
Lab 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

Priority Queue; Heapsort; Huffman Code

Goals

In the first part of this lab we will design an efficient implementation of the
Priority queue, and use it to implement the heapsort algorithm.

The second part focuses on the Huffman code for data compression.

11.1 Priority Queue: Heap and Heapsort

Our first goal in this section is to design a priority queue using the heap
algorithm. We then use this to implement the heapsort algorithm and add it
to a collection of algorithms to be evaluated.

Recall the properties of the Heap from yesterday’s lecture:

• A heap is a complete binary tree. It means that every level is filled,
except for the last level. The last level is filled from the left.

So a heap with five nodes will have the following shape:

node-1
/ \

node-2 node-3
/ \

node-4 node-5

The nodes are labeled by levels from left to right, starting at 1.

• The value in each node is greater-than or equal-to (for some compari-
son definition) the values in both of its children. So the item with the
highest value (highest priority) is at the root of the tree.

• The label of the parent of node i is i/2

• The label of the left-child of node i is 2*i

• The label of the right-child of node i is 2*i+1

1



Lab 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

If it helps you, draw the picture of the tree and manipulate stickies or
pieces of paper to see how the algorithms for inserting and deleting nodes
work.

Typically, we represent this heap as an ArrayList with the first item
(at index 0) unused (maybe null).

• Add a HeapExamples class to your project.

• Make three examples of the following heaps by defining an
ArrayList<Integer> for each case in your examples class and an
initHeaps method to add the values in the appropriate order.

To build the following heap

node-1
/ 70 \

/ \
node-2 node-3

/ 60 \ 40
/ \

node 4 node 5
35 50

we would proceed as follows:

ArrayList<Integer> myheap = new ArrayList<Integer>();

void initHeap(){
this.myheap.add(null); // the unused first item
this.myheap.add(70);
this.myheap.add(60);
this.myheap.add(40);
this.myheap.add(35);
this.myheap.add(50);

}

Here are the three heaps to define:

node-1
/ 80 \

/ \
node-2 node-3

/ 50 \ / 40
/ \ /

node-4 node-5 node-6
45 20 30

2



Lab 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

node-1
/ 50 \

/ \
node-2 node-3

/ 45 \ 40
/ \

node-4 node-5
30 20

node-1
/ 70 \

/ \
node-2 node-3
/ 45 \ / 50

/ \ /
node-4 node-5 node-6
30 20 40

• Define the class PriorityQueue<T> that will represent a heap-based
priority queue. It has two fields: an ArrayList<T> and a
Comparator<T> that determines the ordering of priorities.

• Design the method isLeaf that consumes a node label (an int) and
returns true if the node has no children (remember the number-
ings...).

• Design the method higherPriorityChild that consumes the in-
dex of a node that is not a leaf and produces the index of its child
with the highest priority.

Note: If the node has only one child, then this will be the one with the
higher priority, of course.

• Design the method insert that inserts a new node into the heap.

Here is what we went over in lecture yesterday:

– Insert the new item at the next position in the bottom level (the
end of the list representation). Say, this is position k.

– Upheap from k:
While (k > 1 and heap(k) > heap(k/2)) {

swap heap(k) and heap(k/2)
set k to k/2

}

3



Lab 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

• Design the method remove that removes the node with the highest
priority from the heap.

Here is what we went over in lecture yesterday:

– save the root item as a temporary

– move the last item into the root position

– Downheap from k = 1:
While (k is not a leaf) {

find ck the node with the larger child of the node k
if heap(k) < heap(ck) {

swap heap(k) and heap(ck)
set k to ck }

else stop
}

11.2 Huffman Coding

Imagine that we want to define the most efficient way for encoding the
letters of alphabet using only sequences of bits (values 0 and 1). David
Huffman gave us some suggestions.

We start by looking at the text we want to encode. Assume it is repre-
sented as a single String. For example, the text may be the following 45
characters:

In the midst of the word he was trying to say
....x....x....x....x....x....x....x....x....x

Or, you can use a smaller (20 character) String from a popular song:

oh, say, can you see
....x....x....x....x

1. Our first task is to produce a histogram that records the frequencies
of each character (including space) occurs in the given String.

We decided to use the following the data representation for the his-
togram data, so that you can easily tell how often each letter appears
in the text. Our histogram is then an ArrayList<LF>.

4



Lab 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

Note: This is very similar the the Shakespeare problem in your cur-
rent homework assignment, though we use the primitive Java type
char to represent individual letters. Character literals are enclosed
in single quotes: e.g., ’a’ or ’Z’.

+------------+
| LF |
+------------+
| char c |
| int occurs |
+------------+

Make an example of the histogram you would get from the shorter
text given previously.

2. Design the method computeHisto that computes the histogram for
a given String of text. String contains a helpful method
charAt(int) that returns the character from the string at the given
index.

Feel free to implement this method using your favorite form of Java
loop... we suggest for-each (ask your friendly TA/Tutor if you need
help).

3. Given the letter frequencies, we can build a binary-tree that repre-
sents the optimal encoding for each letter in our String. We first
show examples of the trees that represent such encodings.

The KeyTree class hierarchy is defined as:
+-------------------------+
| +--------------------+ |
v v | |

+----------+ | |
| KeyTree | | |
+----------+ | |
| int freq | | |
+----+-----+ | |

/ \ | |
+---+ | |
| | |

+---+-----------+ | |
| | | |

+--------+ +---------------+ | |
| Leaf | | Node | | |
+--------+ +---------------+ | |
| char c | | KeyTree left |--+ |
+--------+ | KeyTree right |----+

+---------------+

5



Lab 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

The code that defines these classes is given below:
// Represents a Huffman Tree
abstract class KeyTree{

// the frequency of this character or collection
int freq;

KeyTree(int freq){
this.freq = freq;

}
}

// Represents a Single Character
class Leaf extends KeyTree{

char c;

Leaf(char c, int freq){
super(freq);
this.c = c;

}
}
// Represents a split in the KeyTree
class Node extends KeyTree{

KeyTree left;
KeyTree right;

Node(KeyTree left, KeyTree right){
super(left.freq + right.freq);
this.left = left;
this.right = right;

}
}

Make examples of the following two trees. The first one represents
the optimal encoding for the String cat at bat, the second one rep-
resents the optimal encoding for the String here there (the number
next to the each Leaf is it’s frequency):

10 10
/ \ / \
6 4 4 6

/ \ / \ / \ / \
a3 t3 2 sp2 h2 r2 e4 2

/ \ / \
c1 b1 t1 sp1

4. To construct our encoding we can save the histogram data in a pri-
ority queue of KeyTrees, where the highest priority item is the one
with the lowest frequency. This means we first need a
Comparator<KeyTree> that compares using freq.

6



Lab 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

Design the comparator ByFreq.

5. The encoding for the character ’t’ in our first example is the String
"01", but in the second example it is "110". Notice that the numbers
0 and 1 tell us whether we should choose the left or right tree.

Design the method findPath for the KeyTree classes that
consumes a character and produces a String representing this en-
coding, ending with the given character.

So, for the input ’t’ the first tree would produce "01t", and the
second tree would produce "110t".

6. Design the method encode that consumes a KeyTree and a String
that consists only of the characters encoded in the given KeyTree
and produces the String of 0s and 1s that represents the encoding
of the given String.

Note: In a real application each character 0 or 1 in the encoding would
be represented as a single bit. Considering that the encoding of every
character in a String usually requires 8 bits, this is typically a serious
improvement.

7. Design the method nextChar for the KeyTree classes that
consumes a String of 0s and 1s and produces the char that the
encoding represents. The method should throw an exception if the
given String is not a valid encoding.

So, in the first tree the input "01", would produce ’t’, in the second
tree the input "110" would produce ’t’.

8. Design the method decode for the KeyTree classes that consumes a
String that represents an encoding of a sequence of characters and
produces a String that the encoding represents. The method should
throw an exception if the given String is not a valid encoding.

So, in the first tree the input "1000001", would produce the "cat",
and in the second tree "1100010" would produce "the". The sec-
ond tree would fail for the "001".

9. Design the method buildTree that consumes a priority queue you
built and produces the KeyTree that represents the encoding. It
works as follows:

• if the priority queue is empty, no tree can be built and we should
throw an exception.

7



Lab 11 c©2011 Felleisen, Proulx, Chadwick, et. al.

• if the size of the priority queue is 1, it contains a single KeyTree,
so the tree is removed and returned.

• otherwise, the method removes the two KeyTrees with the
highest priority (lowest frequencies) and adds a new KeyTree
to the queue that has the removed items as its left and right
subtrees.

You can use your heap implementation from earlier, or you can look
up the documentation for the methods for the Java PriorityQueue
in the Java Collections Library.

The method buildPQ shown below can be used to build the initial
priority queue (of Leafs) from the LF data, though you can write a
similar function if you use your Heap implementation.

// insert the frequency data into a priority queue
// produce an priority queue of LF data
public PriorityQueue<KeyTree> buildPQ(ArrayList<LF> lfList){

PriorityQueue<KeyTree> pq =
new PriorityQueue<KeyTree>(lfList.size(), new ByFreq());

for(LF lf : lfList){
pq.offer(new Leaf(lf.c, ch.occurs));

}
return pq;

}

8


