
Hospital Emergency Room Simulation:

Object Oriented Design Issues for CS2

Viera K. Proulx

College of Computer Science, Northeastern University

Boston, MA 02115

vkp@ccs.neu.edu

Abstract

This paper describes a project suitable for students in CS2
that combines the classical implementation of basic data
structures (priority queues, lists, arrays) with the design and
implementation of several interesting interacting classes. In
addition, students can follow up with analysis of simulation
results.

1 Introduction

The second computer science course for majors (CS2)
traditionally focused on basic algorithms and data
structures. The introduction of object oriented design and
libraries like the STL is changing the way the course is
taught. Instructors look for projects that reinforce the study
of classical algorithms and data structures and at the same
time provide an environment for presenting an object
oriented programming and design style. In addition,
instructors want the students to gain the experience in using
the standard class libraries.

We describe a CS2 project that provides a rich context for
exploring object oriented design, algorithms, data
structures, and, optionally, the analysis of empirical data.
Students use or implement several typical CS2 data
structures and algorithms, together with several classes,
each representing a different design pattern. The project is
simple enough to complete in two weeks and can easily be
run on any platform..

 __

Partial support for this work has been provided by the
National Science Foundation Leadership in Laboratory
Development , award #DUE- 9650552

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
SIGCSE’99, February, 1999.
Copyright 1999 ACM 1-58113-499-1/99/0006…$5.00.

Project Description

The project is a simulation of the flow of patients through
an emergency room of a hospital with a given number of
beds. The simulation focuses on how long it takes to treat
patients based on the severity of their problems and the
constraints on the number of beds.

The user of the simulation program can vary the discrete
probability distributions of three events: patient arrivals, the
severity of the patient’s problem, and the estimated length
of treatment in minutes. At each minute, the number of
arriving patients is generated. As each patient is admitted,
he is assigned a priority code based on the severity of the
perceived problem and is also assigned an estimated length
of treatment. The program fills all of the available beds
with the patients that have problems of the highest severity.
The remaining patients wait in the waiting room. In a
simple version, the actual length of treatment can be set to
be the same as the estimated length of treatment.
Alternately, a simple modification of the estimated time
may be introduced randomly to simulate more accurately
the real life situation.

The program collects summary statistics about the number
of patients, their arrival times, the waiting times, the
treatment time, the severity of the problem, and possibly
the bed utilization. The data is saved to a file and can be
analyzed using a spreadsheet program.

The user has a number of options. The data that specifies
the discrete probability of the three events is read from an
input file and can vary from one run of the simulation to
another. The user can also choose the number of available
beds and the length of the simulation run.

We do not include in the simulation a doctor or nurse
object. For simplicity, we assume that there is a health care
professional available to deliver treatment to any patient
that has been assigned to an available bed. By including the
doctor/nurse availability issue, the project can be extended
to a reasonably complex term project.

Students are given a fairly detailed description of the
objects and classes they should use but the final design
decisions are theirs. We believe that at this stage students
are not ready to design an entire project. They need to start

with a well thought out design to which they can
contribute.

2 Objects and Classes

We look at the classes students need to implement and
examine the design options that students have to consider.

3.1 Patients and Beds

The first object we think of represents a patient. The
member data of this class represents fairly faithfully the
timing aspects of a real world patient chart. We record the
time of arrival, the assigned priority code, the time when
the patient has been assigned a bed, and the time of
discharge.

We can discuss whether the patient's priority code should
remain static throughout the stay in the hospital or whether
changes are allowed. We then look at the implications for
design.

Next we consider the object that will group all patients
together. There are several choices here. The patients in the
waiting room seem to correspond to a priority queue.
However, once a patient has been assigned to a bed, the
patient's record is removed from the priority queue. On the
other hand, we need to represent the one-to-one (though
transient) relationship between a patient and a bed.

The patient object needs to migrate between two different
collection structures over the period of its existence and be
properly destructed at the end. One solution to this
problem is to use a reference to the patient object in both
the priority queue and when assigning a patient to a bed. A
discharged patient destructor then follows the discharge
procedure that includes reporting its statistics to a data
collection object.

The bed object itself is very simple. It only needs to know
whether a bed is available, or which patient is using the
bed. A reference to a patient object can encode both pieces
of information - a null reference indicates that the bed is
available.

Next we decide on the structure that will keep track of all
beds. We can have two lists - a list of free beds and a list of
beds in use, or we can use a vector (array-like) structure
that will need to be traversed in search of empty beds each
time. A third alternative is to have an array of beds with a
free-bed chain. The tradeoffs between the three
implementations can be discussed and students can choose
any one of these. At this point, students may also choose to
use one of the library supported structures, such as a STL
list or a STL vector, if they are working in C++.

3.2 The Discrete Probability Distribution

This is in some ways the most interesting class in this
project. We can think of it as an extension of a scaling
function class used in [3]. It encapsulates nicely the notion
of black box functional behavior.

Let us first describe the discrete probability distribution,
using as example the patient's expected length of treatment.

Suppose the expected length of treatment is 3 min for 50%
of patients, 10 min for 30% of the patients, 30 min for 15%
of patients and 60 min for 5% of the patients.

Expected length of treatment:
3/50%, 10/30%, 30/15%, 60/5%

The value of the generated event is the time (3, 10, 30, 60)
and each event is generated with the given probability. As a
new patient arrives, he is assigned one of the four values of
the expected length of treatment that have been generated
according to the stated probabilities.

The other two objects in this class generate the number of
arriving patients and the severity code for patient’s
problem. We chose not to correlate the severity code with
the expected length of treatment.. A choking patient may
require only a few minutes of treatment while taking care
of a broken arm may take more than an hour. We have used
initially the following values and their corresponding
probabilities:

Patients arriving:
0/50%, 1/25%, 2/15%, 3/10%

Severity code:
1/60%, 2/20%, 3/10%, 4/5%, 5/5%

The discrete probability distribution class needs to record
as its private member data a list of event values that will be
generated and the corresponding probabilities. The class
contains two key member functions. A constructor or an
Initialize function that will read from a given input stream
the number of distinct events and a list of pairs; event
value, event probability. It should also initialize the random
number generator as needed. The second function Generate
returns a value of the next event, using the given discrete
probability distribution. So, if the object instance
representing the treatment time distribution is called
TreatmentTime, the code in the simulation would be:

 ttime = TreatmentTime.Generate();
We could choose to replace the function Generate with the
operator (), depending on how comfortable the students and
the instructor are with the C++ syntax. (We do not have
this option in Java.) The key lesson here is that classes and
objects can encapsulate functional behavior [1]. It is clear
that during the simulation run the data representing the
discrete probability distribution remains static and is of no
interest to the simulation itself - and therefore should be
hidden.

3.3 Collecting Statistics

There are several options for collecting the results of the
simulation. The easiest is to save the results to a file. To
make this file usable for further analysis, each line should
represent the data for one discharged patient, with
individual data items separated by tabs. This format is
readable by most spreadsheet applications.

Another option is to create a dynamically growing array of
patient discharge data objects. The STL vector class is well
suited for this use.

In any case, eventually, students should be able to see and
plot the results for at least several different runs of the
simulation.

3.4 Designing Experiments

We may continue with designing a suite of simulation runs,
where all decisions - the length of the run, the number of
beds, and the three discrete probability distributions are
read from a file and several runs are done during one
execution of the program.

At this point, students work on designing the proper user
interface, use input files in a meaningful setting, and work
on the design of experiments. The driver for running
several simulations in a row that uses input files for
modifying the parameters of each run is similar to the
mechanism used when designing a test suite for a program.

3 Practical Considerations

This project can be presented to students in a number of
different ways, depending on student abilities, the time
available, and the instructor's pedagogical goals.

4.1 Presenting the Project

The most straightforward method for assigning this project
is to supply students with fairly complete details of the
design of the needed classes and leave them only a few
choices. We may for example insist that the bed collection
be implemented as a library vector class if we want them to
have the experience of using the library classes.

If the instructor wants to introduce or reinforce the use of
standard design notation (e.g. UML) the project can be
presented as an UML design document from which
students start coding. For a more challenging assignment,
students may first create a design document from the
narrative description before they proceed with coding.

Of course, one can start with a brief description of the
problem and hold several class discussions during which
the students examine the design options and decide on the
final design. It may be that, after discussing the design,
each student is allowed to make her own choices for the
implementation.

Finally, students should design the suite of test runs. They
may be asked to prepare a document similar to a test
document that will list the tests that will be conducted,
specify the input parameters, and maybe even predict the
expected outcomes.

5.2 Data Analysis

Students in CS1 and CS2 have little opportunity to examine
results of experiments and analyze data. This is a valuable
skill, used in all types of performance analysis. The data
collected in this simulation is straightforward and
understandable. Students can see what happens if more
beds are available, measure the utilization of beds, model
the busier times in the emergency room (e.g. Saturday
night) when the number of patients and the severity of their
problems increase, etc. They can look at data and compare
the behavior for the different sets of input parameters.

4 Conclusion

Simulations always provide a good environment for
illustrating interesting design issues and programming
practice [2, 4]. The attractive feature of the project
presented here is the fact that it can be easily adopted, it
illustrates the use of priority queues, and it uses a function-
like object to produce event values. Additionally, the
project provides the context and the data for simple data
analysis.

5 Acknowledgements

Partial support for this work has been provided by the
National Science Foundation Leadership in Laboratory
Development Grant, DUE-9650552, and by a grant from
Microsoft Corporation. The materials discussed in this
article may be obtained in both PC and Macintosh format
at:

http://www.ccs.neu.edu/home/vkp/index.html

The author wishes to thank Richard Rasala and Harriet Fell
for thoughtful discussions about this work.

6 References

[1] Rasala, R., Function Objects, Function Templates, and
Passage by Behavior in C++, ACM SIGCSE Bulletin
29 (1), 35-38, 1997.

[2] Proulx, V. K., Traffic Simulation: A Case Study for
Teaching Object Oriented Design, ACM SIGCSE
Bulletin 30 (1), 48-52, 1998.

[3] Fell, H. J., Proulx, V. K., and Rasala, R., Scaling: A
Design Pattern in Introductory Computer Science,
ACM SIGCSE Bulletin 30 (1), 326-330, 1998.

[4] Moser. M, Elevator Simulation Project: University of
Colorado, Boulder, Private Communication.

