we have spent more than ten years in

designing pedagogical toolkits for Pascal, C++, and now

Java [4-8]. We firmly believe that toolkits are essential for

pedagogy since students must understand and learn to

practice the three grand themes of computer science:

algorithmics, encapsulation, and interaction.

In the older traditional world of procedural programming, it

was enough for computer science to focus on the

algorithms because these were the invariant components of

software. Now, however, since object-oriented thinking

has placed a premium on abstraction and encapsulation and

since interaction is a key aspect of all computing, it is

critical that we start students on the road to learning the

three grand themes as early as possible. When it comes

time to explore design issues in the upper level courses, we

must provide students with case studies that are serious,

elegant, powerful, and compelling. We believe that the

Java Power Tools meet this standard of excellence.

The Java Power Tools and related sample files may be

found at:

http://www.ccs.neu.edu/teaching/EdGroup/

References

[1] Berners-Lee, Tim, with Fischetti, Mark, Weaving the

Web: The Original Design and Ultimate Destiny of the

World Wide Web by Its Inventor, Harper San

Francisco, 1999, 40.

[2] Fowler, Martin, Refactoring: Improving the Design of

Existing Code, Addison-Wesley, Reading MA, 1999.

[3] Gamma, Erich, Helm, Richard, Johnson, Ralph, and

Vlissides, John, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley,

Reading, MA, 1995.

[4] Proulx, Viera K., Raab, Jeff, and Rasala, Richard,

Building Java Graphical User Interfaces in

Introductory Programming Courses, in preparation.

[5] Raab, Jeff, Rasala, Richard, and Proulx, Viera K.,

Pedagogical Power Tools for Teaching Java, SIGCSE

Bulletin, 32(3), 2000, 156-159.

[6] Rasala, Richard, Design Issues in Computer Science

Education, SIGCSE Bulletin, 29(4), 1997, 4-7.

[7] Rasala, Richard, Functions Objects, Function

Templates, and Passage by Behavior, SIGCSE

Bulletin, 29(1), 1997, 35-38.

[8] Rasala, Richard, Toolkits in First Year Computer

Science: A Pedagogical Imperative, SIGCSE Bulletin,

32(1), 2000, 185-191.

[9] Wolz, Ursula, and Koffman, Elliot, simpleIO: A Java

package for Novice Interactive and Graphics

Programming, SIGCSE Bulletin, 31(3), 1999, 139-

142.

