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Preface

This book serves as an introduction to the expanding theory of online
convex optimization. It was written as an advanced text to serve as
a basis for a graduate course, and/or as a reference to the researcher
diving into this fascinating world at the intersection of optimization
and machine learning.

Such a course was given at the Technion in the years 2010-2014
with slight variations from year to year, and later at Princeton Univer-
sity in the years 2015-2016. The core material in these courses is fully
covered in this book, along with exercises that allow the students to
complete parts of proofs, or that were found illuminating and thought-
provoking. Most of the material is given with examples of applications,
which are interlaced throughout different topics. These include pre-
diction from expert advice, portfolio selection, matrix completion and
recommendation systems, SVM training and more.

Our hope is that this compendium of material and exercises will be
useful to you; the educator and the researcher.

Placing this book in the machine learning library

The broad field of machine learning broadly speaking, as in the sub-
disciplines of online learning, boosting, regret minimization in games,
universal prediction and other related topics, have seen a plethora of
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introductory texts in recent years. With this note we can hardly do
justice to all, but perhaps point to the location of this book in the
readers’ virtual library.

The neighboring book, which served as an inspiration to the current
manuscript, and indeed an inspiration to the entire field of learning
in games, is the wonderful text of Cesa-Bianchi and Lugosi (29). On
the other side, there are the numerous introductory essays to convex
optimization and convex analysis, to name a few (23} [78} [76; [77; 21}, [02]).
The more broad texts on machine learning are too numerous to state
hereby, but are definitely not far.

The primary purpose of this manuscript is to serve as an educa-
tional textbook for a dedicated course on online convex optimization
and the convex optimization approach to machine learning. Online con-
vex optimization has already had enough impact to appear in several
surveys and introductory texts, such as (53} 97; 85} [87)). We hope this
compilation of material and exercises will further enrich the literature.

Book’s structure

This book is intended to serve as a reference for a self-contained course
for the educated graduate student in computer science/electrical engi-
neering/operations research /statistics and related fields. As such, its or-
ganization follows the structure of the course “decision analysis” taught
at the Technion.

Fach chapter should take one or two weeks of classes, depending
on the depth and breadth of the intended course. The first chapter is
designed to be a “teaser” for the field, and thus less rigorous than the
rest of the book.

Roughly speaking, the book can be thought of as two units. The
first, from chapter [2] through [5] contains the basic definitions, frame-
work and core algorithms for online convex optimization. The rest of
the book deals with more advanced algorithms, more difficult settings
and relationships to well-known machine learning paradigms.
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Abstract

This manuscript portrays optimization as a process. In many practical
applications the environment is so complex that it is infeasible to lay
out a comprehensive theoretical model and use classical algorithmic
theory and mathematical optimization. It is necessary as well as ben-
eficial to take a robust approach, by applying an optimization method
that learns as one goes along, learning from experience as more aspects
of the problem are observed. This view of optimization as a process
has become prominent in varied fields and has led to some spectacular
success in modeling and systems that are now part of our daily lives.

E. Hazan . Introduction to Online Convez Optimization. Foundations and Trends®
in Optimization, vol. 2, no. 3-4, pp. 157-325, 2015.
DOI: 10.1561,/2400000013.






1

Introduction

This manuscript concerns the view of optimization as a process. In
many practical applications the environment is so complex that it is
infeasible to lay out a comprehensive theoretical model and use classical
algorithmic theory and mathematical optimization. It is necessary as
well as beneficial to take a robust approach, by applying an optimiza-
tion method that learns as one goes along, learning from experience as
more aspects of the problem are observed. This view of optimization as
a process has become prominent in various fields and led to spectacular
successes in modeling and systems that are now part of our daily lives.

The growing literature of machine learning, statistics, decision sci-
ence and mathematical optimization blur the classical distinctions be-
tween deterministic modeling, stochastic modeling and optimization
methodology. We continue this trend in this book, studying a promi-
nent optimization framework whose precise location in the mathemat-
ical sciences is unclear: the framework of online convexr optimization,
which was first defined in the machine learning literature (see bibliogra-
phy at the end of this chapter). The metric of success is borrowed from
game theory, and the framework is closely tied to statistical learning
theory and convex optimization.
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We embrace these fruitful connections and, on purpose, do not try
to fit any particular jargon. Rather, this book will start with actual
problems that can be modeled and solved via online convex optimiza-
tion. We will proceed to present rigorous definitions, background, and
algorithms. Throughout, we provide connections to the literature in
other fields. It is our hope that you, the reader, will contribute to our
understanding of these connections from your domain of expertise, and
expand the growing literature on this fascinating subject.

1.1 The online convex optimization model

In online convex optimization, an online player iteratively makes deci-
sions. At the time of each decision, the outcomes associated with the
choices are unknown to the player.

After committing to a decision, the decision maker suffers a loss:
every possible decision incurs a (possibly different) loss. These losses
are unknown to the decision maker beforehand. The losses can be ad-
versarially chosen, and even depend on the action taken by the decision
maker.

Already at this point, several restrictions are necessary for this
framework to make any sense at all:

e The losses determined by an adversary should not be allowed to
be unbounded. Otherwise the adversary could keep decreasing
the scale of the loss at each step, and never allow the algorithm
to recover from the loss of the first step. Thus we assume the
losses lie in some bounded region.

e The decision set must be somehow bounded and/or structured,
though not necessarily finite.

To see why this is necessary, consider decision making with an
infinite set of possible decisions. An adversary can assign high
loss to all the strategies chosen by the player indefinitely, while
setting apart some strategies with zero loss. This precludes any
meaningful performance metric.
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Surprisingly, interesting statements and algorithms can be derived
with not much more than these two restrictions. The Online Convex
Optimization (OCO) framework models the decision set as a convex set
in Euclidean space denoted IC C R™. The costs are modeled as bounded
convex functions over K.

The OCO framework can be seen as a structured repeated game.
The protocol of this learning framework is as follows:

At iteration t, the online player chooses x; € K . After the player
has committed to this choice, a convex cost function f; € F : K — R
is revealed. Here F is the bounded family of cost functions available to
the adversary. The cost incurred by the online player is f;(x;), the value
of the cost function for the choice x;. Let T' denote the total number
of game iterations.

What would make an algorithm a good OCO algorithm? As the
framework is game-theoretic and adversarial in nature, the appropriate
performance metric also comes from game theory: define the regret of
the decision maker to be the difference between the total cost she has
incurred and that of the best fixed decision in hindsight. In OCO we
are usually interested in an upper bound on the worst case regret of an
algorithm.

Let A be an algorithm for OCO, which maps a certain game history
to a decision in the decision set. We formally define the regret of A after
T iterations as:

T T
regret = su X¢) — min X 1.1
grety(A) {fl’mvfl:}g{; fe(xt) Xe,ct;ft( )} (1.1)

Intuitively, an algorithm performs well if its regret is sublinear as
a function of T, i.e. regrety(A) = o(T), since this implies that on the
average the algorithm performs as well as the best fixed strategy in
hindsight.

The running time of an algorithm for OCO is defined to be the
worst-case expected time to produce x;, for an iteration ¢ € [T]E| inaT-
iteration repeated game. Typically, the running time will depend on n
(the dimensionality of the decision set K), T' (the total number of game

"Here and henceforth we denote by [n] the set of integers {1,...,n}.



6 Introduction

iterations), and the parameters of the cost functions and underlying
convex set.

1.2 Examples of problems that can be modeled via OCO

Perhaps the main reason that OCO has become a leading online learn-
ing framework in recent years is its powerful modeling capability: prob-
lems from diverse domains such as online routing, ad selection for search
engines and spam filtering can all be modeled as special cases. In this
section, we briefly survey a few special cases and how they fit into the
OCO framework.

Prediction from expert advice

Perhaps the most well known problem in prediction theory is the so-
called “experts problem”. The decision maker has to choose among the
advice of n given experts. After making her choice, a loss between
zero and one is incurred. This scenario is repeated iteratively, and at
each iteration the costs of the various experts are arbitrary (possibly
even adversarial, trying to mislead the decision maker). The goal of the
decision maker is to do as well as the best expert in hindsight.

The online convex optimization problem captures this problem as
a special case: the set of decisions is the set of all distributions over
n elements (experts), i.e., the n-dimensional simplex £ = A, = {x €
R™, >,x; =1, x; > 0}. Let the cost of the i’th expert at iteration
t be g(i), and let g; be the cost vector of all n experts. Then the
cost function is the expected cost of choosing an expert according to
distribution x, and is given by the linear function f;(x) = g, x.

Thus, prediction from expert advice is a special case of OCO in
which the decision set is the simplex and the cost functions are linear
and bounded, in the ¢, norm, to be at most one. The bound on the
cost functions is derived from the bound on the elements of the cost
vector g;.

The fundamental importance of the experts problem in machine
learning warrants special attention, and we shall return to it and ana-
lyze it in detail at the end of this chapter.
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Online spam filtering

Consider an online spam-filtering system. Repeatedly, emails arrive into
the system and are classified as spam/valid. Obviously such a system
has to cope with adversarially generated data and dynamically change
with the varying input—a hallmark of the OCO model.

The linear variant of this model is captured by representing the
emails as vectors according to the “bag-of-words” representation. Each
email is represented as a vector x € R%, where d is the number of words
in the dictionary. The entries of this vector are all zero, except for those
coordinates that correspond to words appearing in the email, which are
assigned the value one.

To predict whether an email is spam, we learn a filter, for example
a vector x € R%. Usually a bound on the Euclidean norm of this vector
is decided upon a priori, and is a parameter of great importance in
practice.

Classification of an email a € R? by a filter x € R? is given by the
sign of the inner product between these two vectors, i.e., § = sign(x, a)
(with, for example, +1 meaning valid and —1 meaning spam).

In the OCO model of online spam filtering, the decision set is taken
to be the set of all such norm-bounded linear filters, i.e., the Euclidean
ball of a certain radius. The cost functions are determined according to
a stream of incoming emails arriving into the system, and their labels
(which may be known by the system, partially known, or not known
at all). Let (a,y) be an email/label pair. Then the corresponding cost
function over filters is given by f(x) = ¢(,y). Here ¢ is the classifi-
cation given by the filter x, y is the true label, and £ is a convex loss
function, for example, the square loss £(3,%) = (i — y).

Online shortest paths

In the online shortest path problem, the decision maker is given a
directed graph G = (V, E) and a source-sink pair u,v € V. At each
iteration ¢ € [T, the decision maker chooses a path p; € P, ,, where
Puw C EWVlis the set of all u-v-paths in the graph. The adversary
independently chooses weights (lengths) on the edges of the graph,
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given by a function from the edges to the real numbers w; : £ — R,
which can be represented as a vector w; € R™, where m = |E|. The
decision maker suffers and observes a loss, which is the weighted length
of the chosen path > ., wi(e).

The discrete description of this problem as an experts problem,
where we have an expert for each path, presents an efficiency challenge.
There are potentially exponentially many paths in terms of the graph
representation size.

Alternatively, the online shortest path problem can be cast in the
online convex optimization framework as follows. Recall the standard
description of the set of all distributions over paths (flows) in a graph as
a convex set in R™, with O(m + |V|) constraints (Figure [1.1)). Denote
this flow polytope by K. The expected cost of a given flow x € K
(distribution over paths) is then a linear function, given by fi(x) =
w/ x, where, as defined above, w(e) is the length of the edge ¢ € E.
This inherently succinct formulation leads to computationally efficient

algorithms.
Z X, =1= Z Xe flow value is one
e=(u,w),wevV e=(w,v),weV
Vw € V\ {u,v} Z Xe = Z Xe flow conservation
e=(v,z)eE e=(z,v)EE
Vee F 0<x.,<1 capacity constraints

Figure 1.1: Linear equalities and inequalities that define the flow polytope, which
is the convex hull of all u-v paths.

Portfolio selection

In this section we consider a portfolio selection model that does not
make any statistical assumptions about the stock market (as opposed
to the standard geometric Brownian motion model for stock prices),
and is called the “universal portfolio selection” model.
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At each iteration t € [T], the decision maker chooses a distribution
of her wealth over n assets x; € A,. The adversary independently
chooses market returns for the assets, i.e., a vector r; € R™ with strictly
positive entries such that each coordinate r(7) is the price ratio for the
1’th asset between the iterations ¢ and ¢ + 1. The ratio between the
wealth of the investor at iterations ¢ 4+ 1 and t is r/ x;, and hence
the gain in this setting is defined to be the logarithm of this change
ratio in wealth log(r, x;). Notice that since x; is the distribution of the
investor’s wealth, even if x;,1 = x;, the investor may still need to trade
to adjust for price changes.

The goal of regret minimization, which in this case corresponds to
minimizing the difference maxyreca, 37 log(r) x*) — 31, log(r/ x¢),
has an intuitive interpretation. The first term is the logarithm of the
wealth accumulated by the best possible in-hindsight distribution x*.
Since this distribution is fixed, it corresponds to a strategy of rebal-
ancing the position after every trading period, and hence, is called a
constant rebalanced portfolio. The second term is the logarithm of the
wealth accumulated by the online decision maker. Hence regret mini-
mization corresponds to maximizing the ratio of the investor’s wealth
to the wealth of the best benchmark from a pool of investing strategies.

A universal portfolio selection algorithm is defined to be one that,
in this setting, attains regret converging to zero. Such an algorithm,
albeit requiring exponential time, was first described by Cover (see
bibliographic notes at the end of this chapter). The online convex op-
timization framework has given rise to much more efficient algorithms
based on Newton’s method. We shall return to study these in detail in
Chapter

Matrix completion and recommendation systems

The prevalence of large-scale media delivery systems such as the Netflix
online video library, Spotify music service and many others, give rise
to very large scale recommendation systems. One of the most popular
and successful models for automated recommendation is the matrix
completion model.
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In this mathematical model, recommendations are thought of as
composing a matrix. The customers are represented by the rows, the
different media are the columns, and at the entry corresponding to a
particular user/media pair we have a value scoring the preference of
the user for that particular media.

For example, for the case of binary recommendations for music,
we have a matrix X € {0,1}"*™ where n is the number of persons
considered, m is the number of songs in our library, and 0/1 signifies
dislike/like respectively:

0, person ¢ dislikes song j
Xij =
1, person ¢ likes song j

In the online setting, for each iteration the decision maker outputs

XM is a subset of all

a preference matrix X; € K, where £ C {0,1
possible zero/one matrices. An adversary then chooses a user/song pair
(it, j¢) along with a “real” preference for this pair y; € {0,1}. Thus, the
loss experienced by the decision maker can be described by the convex

loss function,
ft(X) = (Xit,jt - Z/t)2~

The natural comparator in this scenario is a low-rank matrix, which
corresponds to the intuitive assumption that preference is determined
by few unknown factors. Regret with respect to this comparator means
performing, on the average, as few preference-prediction errors as the
best low-rank matrix.

We return to this problem and explore efficient algorithms for it in
Chapter [7}

1.3 A gentle start: learning from expert advice

Consider the following fundamental iterative decision making problem:

At each time step t = 1,2,...,T, the decision maker faces a choice
between two actions A or B (i.e., buy or sell a certain stock). The
decision maker has assistance in the form of N “experts” that offer
their advice. After a choice between the two actions has been made,
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the decision maker receives feedback in the form of a loss associated
with each decision. For simplicity one of the actions receives a loss of
zero (i.e., the “correct” decision) and the other a loss of one.

We make the following elementary observations:

1. A decision maker that chooses an action uniformly at random
each iteration, trivially attains a loss of % and is “correct” 50%
of the time.

2. In terms of the number of mistakes, no algorithm can do better
in the worst case! In a later exercise, we will devise a random-
ized setting in which the expected number of mistakes of any
algorithm is at least %

We are thus motivated to consider a relative performance metric:
can the decision maker make as few mistakes as the best expert in
hindsight? The next theorem shows that the answer in the worst case
is negative for a deterministic decision maker.

Theorem 1.1. Let L < % denote the number of mistakes made by
the best expert in hindsight. Then there does not exist a deterministic
algorithm that can guarantee less than 2L mistakes.

Proof. Assume that there are only two experts and one always chooses
option A while the other always chooses option B. Consider the setting
in which an adversary always chooses the opposite of our prediction (she
can do so, since our algorithm is deterministic). Then, the total number
of mistakes the algorithm makes is T'. However, the best expert makes
no more than % mistakes (at every iteration exactly one of the two
experts is mistaken). Therefore, there is no algorithm that can always
guarantee less than 2L mistakes.

O

This observation motivates the design of random decision making
algorithms, and indeed, the OCO framework gracefully models deci-
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sions on a continuous probability space. Henceforth we prove Lemmas
and [I.4] that show the following:

Theorem 1.2. Let ¢ € (0, %) Suppose the best expert makes L mis-
takes. Then:

1. There is an efficient deterministic algorithm that can guarantee
less than 2(1+¢)L + %TgN mistakes;

2. There is an efficient randomized algorithm for which the expected

number of mistakes is at most (1 +¢)L + @.

1.3.1 The weighted majority algorithm

Simple observations: The weighted majority (WM) algorithm is in-
tuitive to describe: each expert ¢ is assigned a weight W, (i) at every
iteration ¢. Initially, we set Wy (i) = 1 for all experts i € [N]. For all
t € [T] let Si(A), Si(B) C [N] be the set of experts that choose A (and
respectively B) at time ¢. Define,

Wi(A) = Y Wi(i) Wi(B) = > Wi(i)

1€S5¢(A) 1€5¢(B)

and predict according to

A it Wi(A) > Wi(B)
a+ =
! B otherwise.

Next, update the weights W;(i) as follows:

Wi (i) if expert i was correct

Wi1(i) = {

Wi(i)(1 —€) if expert i was wrong

where ¢ is a parameter of the algorithm that will affect its performance.
This concludes the description of the WM algorithm. We proceed to
bound the number of mistakes it makes.
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Lemma 1.3. Denote by M; the number of mistakes the algorithm
makes until time ¢, and by M;(i) the number of mistakes made by
expert ¢ until time ¢. Then, for any expert ¢ € [N] we have

. 2log N
My < 2(1 + €)My (i) + f :

We can optimize € to minimize the above bound. The expression on the
right hand side is of the form f(x) = az+b/z, that reaches its minimum

at © = y/b/a. Therefore the bound is minimized at ¢* = /log N/M (7).

Using this optimal value of €, we get that for the best expert ¢*

Mr < QMT(Z*) + O (\/MT(i*) IOgN) .

Of course, this value of £* cannot be used in advance since we do not
know which expert is the best one ahead of time (and therefore we
do not know the value of My (i*)). However, we shall see later on that
the same asymptotic bound can be obtained even without this prior
knowledge.

Let us now prove Lemma [I.3]

Proof. Let ® = "N W, (4) for all ¢ € [T], and note that ®; = N.
Notice that ®;11 < ®;. However, on iterations in which the WM
algorithm erred, we have

&
P < Oy(1 - 5)7

the reason being that experts with at least half of total weight were
wrong (else WM would not have erred), and therefore

1 1 €
) < —P;(1 — —®; = Oy(1 — ).
41 = 5 ¢( 8)+2 t ( 2)

From both observations,

@y < @11 5)M = N(1- )M

On the other hand, by definition we have for any expert ¢ that

Wr(i) = (1 —e)Mr®,
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Since the value of Wy (i) is always less than the sum of all weights &,
we conclude that

(1 — )M — Wip(i) < by < N(1 — %)MT.

Taking the logarithm of both sides we get
Mr(i)log(1 — €) < log N + My log (1 — %)~
Next, we use the approximations

1
—z—z22<log(l—2z) < —=x 0<l’<§,

which follow from the Taylor series of the logarithm function, to obtain
that

—M7(i)(e +€?) < log N — MT%,

and the lemma follows. O

1.3.2 Randomized weighted majority

In the randomized version of the WM algorithm, denoted RWM, we
choose expert i w.p. p:(i) = Wt(i)/Z?]:l Wi(j) at time ¢.

Lemma 1.4. Let M; denote the number of mistakes made by RWM

until iteration ¢. Then, for any expert i € [N] we have

E[M7] < (1+¢)Mp(i) + loiN.

The proof of this lemma is very similar to the previous one, where the
factor of two is saved by the use of randomness:

Proof. As before, let ®; = SN W, (i) for all t € [T], and note that
®, = N. Let my = My — M;_1 be the indicator variable that equals
one if the RWM algorithm makes a mistake on iteration ¢. Let m(7)
equal one if the 7’th expert makes a mistake on iteration ¢ and zero
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otherwise. Inspecting the sum of the weights:

D1 = ZWt(i)(l — emy(i))

(- nim) ) =
- J

= ®,(1 — e E[my))

< ¢, Bl I+ <e”

On the other hand, by definition we have for any expert ¢ that
Wr(i) = (1 —)Mr®

Since the value of Wy (i) is always less than the sum of all weights @7,
we conclude that

(1 —e)Mr() = Wy (i) < by < Ne = EMr],
Taking the logarithm of both sides we get
Mr(i)log(l —¢) <log N — e E[M7]

Next, we use the approximation

1
—z—2? <log(l—x) < —x , 0<£C<§
to obtain
— Mgz (i) (e + €2) < log N — e E[M7],
and the lemma follows. O
1.3.3 Hedge

The RWM algorithm is in fact more general: instead of considering
a discrete number of mistakes, we can consider measuring the perfor-
mance of an expert by a non-negative real number ¢;(7), which we refer
to as the loss of the expert ¢ at iteration t. The randomized weighted
majority algorithm guarantees that a decision maker following its ad-
vice will incur an average expected loss approaching that of the best
expert in hindsight.
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Algorithm 1 Hedge
. Initialize: Vi € [N], Wi(i) =1

—_

2: fort=1to T do

3. Pick i ~p Wy, i.e., iy = i with probability x;(i) = ot
t ~R Wt t b y Xt(i) Zth(J)

4:  Incur loss £;(it).

5. Update weights Wy 1(i) = Wy(i)e 60

6: end for

Historically, this was observed by a different and closely related
algorithm called Hedge, whose total loss bound will be of interest to us
later on in the book.

Henceforth, denote in vector notation the expected loss of the al-
gorithm by

N
E[ﬁt(lt)] = th(l)gt(l) = XtTft
=1

Theorem 1.5. Let 2 denote the N-dimensional vector of square losses,
i.e., 2(i) = £,(i)?, let € > 0, and assume all losses to be non-negative.
The Hedge algorithm satisfies for any expert i* € [IV]:

T T T
ijﬁt < Zﬁt(i*) —i—EZXtTEf +
t=1 t=1 =1

Proof. As before, let ® = SN, W;(i) for all t € [T], and note that
d; = N.

Inspecting the sum of weights:

Qi1q =3 Wi(i)e 0@

= Py 3 xy(i)e 0 x¢(1) = ZW%)(J')
J

< Py xe (1) (1 — ely(i) + €24(i)?))  for x>0,
e T <1 —x+ a2

log N
€

== (I)t(l — €X;|—€t + 82X;I—£3)
< (I,tefsxtTZtJrEthTﬁf. 1+x<e®
On the other hand, by definition, for expert i* we have that
Wr(i) =e° PDHINGY
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Since the value of Wp(i*) is always less than the sum of all weights @y,

we conclude that

WT(i*) < Op < Ne ¢ Zt X;rét"'EQ Zt XIE?_
Taking the logarithm of both sides we get

T T T
—e> 4(i*) <logN —e > x/ b+ > x/ 0}
t=1 =1 t=1

and the theorem follows by simplifying. O
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1.4 Exercises

1. (Attributed to Claude Shannon)
Construct market returns over two stocks for which the wealth ac-
cumulated over any single stock decreases exponentially, whereas

the best constant rebalanced portfolio increases wealth exponen-

tially. More precisely, construct two sequences of numbers in the
range (0, 00), that represent returns, such that:

(a)

Investing in any of the individual stocks results in expo-
nential decrease in wealth. This means that the product of
the prefix of numbers in each of these sequences decreases
exponentially.

Investing evenly on the two assets and rebalancing after ev-
ery iteration increases wealth exponentially.

Consider the experts problem in which the payoffs are be-
tween zero and a positive real number G > 0. Give an algo-
rithm that attains expected payoff lower bounded by:

T T

> E[l(ir)] > max Y 4y(i*) — cy/Tlog N
t=1 rEINT

for the best constant ¢ you can (the constant ¢ should be

independent of the number of game iterations 7', and the

number of experts n. Assume that 7" is known in advance).

Suppose the upper bound G is not known in advance. Give
an algorithm whose performance is asymptotically as good
as your algorithm in part (a), up to an additive and/or mul-
tiplicative constant which is independent of T, n,G. Prove
your claim.

3. Consider the experts problem in which the payoffs can be negative

and are real numbers in the range [—1, 1]. Give an algorithm with
regret guarantee of O(y/7T logn) and prove your claim.
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1.5 Bibliographic remarks

The OCO model was first defined by Zinkevich (I10) and has since
become widely influential in the learning community and significantly
extended since (see thesis and surveys (52} 53}, [97)).

The problem of prediction from expert advice and the Weighted
Majority algorithm were devised in (71; [73]). This seminal work was
one of the first uses of the multiplicative updates method—a ubiquitous
meta-algorithm in computation and learning, see the survey (L) for
more details. The Hedge algorithm was introduced in (44).

The Universal Portfolios model was put forth in (32), and is one
of the first examples of a worst-case online learning model. Cover gave
an optimal-regret algorithm for universal portfolio selection that runs
in exponential time. A polynomial time algorithm was given in (62)),
which was further sped up in (7;54). Numerous extensions to the model
also appeared in the literature, including addition of transaction costs
(20) and relation to the Geometric Brownian Motion model for stock
prices (56]).

In their influential paper, Awerbuch and Kleinberg (14) put forth
the application of OCO to online routing. A great deal of work has been
devoted since then to improve the initial bounds, and generalize it into
a complete framework for decision making with limited feedback. This
framework is an extension of OCO, called Bandit Convex Optimization
(BCO). We defer further bibliographic remarks to chapter [6] which is
devoted to the BCO framework.
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Basic concepts in convex optimization

In this chapter we give a gentle introduction to convex optimization
and present some basic algorithms for solving convex mathematical
programs. Although offline convex optimization is not our main topic,
it is useful to recall the basic definitions and results before we move on
to OCO. This will help in assessing the advantages and limitations of
OCO. Furthermore, we describe some tools that will be our bread-and-
butter later on.

The material in this chapter is far from being new. A broad and
significantly more detailed literature exists, and the reader is deferred
to the bibliography at the end of this chapter for references. We give
here only the most elementary analysis, and focus on the techniques
that will be of use to us later on.

2.1 Basic definitions and setup

The goal in this chapter is to minimize a continuous and convex func-
tion over a convex subset of Euclidean space. Henceforth, let L C R?
be a bounded convex and compact set in Euclidean space. We denote

21
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by D an upper bound on the diameter of K:
vx,y € K, ||x—y| < D.

A set K is convex if for any x,y € I, all the points on the line segment
connecting x and y also belong to IC, i.e.,

Va € [0,1], ax+ (1 — a)y € K.
A function f: K — R is convex if for any x,y € K
Va € [0,1], f((1—-a)x+ay) < (1-a)f(x)+af(y)

Equivalently, if f is differentiable, that is, its gradient V f(x) exists for
all x € K, then it is convex if and only if Vx,y €

F¥) = f(x) + VI(x) ' (y —x).

For convex and non-differentiable functions f, the subgradient at x is
defined to be any member of the set of vectors {V f(x)} that satisfies
the above for all y € K.

We denote by G > 0 an upper bound on the norm of the subgradi-
ents of f over K, i.e., |V f(x)| < G for all x € K. Such an upper bound
implies that the function f is Lipschitz continuous with parameter G,
that is, for all x,y € K

fx) = f(I < Glx—yl.

The optimization and machine learning literature studies special
types of convex functions that admit useful properties, which in turn
allow for more efficient optimization. Notably, we say that a function
is a-strongly convex if

F(9) 2 () + V)T (y = %)+ 5y = x|*

A function is S-smooth if

F(¥) < F6) + Y700y ) + D ly — x|

The latter condition is equivalent to a Lipschitz condition over the
gradients, i.e.,

IVF(x) = Vi)l < Blx -yl
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If the function is twice differentiable and admits a second deriva-
tive, known as a Hessian for a function of several variables, the above
conditions are equivalent to the following condition on the Hessian,
denoted V2 f(x):

ol 5 V2f(x) < B,

where A < B if the matrix B — A is positive semidefinite.

When the function f is both a-strongly convex and [-smooth, we
say that it is y-well-conditioned where v is the ratio between strong
convexity and smoothness, also called the condition number of f

_ %<

Y=7>
g
2.1.1 Projections onto convex sets

In the following algorithms we shall make use of a projection operation
onto a convex set, which is defined as the closest point inside the convex
set to a given point. Formally,

II(y) £ argmin ||x — y]|.
K xeX

When clear from the context, we shall remove the K subscript. It is
left as an exercise to the reader to prove that the projection of a given
point over a compact convex set exists and is unique.

The computational complexity of projections is a subtle issue that
depends much on the characterization of I itself. Most generally, IC can
be represented by a membership oracle—an efficient procedure that is
capable of deciding whether a given x belongs to I or not. In this
case, projections can be computed in polynomial time. In certain spe-
cial cases, projections can be computed very efficiently in near-linear
time. The computational cost of projections, as well as optimization
algorithms that avoid them altogether, is discussed in chapter [7]

A crucial property of projections that we shall make extensive use
of is the Pythagorean theorem, which we state here for completeness:

Theorem 2.1 (Pythagoras, circa 500 BC). Let K C R? be a convex set,
y € R? and x = IIx(y). Then for any z € K we have

ly —zll = [[x — 2.
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Figure 2.1: Pythagorean theorem.

We note that there exists a more general version of the Pythagorean
theorem. The above theorem and the definition of projections are true
and valid not only for Euclidean norms, but for any norm. In addition,
projections according to other distances that are not norms can be
defined, in particular, with respect to Bregman divergences (see chapter
5), and an analogue of the Pythagorean theorem remains valid.

2.1.2 Introduction to optimality conditions

The standard curriculum of high school mathematics contains the basic
facts concerning when a function (usually in one dimension) attains a
local optimum or saddle point. The generalization of these conditions
to more than one dimension is called the KKT (Karush-Kuhn-Tucker)
conditions, and the reader is referred to the bibliographic material at
the end of this chapter for an in-depth rigorous discussion of optimality
conditions in general mathematical programming.

For our purposes, we describe only briefly and intuitively the main
facts that we will require henceforth. Naturally, we restrict ourselves to
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convex programming, and thus a local minimum of a convex function
is also a global minimum (see exercises at the end of this chapter).

The generalization of the fact that a minimum of a convex differen-
tiable function on R is a point in which its derivative is equal to zero,
is given by the multi-dimensional analogue that its gradient is zero:

Vf(x) =0 <= x€argmin f(x).
xER™

We will require a slightly more general, but equally intuitive, fact for
constrained optimization: at a minimum point of a constrained convex
function, the inner product between the negative gradient and direc-
tion towards the interior of K is non-positive. This is depicted in Figure
which shows that —V f(x*) defines a supporting hyperplane to K.
The intuition is that if the inner product were positive, one could im-
prove the objective by moving in the direction of the projected negative
gradient. This fact is stated formally in the following theorem.

Theorem 2.2 (Karush-Kuhn-Tucker). Let X C R? be a convex set, x* €
argmin, i f(x). Then for any y € K we have

Vi) (y —x") 2 0.

2.2 Gradient/subgradient descent

Gradient descent (GD) is the simplest and oldest of optimization meth-
ods. It is an idterative method—the optimization procedure proceeds
in iterations, each improving the objective value. The basic method
amounts to iteratively moving the current point in the direction of the
gradient, which is a linear time operation if the gradient is given explic-
itly (indeed, for many functions computing the gradient at a certain
point is a simple linear-time operation).

The following table summarises the convergence rates of GD vari-
ants for convex functions with different convexity parameters. The rates
described omit the (usually small) constants in the bounds—we focus
on asymptotic rates.

In this section we address only the first row of Table For accel-
erated methods and their analysis see references at the bibliographic
section.
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Figure 2.2: Optimality conditions: negative (sub)gradient pointing outwards.

2.2.1 Basic gradient descent—linear convergence

Algorithmic box [2] describes a template for the basic gradient descent
method for mathematical optimization. It is a template since the se-
quence of step sizes {n;} is left as an input parameter, and the several
variants of the algorithm differ on its choice.

Algorithm 2 Basic gradient descent

: Input: f, T, initial point x; € K, sequence of step sizes {n;}
:fort=1to T do

Let yi1 =% — UtVf(Xt), X1 = g (Yt+1)
end for

gl Wy

return xX74;

Although the choice of 7; can make a difference in practice, in theory
the convergence of the vanilla GD algorithm is well understood and
given in the following theorem. Below, let h; = f(x;) — f(x¥).
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general | a-strongly | S-smooth ~v-well
convex conditioned
Gradient descent % % % e T
Accelerated GD — — % eV T

Table 2.1: Rates of convergence (decrease in h;) of first order methods as a func-
tion of the number of iterations and the smoothness and strong-convexity of the
objective. Dependence on other parameters and constants, namely the Lipchitz con-
stant, diameter of constraint set and initial distance to the objective is omitted.
Acceleration for non-smooth functions is not possible in general.

It is instructive to first give a proof that applies to the simpler
unconstrained case, i.e., when K = R%.

Theorem 2.3. For unconstrained minimization of ~-well-conditioned
functions and 7, = %, GD Algorithm [2 converges as

hip1 < hie
Proof. By strong convexity, we have for any pair x,y € K:

fly) > f(x)+ Vf(X)T(y —x)+ %HX — yH2 a-strong convexity
> min { £60)+ V16T (@ %) + 5 Ix 2]

= 100 = 5 IVII 2= x— Vf(x)

Denote by V; the shorthand for Vf(x;). In particular, taking x =
Xy, y=X*, we get

IVel|? > 20(f(x¢) — f(x¥)) = 20thy. (2.1)
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Next,
hit1 — he = f(xe1) — f(x¢)
< V[ (%41 — %) + §\|Xt+1 — x¢||? B-smoothness
= -l Vel* + gn?HVtIF algorithm defn.
1 ) 1
=5z hoice of ny = —
25||Vt” choice of n; 5
o
<~ by &)
Thus,
b1 < he(1 — %) < <h(1 =) < hge
where the last inequality follows from 1 — z < e™% for all x € R. O

Next, we consider the case in which K is a general convex set. The
proof is somewhat more intricate:

Theorem 2.4. For constrained minimization of ~-well-conditioned
functions and 7; = %, Algorithm [2| converges as

Yt

hiy1 <hy-e 4

Proof. By strong convexity we have for every x,x; € K (where we
denote V; = V f(x;) as before):

V] (= x0) < f(x) = f(x1) = 5l = xe]% (2.2)

Next, appealing to the algorithm’s definition and the choice n; = %, we
have

Xep1 = argmingcy {VtT(x —x¢) + ng - xtHz} . (2.3)
To see this, notice that

%(Xt — V)

= arg min { Ix — (x¢ — 1 V) Hz} definition of projection
xel
. T 1 2 .
=argminq V, (x —x¢) + —|[|x — x¢]| see exercises
xek 2,
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Thus, we have

hiy1 —he = f(xe41) — f(x¢)

< vtT(Xt—H —X¢) + §||Xt+1 — x¢||? smoothness
< min {97 (e x0) + 5 e — x| 23)
xeX 2
. 0 — « 9
< min { f(x) = f(x¢) + [ — x| (2.2)
xeEX 2

The minimum can only grow if we take it over a subset of K. Thus we
can restrict our attention to all points that are convex combination of x;
and x*, which we denote by the interval [x;, x*| = {(1 —n)x; +nx*,n €
[0,1]}, and write

: f—a
e —he < _min {760 = fx) + 75 x -
XE[x¢,X*] 2
_ 1 *\ 6_705 2| * 2
= FIQ = m)xe +0x7) = f(xe) + —5—n7|[x" — x|
b0 — «

< —h + E Sl
Where the equality is by writing x as x = (1 — n)x; + nx*. By strong
convexity, we have for any x; and the minimizer x*:

hy = f(x¢) — f(x¥)

> V)T (% — x%) + %Hx* — x¢||? a-strong convexity
> Sl = x| optimality Thm

Thus, plugging into the above, we get
b —a«a
hipr —he < (—n+ TWQ)ht
< ———hy. optimal choice of 7

Thus,

ht+1 < ht(l — m) < ht(l — %) < ht€77/4.

This gives the theorem statement by induction. O
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2.3 Reductions to non-smooth and non-strongly convex
functions

The previous section dealt with ~-well-conditioned functions, which
may seem like a significant restriction over vanilla convexity. Indeed,
many interesting convex functions are not strongly convex nor smooth,
and the convergence rate of gradient descent greatly differs for these
functions.

The literature on first order methods is abundant with specialized
analyses that explore the convergence rate of gradient descent for more
general functions. In this manuscript we take a different approach: in-
stead of analyzing variants of GD from scratch, we use reductions to
derive near-optimal convergence rates for smooth functions that are
not strongly convex, or strongly convex functions that are not smooth,
or general convex functions without any further restrictions.

While attaining sub-optimal convergence bounds (by logarithmic
factors), the advantage of this approach is two-fold: first, the reduction
method is very simple to state and analyze, and its analysis is signifi-
cantly shorter than analyzing GD from scratch. Second, the reduction
method is generic, and thus extends to the analysis of accelerated gra-
dient descent (or any other first order method) along the same lines.
We turn to these reductions next.

2.3.1 Reduction to smooth, non strongly convex functions

Our first reduction applies the GD algorithm to functions that are (-
smooth but not strongly convex.

The idea is to add a controlled amount of strong convexity to the
function f, and then apply the previous algorithm to optimize the new
function. The solution is distorted by the added strong convexity, but
a tradeoff guarantees a meaningful convergence rate.

Algorithm 3 Gradient descent, reduction to S-smooth functions

1: Input: f, T, x; € K, parameter a.
2: Let g(x) = f(x) + §lx — x|
3: Apply Algorithm [2[ with parameters g, T, {n; = %}, X1, return xrp.
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Lemma 2.5. For S-smooth convex functions, Algorithm [3] with param-

_ Blogt

eter a D2y

converges as

Blogt)

ht+120( t

Proof. The function g is a-strongly convex and (8 + &)-smooth (see
exercises). Thus, it is v = d%;ﬁ—well—conditioned. Notice that

hy = f(x¢) — f(x¥)

= g(xt) — g(x*) +
< hj +aD? def of D,

N |

(" = xa|* = flxe = xa*)

a

a+pB

Here, we denote hi = g(x;) —g(x*). Since g(x) is -well-conditioned,

his1 < hY, | +aD?

___ at
< hie” T@H+H 4 aD? Theorem [2.4]
logt
= O(B tg ) choosing & = %‘%t
where we ignore constants and terms depending on D and h{. O

Stronger convergence rates of O(g) can be obtained by analyzing
GD from scratch, and these are known to be tight. Thus, our reduction
is suboptimal by a factor of O(logT"), which we tolerate for the reasons
stated at the beginning of this section.

2.3.2 Reduction to strongly convex, non-smooth functions

Our reduction from non-smooth functions to vy-well-conditioned func-
tions is similar in spirit to the one of the previous subsection. However,
whereas for strong convexity the obtained rates were off by a factor of
logT', in this section we will also be off by factor of d, the dimension of
the decision variable x, as compared to the standard analyses in convex
optimization. For tight bounds, the reader is referred to the excellent
reference books and surveys listed in the bibliography section.

We apply the GD algorithm to a smoothed variant of the objective
function. In contrast to the previous reduction, smoothing cannot be
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Algorithm 4 Gradient descent, reduction to non-smooth functions

1: Input: f,x1,T,6
22 Lot f5(x) = Buws [f(x + 6v)]
3: Apply Algorithm [2{on fs,x1,T,{n: = 0}, return xp

obtained by simple addition of a smooth (or any other) function. In-
stead, we need a smoothing operation, which amounts to taking a local
integral of the function, as follows.

Let f be G-Lipschitz continuous and a-strongly convex. Define for
any 6 > 0

fsx) = E_[f(x+6v)],

where B = {x € R? : ||x|| < 1} is the Euclidean ball and v ~ B denotes
a random variable drawn from the uniform distribution over B.

We will prove that the function f5 is a smooth approximation to
f:R%— R, ie., it is both smooth and close in value to f, as given in
the following lemma.

Lemma 2.6. f5 has the following properties:
1. If f is a-strongly convex, then so is ﬁ;
2. fg is %—smooth
3. |f5(x) — f(x)] < 6G for all x € K

Before proving this lemma, let us first complete the reduction. Using
Lemma [2.6] and the convergence for y-well-conditioned functions the
following approximation bound is obtained.

Lemma 2.7. For § = %lngt Algorithm |4| converges as

2d1
ht:O<GdOgt>.

at

Before proving this lemma, notice that the gradient descent method
is applied with gradients of the smoothed function f5 rather than gradi-
ents of the original objective f. In this section we ignore the computa-
tional cost of computing such gradients given only access to gradients of



2.3. Reductions to non-smooth and non-strongly convex functions 33

f, which may be significant. Techniques for estimating these gradients
are further explored in Chapter [6]

Proof. Note that by Lemma the function f5 is y-well-conditioned
for v = %.

hiv1 = f(x¢41) — f(xXF)

< fs(xeq1) — f5(x*) + 260G Lemma 2.6]
< hle_%t + 206G Theorem [2.4]
= hle_% + 20G v = % by Lemma
:O<nglogt>' 5 _ dGlogt
at a

We proceed to prove that f5 is indeed a good approximation to the
original function.

Proof of Lemma[2.6 First, since f(s is an average of a-strongly convex
functions, it is also a-strongly convex. In order to prove smoothness, we
will use Stokes’ theorem from calculus: For all x € R? and for a vector
random variable v which is uniformly distributed over the Euclidean
sphere S = {y € R : [ly] = 1},

E [f(x+dv)v] = gv f5(x). (2.4)
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Recall that a function f is S-smooth if and only if for all x,y € K,
it holds that ||V f(x) — Vf(y)|| < Blx — yl|. Now,

IVfs(x) = Vis(y)l =

d
= %) B[+ 6wV — B [f(y +6v)v]| by (4
= %ZH ES [f(x+0v)v— f(y+ov)v]| linearity of expectation
g E |f(x+dv)v — f(y + ov)v] Jensen’s inequality
dG
< THX vl E [Ivl[] Lipschitz continuity
:THx—YH- ves

This proves the second property of Lemma [2.6] We proceed to show
the third property, namely that fs is a good approximation to f.

F5(0) = £l = | E, [f(c+6v)] = f(x)|  definition of f;
< B (If(x+0v) = fx)] Jensen’s inequality
< E,[Glov]] f s G-Lipschitz
< G5. veB

O

We note that GD variants for a-strongly convex functions, even
without the smoothing approach used in our reduction, are known to
converge quickly and without dependence on the dimension. We state
the known algorithm and result here without proof (see bibliography
for references).

Theorem 2.8. Let f be a-strongly convex, and let x1,...,X¢ be the

iterates of Algorithm [2| applied to f with 7 = 0D +1) Then

1<~ 25 . 2G?
f<t;t+1xs)‘f<x>§om+1>
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2.3.3 Reduction to general convex functions

One can apply both reductions simultaneously to obtain a rate of
ON(%) While near-optimal in terms of the number of iterations, the
weakness of this bound lies in its dependence on the dimension. In the
next chapter we shall show a rate of O(%) as a direct consequence of
a more general online convex optimization algorithm.

2.4 Example: support vector machine (SVM) training

Before proceeding with generalizing the simple gradient descent algo-
rithm of the previous section, let us describe an optimization problem
that has gained much attention in machine learning and can be solved
efficiently using the methods we have just analyzed.

A very basic and successful learning paradigm is the linear clas-
sification model. In this model, the learner is presented with positive
and negative examples of a concept. Each example, denoted by a;, is
represented in Fuclidean space by a d dimensional feature vector. For
example, a common representation for emails in the spam-classification
problem are binary vectors in Euclidean space, where the dimension of
the space is the number of words in the language. The ¢’th email is a
vector a; whose entries are given as ones for coordinates corresponding
to words that appear in the email, and zero otherwisﬂ In addition,
each example has a label b; € {—1,+1}, corresponding to whether the
email has been labeled spam/not spam. The goal is to find a hyper-
plane separating the two classes of vectors: those with positive labels
and those with negative labels. If such a hyperplane, which completely
separates the training set according to the labels, does not exist, then
the goal is to find a hyperplane that achieves a separation of the train-
ing set with the smallest number of mistakes.

Mathematically speaking, given a set of n examples to train on,
we seek x € R? that minimizes the number of incorrectly classified

'Such a representation may seem naive at first as it completely ignores the words’
order of appearance and their context. Extensions to capture these features are
indeed studied in the Natural Language Processing literature.
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Figure 2.3: Hinge loss vs. 0/1 loss.

examples, i.e.

min S(sign(x "a;) # b;) (2.5)

d
x€eR i€[n]

where sign(z) € {—1,+1} is the sign function, and d(z) € {0,1} is the
indicator function that takes the value 1 if the condition z is satisfied
and zero otherwise.

This optimization problem, which is at the heart of the linear clas-
sification formulation, is NP-hard, and in fact NP-hard to even approx-
imate non-trivially. However, in the special case that a linear classifier
(a hyperplane x) that classifies all of the examples correctly exists, the
problem is solvable in polynomial time via linear programming.

Various relaxations have been proposed to solve the more general
case, when no perfect linear classifier exists. One of the most successful
in practice is the Support Vector Machine (SVM) formulation.

The soft margin SVM relaxation replaces the 0/1 loss in with
a convex loss function, called the hinge-loss, given by

lap(x) = hinge(b-x"a) = max{0,1 —b-x'a}.

In Figure we depict how the hinge loss is a convex relaxation for
the non-convex 0/1 loss. Further, the SVM formulation adds to the loss
minimization objective a term that regularizes the size of the elements
in x. The reason and meaning of this additional term shall be addressed
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in later sections. For now, let us consider the SVM convex program:

1 1
min { A= Z la, b, (%) + —Ix|I? (2.6)
" i€[n] 2

x€ER4

Algorithm 5 SVM training via subgradient descent

1: Input: training set of n examples {(a;, b;)}, T. Set x; =0
2: fort=1toT do
3:  Let Vy = )\% >y Ve, b, (x¢) + x; where

0, bixTai > 1
vgahbi (X) =
—b;a;, otherwise

o

2
X1 = X¢ — eV for e = 75
: end for

ot

6: return Xr = %Zthl %Xt

This is an unconstrained non-smooth and strongly convex program.
It follows from Theorem that O(%) iterations suffice to attain an
g-approximate solution. We spell out the details of applying the sub-
gradient descent algorithm to this formulation in Algorithm
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2.5

1.

Basic concepts in convex optimization

Exercises

Prove that a differentiable function f(x) : R — R is convex if and
only if for any =,y € R it holds that f(z) — f(y) < (z — y)f' ().

. Recall that we say that a function f : R™ — R has a condition

number v = «/f over K C RY if the following two inequalities
hold for all x,y € K:

(2) fy) = f(x)+(y —x)TVf(x) + §lx —y]?
(b) f(y) < f(0) + (y =x)TV(x) + 5x -yl

For matrices A, B € R™*" we denote A = B if A — B is positive
semidefinite. Prove that if f is twice differentiable and it holds
that BI = V2f(x) = ol for any x € K, then the condition number
of f over Kis a/p.

. Prove:

(a) The sum of convex functions is convex.

(b) Let f be aj-strongly convex and g be as-strongly convex.
Then f + g is (a1 + a2)-strongly convex.

(c) Let f be fi-smooth and g be [s-smooth. Then f + g is
(B1 + B2)-smooth.

Let £ € R? be closed, compact and bounded. Prove that a nec-
essary and sufficient condition for ITx(x) to be a singleton, that
is for |TIx(x)| = 1, is for K to be convex.

. Consider the n-dimensional simplex

An:{xeR"\inzl,xizo, Vi € [n]}.
i=1

Give an algorithm for computing the projection of a point x € R"
onto the set A,, (a near-linear time algorithm exists).
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6. Prove the following identity:

1
arg min {VtT(x —x¢) + —|lx— xtHz}
xek 277t

=arg min{”x — (x¢ — ntvt)HQ} .
xek
7. Let f(x) : R® — R be a convex differentiable function and K C
R™ be a convex set. Prove that x* € K is a minimizer of f over K
if and only if for any y € K it holds that (y — x*)T V f(x*) > 0.

8. * Extending Nesterov’s accelerated GD algorithm:
Assume a black-box access to Nesterov’s algorithm that attains
the rate of e"V7 T for y-well-conditioned functions, as in Table
2.1} Apply reductions to complete the second line of Table 2.1 up
to logarithmic factors.
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2.6 Bibliographic remarks

The reader is referred to dedicated books on convex optimization for
much more in-depth treatment of the topics surveyed in this back-
ground chapter. For background in convex analysis see the texts
(21 92). The classic textbook (23)) gives a broad introduction to convex
optimization with numerous applications. For detailed rigorous conver-
gence proofs and in depth analysis of first order methods, see lecture
notes by Nesterov (78)) and Nemirovskii (76} [77). Theorem [2.8|is taken
from (24) Theorem 3.9.

The logarithmic overhead in the reductions of section can be
removed with a more careful reduction and analysis, for details see ().

Support vector machines were introduced in (31} 22)), see also the
book of Schélkopf and Smola (95).
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First order algorithms for online convex
optimization

In this chapter we describe and analyze the most simple and basic
algorithms for online convex optimization (recall the definition of the
model as introduced in Chapter (1)), which are also surprisingly useful
and applicable in practice. We use the same notation introduced in
§2.1 However, in contrast to the previous chapter, the goal of the
algorithms introduced in this chapter is to minimize regret, rather than
the optimization error (which is ill-defined in an online setting).

Recall the definition of regret in an OCO setting, as given in equa-
tion , with subscripts, superscripts and the supremum over the
function class omitted when they are clear from the context:

T T
regret = Y fy(x:) — glellrclz Je(x)
t=1 t=1

Table details known upper and lower bounds on the regret for
different types of convex functions as it depends on the number of
prediction iterations.

In order to compare regret to optimization error it is useful to con-
sider the average regret, or regret/T. Let xp = % 23:1 X¢ be the av-
erage decision. If the functions f; are all equal to a single function
f : K — R, then Jensen’s inequality implies that f(X7) converges to

41
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a-strongly convex | S-smooth | §-exp-concave
Upper bound é logT VT 5logT
Lower bound é logT VT 5logT
Average regret % ﬁ " 1(;’% T

Table 3.1: Attainable asymptotic regret bounds

f(x*) at a rate at most the average regret, since

L N regret
S [f(x) = F)] = =

t=1

1

f&xr) = f(x") <

The reader may compare to Table of offline convergence of first
order methods: as opposed to offline optimization, smoothness does
not improve asymptotic regret rates. However, exp-concavity, a weaker
property than strong convexity, comes into play and gives improved
regret rates.

This chapter will present algorithms and lower bounds that realize
the above known results for OCO. The property of exp-concavity and
its applications, as well as logarithmic regret algorithms for exp-concave
functions are deferred to the next chapter.

3.1 Online gradient descent

Perhaps the simplest algorithm that applies to the most general set-
ting of online convex optimization is online gradient descent. This al-
gorithm, which is based on standard gradient descent from offline op-
timization, was introduced in its online form by Zinkevich (see bibliog-
raphy at the end of this section).

Pseudo-code for the algorithm is given in Algorithm [6] and a con-
ceptual illustration is given in Figure 3.1

In each iteration, the algorithm takes a step from the previous point
in the direction of the gradient of the previous cost. This step may
result in a point outside of the underlying convex set. In such cases,
the algorithm projects the point back to the convex set, i.e. finds its
closest point in the convex set. Despite the fact that the next cost
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Figure 3.1: Online gradient descent: the iterate x;11 is derived by advancing x; in
the direction of the current gradient V., and projecting back into C.

function may be completely different than the costs observed thus far,
the regret attained by the algorithm is sublinear. This is formalized
in the following theorem (recall the definition of G and D from the
previous chapter).

Algorithm 6 online gradient descent

1: Input: convex set IC, T, x1 € K, step sizes {n;}
2: fort=1to T do

3:  Play x; and observe cost fi(x¢).

4:  Update and project:

Yi+1 = Xt — ﬁtvft(xt)
Xppl = %(Yt+1)

5. end for




44 First order algorithms for online convex optimization

Theorem 3.1. Online gradient descent with step sizes {n; = GL\/E’ te
[T} guarantees the following for all T' > 1:

T T
3
regrety = th(xt) — min Z fi(x*) < =GDVT
im1 x*ek =1 2
Proof. Let x* € argming g 7 fi(x). Define V; £ V fi(x;). By con-
vexity

frxe) = fu(x*) <V (x¢ — x¥) (3.1)

We first upper-bound VtT (x; — x*) using the update rule for x;41 and
Theorem (the Pythagorean theorem):

2
< lxe — Ve —x*|* (3.2)

[xep1 — x*|? = ng(xt — Vi) — xX*

Hence,

e —x P <l =2+ 7 [ Vel® — 2069 (xe — %)

%12 _ux|2
2v;|—(xt _X*) < ||Xt X H th‘i‘l X H +77tG2 (33)

Ui

Summing (3.1]) and (3.3) from ¢ =1 to T', and setting n; = GL\/E (with
1 A
- =0):

i . .,
2 (Z Je(xt) — ft(X*)> < QZVI(Xt - x%)
t=1

t=1

T %112 *||2 T
Xy — X — |IX — X
<3 B 1° =[xt | G2
=1 Mt =1
I 1 1 I 1
<Slxe-xP (- )+ Ly,
tzz:l M -1 tzz:l o
x40 — x> >0
) T o1 1 , T
o (Ao L)y,
tz::l e M1 ;
1 T
< DQU— + G? Z M telescoping series
T t=1

< 3DGVT.
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The last inequality follows since n; = GL\/E and 37, % < 2VT. O

The online gradient descent algorithm is straightforward to imple-
ment, and updates take linear time given the gradient. However, there
is a projection step which may take significantly longer, as discussed in

and chapter [7]

3.2 Lower bounds

The previous section introduces and analyzes a very simple and natu-
ral approach to online convex optimization. Before continuing our ven-
ture, it is worthwhile to consider whether the previous bound can be
improved? We measure performance of OCO algorithms both by regret
and by computational efficiency. Therefore, we ask ourselves whether
even simpler algorithms that attain tighter regret bounds exist.

The computational efficiency of online gradient descent seemingly
leaves little room for improvement, putting aside the projection step it
runs in linear time per iteration. What about obtaining better regret?

Perhaps surprisingly, the answer is negative: online gradient descent
attains, in the worst case, tight regret bounds up to small constant
factors! This is formally given in the following theorem.

Theorem 3.2. Any algorithm for online convex optimization incurs
Q(DGWT) regret in the worst case. This is true even if the cost func-
tions are generated from a fixed stationary distribution.

We give a sketch of the proof; filling in all details is left as an exercise
at the end of this chapter.

Consider an instance of OCO where the convex set K is the n-
dimensional hypercube, i.e.

K={xeR", [x[o <1}.

There are 2" linear cost functions, one for each vertex v € {£1}",
defined as

Vv e {£1}", fo(x) =V x.
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Notice that both the diameter of K and the bound on the norm of the
cost function gradients, denoted G, are bounded by

D < Zn:22:2\/ﬁ, G < Zn:(il) =n
=1 =1

The cost functions in each iteration are chosen at random, with uni-
form probability, from the set {fv,v € {£1}"}. Denote by v; € {£1}"
the vertex chosen in iteration ¢, and denote f; = fy,. By unifor-
mity and independence, for any ¢ and x; chosen online, Ey,[fi(x;)] =
E,,[v/ x] = 0. However,

%Zzwmi

i€[n] t=1

T
E i =E
vwwk$§ﬁ®]

T
=nk l— th(l)
t=1
= —Q(nVT).

] i.i.d. coordinates

The last equality is left as an exercise.
The facts above nearly complete the proof of Theorem see the
exercises at the end of this chapter.

3.3 Logarithmic regret

At this point, the reader may wonder: we have introduced a seemingly
sophisticated and obviously general framework for learning and pre-
diction, as well as a linear-time algorithm for the most general case,
complete with tight regret bounds, and done so with elementary proofs!
Is this all OCO has to offer?

The answer to this question is two-fold:

1. Simple is good: the philosophy behind OCO treats simplicity as
a merit. The main reason OCO has taken the stage in online
learning in recent years is the simplicity of its algorithms and
their analysis, which allow for numerous variations and tweaks in
their host applications.
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2. A very wide class of settings, which will be the subject of the
next sections, admit more efficient algorithms, in terms of both
regret and computational complexity.

In §2| we surveyed optimization algorithms with convergence rates
that vary greatly according to the convexity properties of the function
to be optimized. Do the regret bounds in online convex optimization
vary as much as the convergence bounds in offline convex optimization
over different classes of convex cost functions?

Indeed, next we show that for important classes of loss functions
significantly better regret bounds are possible.

3.3.1 Online gradient descent for strongly convex functions

The first algorithm that achieves regret logarithmic in the number of
iterations is a twist on the online gradient descent algorithm, chang-
ing only the step size. The following theorem establishes logarithmic
bounds on the regret if the cost functions are strongly convex.

Theorem 3.3. For a-strongly convex loss functions, online gradient
descent with step sizes 1y = é achieves the following guarantee for all

T>1
2

G
regrety < 2—(1+10gT).
a

Proof. Let x* € argmin,cx 327, fi(x). Recall the definition of regret
T T
regrety = Z fi(xy) — Z fr(x¥).
t=1 t=1

Define V; = V fi(x;). Applying the definition of a-strong convexity
to the pair of points x;,x*, we have

2(fe(xe) = fo(x") < 2V/ (xe —x") —alx" —x % (34)

We proceed to upper-bound VtT (x¢ — x*). Using the update rule for
x¢4+1 and the Pythagorean theorem we get

%41 — x> = | II;I(Xt — V) — x| < |lxe — Ve — x¥||%.
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Hence,

s —x* 2 <l =2+ 0| Vel® = 2009 (xe — %)

and
P = llxern = x*)P
Mt

Summing (3.5) from ¢t = 1 to T, setting 1, = é (define n% £ 0), and
combining with (3.4)), we have:

|x¢ — x

QV;F (Xt — X*) < + ntGZ. (35)

T
QZ(ft(Xt) — fit(x¥))
t=1

T (1 1 ,Z
< x; — X~ (——a>+G
I >
1
since — £ 0, ||xp1 — x| >0
o
T
= 04+ G2 —
+ Zat
t=1
2
< —(1+1logT)
a

3.4 Application: stochastic gradient descent

A special case of Online Convex Optimization is the well-studied setting
of stochastic optimization. In stochastic optimization, the optimizer
attempts to minimize a convex function over a convex domain as given
by the mathematical program:

min f(x).

xel
However, unlike standard offline optimization, the optimizer is given

access to a noisy gradient oracle, defined by

O(x) £ Vx st. E[Vy] =Vf(x), E[|Vk]? < G?
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That is, given a point in the decision set, a noisy gradient oracle returns
a random vector whose expectation is the gradient at the point and
whose variance is bounded by G2.

We will show that regret bounds for OCO translate to convergence
rates for stochastic optimization. As a special case, consider the online
gradient descent algorithm whose regret is bounded by

regret = O(DGVT)

Applying the OGD algorithm over a sequence of linear functions that
are defined by the noisy gradient oracle at consecutive points, and
finally returning the average of all points along the way, we obtain the
stochastic gradient descent algorithm, presented in Algorithm [7]

Algorithm 7 stochastic gradient descent

: Input: f,K, T, x1 € K, step sizes {n;}

: fort=1toT do

Let Vi = O(x;) and define: f;(x) £ (Vy,x)
Update and project:

Yir1 = Xt — Ut@t
Xg41 = %(Ytﬂ)

. end for

ot

- AN
6: return xr = %Zthl Xy

Theorem 3.4. Algorithm [7| with step sizes n; = GL\/Z guarantees

E[f(x7)] < f*lgllcf(x*) I Z;)\le%
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Proof. By the regret guarantee of OGD, we have
E[f(xr)] - f(x")

< E[% > ) = S convexity of f (Jensen)
< % E[zt:(Vf(xt), x¢ — X)) convexity again
= F}E[;<@t7 X — X*)] noisy gradient estimator
= B fi6x) — £166) Algorithm 7 line
< % definition
< 3GD theorem [B.1]

T
O

It is important to note that in the proof above, we have used the
fact that the regret bounds of online gradient descent hold against an
adaptive adversary. This need arises since the cost functions f; defined
in Algorithm [7] depend on the choice of decision x; € K.

In addition, the careful reader may notice that by plugging in differ-
ent step sizes (also called learning rates) and applying SGD to strongly
convex functions, one can attain O(1/T) convergence rates. Details of
this derivation are left as an exercise.

3.4.1 Example: stochastic gradient descent for SVM training

Recall our example of Support Vector Machine training from The
task of training an SVM over a given data set amounts to solving the
following convex program (equation (2.6)):

f(x) = min {ATll Z Eambi(x) + ;HX|2}

d
x€eR i€[n]

lap(x) = max{0,1—b-x'a}
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Algorithm 8 SGD for SVM training

1: Input: training set of n examples {(a;,b;)}, T. Set x; =0
2: fort=1to 1 do

3:  Pick an example uniformly at random ¢ € [n].

4 Let V; = AVla, b, (%¢) + x; where

07 th;rat > 1
vgambt (Xt) =
—bsas, otherwise

5. Xpp1 = X¢ — Vi
end for

@

7. return Xy 2 %Z?zl Xy

Using the technique described in this chapter, namely the OGD and
SGD algorithms, we can devise a much faster algorithm than the one
presented in the previous chapter. The idea is to generate an unbiased
estimator for the gradient of the objective using a single example in the
dataset, and use it in lieu of the entire gradient. This is given formally
in the SGD algorithm for SVM training presented in Algorithm

It follows from Theorem that this algorithm, with appropriate
parameters 7, returns an e-approximate solution after 7' = O(g%) iter-
ations. Furthermore, with a little more care and using Theorem a
rate of O(%) is obtained with parameters 7, = O(1).

This matches the convergence rate of standard offline gradient de-
scent. However, observe that each iteration is significantly cheaper—
only one example in the data set need be considered! That is the magic
of SGD; we have matched the nearly optimal convergence rate of first
order methods using extremely cheap iterations. This makes it the
method of choice in numerous applications.
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3.5 Exercises

1. Prove that SGD for a strongly convex function can, with appro-

priate parameters 17, converge as O(%) You may assume that

the gradient estimators have Euclidean norms bounded by the

constant G.

2. Design an OCO algorithm that attains the same asymptotic re-
gret bound as OGD, up to factors logarithmic in G and D, with-
out knowing the parameters G and D ahead of time.

3. In this exercise we prove a tight lower bound on the regret of any

algorithm for online convex optimization.

(a)

For any sequence of T fair coin tosses, let N, be the number
of head outcomes and IN; be the number of tails. Give an
asymptotically tight upper and lower bound on E[| N}, — N¢|]
(i.e., order of growth of this random variable as a function
of T, up to multiplicative and additive constants).

Consider a 2-expert problem, in which the losses are in-
versely correlated: either expert one incurs a loss of one and
the second expert zero, or vice versa. Use the fact above to
design a setting in which any experts algorithm incurs regret
asymptotically matching the upper bound.

Consider the general OCO setting over a convex set K. De-
sign a setting in which the cost functions have gradients
whose norm is bounded by G, and obtain a lower bound on
the regret as a function of G, the diameter of K, and the
number of game iterations.

4. Implement the SGD algorithm for SVM training. Apply it on the
MNIST dataset. Compare your results to the offline GD algorithm
from the previous chapter.
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3.6 Bibliographic remarks

The OCO framework was introduced by Zinkevich in (I10)), where the
OGD algorithm was introduced and analyzed. Precursors to this algo-
rithm, albeit for less general settings, were introduced and analyzed in
(66]). Logarithmic regret algorithms for Online Convex Optimization
were introduced and analyzed in (54)).

The SGD algorithm dates back to Robbins and Monro (91)). Ap-
plication of SGD to soft-margin SVM training was explored in (100)).
Tight convergence rates of SGD for strongly convex and non-smooth
functions were only recently obtained in (57)),(86),(102).
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Second order methods

The motivation for this chapter is the application of online portfolio
selection, considered in the first chapter of this book. We begin with
a detailed description of this application. We proceed to describe a
new class of convex functions that model this problem. This new class
of functions is more general than the class of strongly convex func-
tions discussed in the previous chapter. It allows for logarithmic regret
algorithms, which are based on second order methods from convex opti-
mization. In contrast to first order methods, which have been our focus
thus far and relied on (sub)gradients, second order methods exploit
information about the second derivative of the objective function.

4.1 Motivation: universal portfolio selection

In this subsection we give the formal definition of the universal portfolio
selection problem that was informally described in

4.1.1 Mainstream portfolio theory

Mainstream financial theory models stock prices as a stochastic process
known as Geometric Brownian Motion (GBM). This model assumes

55
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that the fluctuations in the prices of the stocks behave essentially as
a random walk. It is perhaps easier to think about a price of an asset
(stock) on time segments, obtained from a discretization of time into
equal segments. Thus, the logarithm of the price at segment ¢ + 1, de-
noted l;41, is given by the sum of the logarithm of the price at segment
t and a Gaussian random variable with a particular mean and variance,

liyr ~ I + N(p, o).

This is only an informal way of thinking about GBM. The formal
model is continuous in time, roughly equivalent to the above as the
time intervals, means and variances approach zero.

The GBM model gives rise to particular algorithms for portfolio
selection (as well as more sophisticated applications such as options
pricing). Given the means and variances of the stock prices over time
of a set of assets, as well as their cross-correlations, a portfolio with
maximal expected gain (mean) for a specific risk (variance) threshold
can be formulated.

The fundamental question is, of course, how does one obtain the
mean and variance parameters, not to mention the cross-correlations,
of a given set of stocks? One accepted solution is to estimate these from
historical data, e.g., by taking the recent history of stock prices.

4.1.2 Universal portfolio theory

The theory of universal portfolio selection is very different from the
above. The main difference being the lack of statistical assumptions
about the stock market. The idea is to model investing as a repeated
decision making scenario, which fits nicely into our OCO framework,
and to measure regret as a performance metric.

Consider the following scenario: at each iteration ¢ € [T, the deci-
sion maker chooses X;, a distribution of her wealth over n assets, such
that x; € A,. Here A,, = {x € R}, ,;x; = 1} is the n-dimensional
simplex, i.e., the set of all distributions over n elements. An adver-
sary independently chooses market returns for the assets, i.e., a vector
r; € R’ such that each coordinate r:(7) is the price ratio for the i’th
asset between the iterations ¢ and ¢t + 1. For example, if the i’th co-
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ordinate is the Google ticker symbol GOOG traded on the NASDAQ),

then
price of GOOG at time ¢ + 1

ri(i) = price of GOOG at time ¢t
How does the decision maker’s wealth change? Let W; be her total

wealth at iteration ¢. Then, ignoring transaction costs, we have
_ T
Wi =Wy-ry x4

Over T iterations, the total wealth of the investor is given by

T
WT = W1 . H I‘;r Xt
t=1
The goal of the decision maker, to maximize the overall wealth gain
W /Wy, can be attained by maximizing the following more convenient
logarithm of this quantity, given by

T
log— = Z ogrt Xy

The above formulation is already very similar to our OCO setting,
albeit phrased as a gain maximization rather than a loss minimization
setting. Let

fe(x) = log(r{ x)
The convex set is the n-dimensional simplex K = A,,, and define the

regret to be
T

T
regrety = max Z fe(x Z fe(xt)
t=1

ki3
The functions f; are concave rather than convex, which is perfectly
fine as we are framing the problem as a maximization rather than a
minimization. Note also that the regret is the negation of the usual
regret notion we have considered for minimization problems.
Since this is an online convex optimization instance, we can use the
online gradient descent algorithm from the previous chapter to invest,
which ensures O(v/T) regret (see exercises). What guarantee do we
attain in terms of investing? To answer this, in the next section we
reason about what x* in the above expression may be.
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4.1.3 Constant rebalancing portfolios

As x* € K = A, is a point in the n-dimensional simplex, consider the
special case of x* = ey, i.e., the first standard basis vector (the vector
that has zero in all coordinates except the first, which is set to one).
The term Y.L, fi(e1) becomes 7, logr;(1), or

T . .
price of stock at time 1"+ 1>
lo | | r:(1) = lo
gt_l o) & ( initial price of stock

As T becomes large, any sublinear regret guarantee (e.g., the O(v/T)
regret guarantee achieved using online gradient descent) achieves an
average regret that approaches zero. In this context, this implies that
the log-wealth gain achieved (in average over T' rounds) is as good as
that of the first stock. Since x* can be taken to be any vector, sublinear
regret guarantees average log-wealth growth as good as any stock!

However, x* can be significantly better, as shown in the following
example. Consider a market of two stocks that fluctuate wildly. The
first stock increases by 100% every even day and returns to its origi-
nal price the following (odd) day. The second stock does exactly the
opposite: decreases by 50% on even days and rises back on odd days.
Formally, we have

1 1
rt(l) = (2 ) 5 y 2, 57 )
1 1
rt(2> = (5 y 2 s 5 s 2 ,)

Clearly, any investment in either of the stocks will not gain in the long
run. However, the portfolio x* = (0.5,0.5) increases wealth by a factor
of r/ x* = (3)? + 1 = 1.25 daily! Such a mixed distribution is called
a fixed rebalanced portfolio, as it needs to rebalance the proportion of
total capital invested in each stock at each iteration to maintain this
fixed distribution strategy.

Thus, vanishing average regret guarantees long-run growth as the
best constant rebalanced portfolio in hindsight. Such a portfolio strat-
egy is called universal. We have seen that the online gradient descent
algorithm gives essentially a universal algorithm with regret O(\/T ).
Can we get better regret guarantees?
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4.2 Exp-concave functions

For convenience, we return to considering losses of convex functions,
rather than gains of concave functions as in the application for portfo-
lio selection. The two problems are equivalent: we simply replace the
maximization of the concave f(x) = log(r/ x) with the minimization
of the convex f(x) = —log(r/ x).

In the previous chapter we have seen that the OGD algorithm with
carefully chosen step sizes can deliver logarithmic regret for strongly
convex functions. However, the loss function for the OCO setting of
portfolio selection, f;(x) = —log(r, x), is not strongly convex. Instead,
the Hessian of this function is given by
rir,

v2ft(X) = ( T

r; X)

2

which is a rank one matrix. Recall that the Hessian of a twice-
differentiable strongly convex function is larger than a multiple of iden-
tity matrix and is positive definite and in particular has full rank. Thus,
the loss function above is quite far from being strongly convex.

However, an important observation is that this Hessian is large in
the direction of the gradient. This property is called exp-concavity. We
proceed to define this property rigorously and show that it suffices to
attain logarithmic regret.

Definition 4.1. A convex function f : R™ — R is defined to be a-exp-
concave over K C R"™ if the function ¢ is concave, where g : K — R is
defined as

g(x) = e/

For the following discussion, recall the notation of and in par-
ticular our convention over matrices that A > B if and only if A — B
is positive semidefinite. Exp-concavity implies strong-convexity in the
direction of the gradient. This reduces to the following property:

Lemma 4.1. A twice-differentiable function f : R™ — R is a-exp-
concave at x if and only if

V2f(x) = aVF(x)Vf(x) "
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The proof of this lemma is given as a guided exercise at the end of
this chapter. We prove a slightly stronger lemma below.

Lemma 4.2. Let f : K — R be an a-exp-concave function, and D, G
denote the diameter of K and a bound on the (sub)gradients of f
respectively. The following holds for all v < %min{m%,a} and all
x,y € K:

() 2 f9) + VI (=) + S (x = 3) VIOV (x - ).

Proof. Since exp(—af(x)) is concave and 2y < « by definition, it fol-

lows from Lemma that the function h(x) £ exp(—2vyf(x)) is also
concave. Then by the concavity of h(x),

h(x) < h(y) + Vh(y) (x - y)
Plugging in Vh(y) = —2yexp(—27f(y))Vf(y) gives
exp(—27f(x)) < exp(—27f(y))[L — 27V f(y) " (x — y)].

Simplifying gives

fx) = f(y) - 217 log (1-29Vf(y) (x-y)).

Next, note that |29V f(y) " (x—y)| < 29GD < 1 and that for |2 < 1,
—log(l—2) > z—i—izQ. Applying the inequality for z = 29V f(y) T (x—y)
implies the lemma. O

4.3 The online Newton step algorithm

Thus far we have only considered first order methods for regret min-
imization. In this section we consider a quasi-Newton approach, i.e.,
an online convex optimization algorithm that approximates the second
derivative, or Hessian in more than one dimension. However, strictly
speaking, the algorithm we analyze is also first order, in the sense that
it only uses gradient information.

The algorithm we introduce and analyze, called online Newton step,
is detailed in Algorithm [9] At each iteration, this algorithm chooses a
vector that is the projection of the sum of the vector chosen at the
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previous iteration and an additional vector. Whereas for the online
gradient descent algorithm this added vector was the gradient of the
previous cost function, for online Newton step this vector is different: it
is reminiscent to the direction in which the Newton-Raphson method
would proceed if it were an offline optimization problem for the previ-
ous cost function. The Newton-Raphson algorithm would move in the
direction of the vector which is the inverse Hessian times the gradient.
In online Newton step, this direction is A, 1V,, where the matrix A; is
related to the Hessian as will be shown in the analysis.

Since adding a multiple of the Newton vector A; 1V, to the cur-
rent vector may result in a point outside the convex set, an additional
projection step is required to obtain x;, the decision at time ¢. This
projection is different than the standard Euclidean projection used by
online gradient descent in Section It is the projection according to
the norm defined by the matrix A;, rather than the Euclidean norm.

Algorithm 9 online Newton step

1: Input: convex set IC, T, x; € K C R"”, parameters v, > 0, Ag =
el,

:fort=1toT do

Play x; and observe cost fi(x¢).

Rank-1 update: A; = Ay 1 + V,V,

Newton step and projection:

o Wy

1
Yit+1 = Xt — ;At lvt

Ay
Xi41 = Ig(ytJrl)

6: end for

The advantage of the online Newton step algorithm is its logarith-
mic regret guarantee for exp-concave functions, as defined in the previ-
ous section. The following theorem bounds the regret of online Newton
step.
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Theorem 4.3. Algorithm |§| with parameters v = 1 min{ 25, a}, e =
ﬁ and T > 4 guarantees
1
regrety < 5 ( + GD) nlogT.
o
As a first step, we prove the following lemma.
Lemma 4.4. The regret of online Newton step is bounded by

T
regret(ONS) < 4 (; + GD) (Z V] AV, + 1)
t=1

Proof. Let x* € argmingex Yo f+(x) be the best decision in hind-
sight. By Lemma we have for v = %min{ﬁ, al,
fe(xe) = filx") < Ry,

where we define
R 2 V] (x—x") — %(x* —x;) ViV (x* — xy).

According to the update rule of the algorithm x;,1 = H,‘ét (yt+1). Now,
by the definition of y;11:

1
Vitl — X =% — X" — ;At_lvt, and (4.1)

Ay(Fr1 — x) = Ayl — x*) — ivt. (4.2)
Multiplying the transpose of by we get
(Vi1 — x*) T Ay(yee1 — x¥) =
(xp—x*) T Ay (x,—x*) — 3V;r(xt—x*) + VIQV;FAt_lvt. (4.3)
Since x;11 is the projection of y;11 in the norm induced by A;, we have
by the Pythagorean theorem (see

(Y1 — x°) T Ay(yi1 — ) = lye+1 — x*|I3,
> |Ixep1 — x|,

= (X441 — x*)TAt(xH_l — x*).
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This inequality is the reason for using generalized projections as op-
posed to standard projections, which were used in the analysis of on-
line gradient descent (see Equation (3.2))). This fact together with

(.3) gives
1
YV, (x;—x*) < %vjAglvt + %(Xt—x*)TAt(xt—x*)
- %(Xt—s-l = x) " Ay(xep1 — X7).
Now, summing up over ¢t = 1 to T" we get that

1 ST, T
—x*) < — — —
;Vt xt —X*) < o ;Vt A Ve + (x1 x*) ' Ar(xg — x¥)

T

+ 2>k = x) T (Ar = A1) (¢ —x)
t=2

% X741 — X ) Ar(xr41 — %)
1 T
< %ZVTA Vet ) Z (x¢—x") ViV (x¢—x")

t=1 t 1

%(xl —x)T (A — ViV (x1 — x*).

In the last inequality we use the fact that A; — A1 = VtV;r , and
the fact that the matrix Ap is PSD and hence the last term before the
inequality is negative. Thus,

T T

1 _ N .
ZRt < *ZV:At v, + z(x1 - )T(Al — V1VI)(X1 —x*).
= 2y 4 2

Using the algorithm parameters A; — V1V{] =¢l,, , ¢ = ﬁ and
our notation for the diameter ||x; — x*||> < D? we have

T T
1
regretz(ONS) < S R, < Q—EjVIA;lvt+%D2s
t=1 =i
1 & 1
< —E v/] Al —.
= 2y & t vt+27

Since v = 3 min{;4p,a}, we have % < 8(1 + GD). This gives the

lemma. O
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We can now prove Theorem

Proof of Theorem[].3 First we show that the term Y.~ V] A, 'V, is
upper bounded by a telescoping sum. Notice that

ViAWV = A7 e ViV = A7 e (A — A )

where for matrices A, B € R""™ we denote by A e B =
i1 2yj=1 AijBij = Tr(AB'), which is equivalent to the inner prod-
uct of these matrices as vectors in R™”.

For real numbers a,b € R, the first order Taylor expansion of the
logarithm of b at a implies a~(a — b) < log ¢. An analogous fact holds
for positive semidefinite matrices, i.e., A~! o (4 — B) < log ,%‘, where
|A| denotes the determinant of the matrix A (this is proved in Lemma
. Using this fact we have

T T
SNoViATIY = Y AtevyV]
t=1 t=1

T
= S A e (4 — A
t=1

T
| Al Az
< log =log ——.

; |At—1] | Ao|

Since Ar = Y1, ViV] + eI, and |V¢]| < G, the largest eigen-
value of Ar is at most TG? + . Hence the determinant of Ap can be
bounded by |A7| < (T'G? + ¢)". Hence recalling that ¢ = WQ—IDQ and

v = $min{d5, a}, for T > 4,

T
Z VA7V, < log (%)n < nlog(TG*y?D? +1) < nlogT.
Plugging into Lemma |4.4] we obtain
1
regretp(ONS) < 4 ( + GD) (nlogT +1),
a

which implies the theorem for n > 1, T > 4.
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It remains to prove the technical lemma for positive semidefinite
(PSD) matrices used above.

Lemma 4.5. Let A = B > 0 be positive definite matrices. Then

Proof. For any positive definite matrix €, denote by
A(C), A2(C), ..., \y(C) its eigenvalues (which are positive).

Ale(A-B) = Tr(A (A B))

= Tr(A"Y2(A— B)A™'/?) Tr(XY) = Tr(Y X)
= Tr(I — A"Y2BAY/?)
_y 1= 2(A712BA1?)] Tr(C) = f:xi(c*)
=1 =1
< - Zn:log [)\i(A_l/QBA_l/Q)] 1 —z < —log(x)
=1

= —log [H /\i(A1/2BA1/2)]
=1

A n
= —log|[A™/2BA™Y?| = log H icl =T N (©0)

i=1
In the last equality we use the facts |[AB| = |A||B| and |[A™!| = ﬁ for
PSD matrices. O

Implementation and running time. The online Newton step algo-
rithm requires O(n?) space to store the matrix A;. Every iteration
requires the computation of the matrix A; ! the current gradient, a
matrix-vector product, and possibly a projection onto the underlying
convex set .

A naive implementation would require computing the inverse of the
matrix A; on every iteration. However, in the case that A; is invertible,
the matrix inversion lemma (see bibliography) states that for invertible
matrix A and vector x,

A txxT AT

A T _1:A_1—7.
(A+xx) 1+xTA-1x
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Thus, given A; ', and V; one can compute A; ' in time O(n?) using
only matrix-vector and vector-vector products.

The online Newton step algorithm also needs to make projections
onto I, but of a slightly different nature than online gradient descent
and other online convex optimization algorithms. The required projec-
tion, denoted by Hét, is in the vector norm induced by the matrix Ay,
viz. [|x||a, = Vx T Asx. It is equivalent to finding the point x € K which
minimizes (x —y)" A;(x —y) where y is the point we are projecting.
This is a convex program which can be solved up to any degree of
accuracy in polynomial time.

Modulo the computation of generalized projections, the online New-
ton step algorithm can be implemented in time and space O(n?). In
addition, the only information required is the gradient at each step
(and the exp-concavity constant « of the loss functions).



4.4.

4.4

Exercises 67

Exercises

. Prove that exp-concave functions are a larger class than strongly

convex functions. That is, prove that a strongly convex function is
also exp-concave. Show that the converse is not necessarily true.

Prove that a function f is a-exp-concave over K if and only if for
all x € IC,
V2 f(x) 7 aVf(x)Vi(x)".

Hint: consider the Hessian of the function e=*/®)_ and use the
fact that the Hessian of a convex function is always positive
semidefinite.

Write pseudo-code for a portfolio selection algorithm based on
online gradient descent. That is, given a set of return vectors, spell
out the exact constants and updates based upon the gradients of
the payoff functions. Derive the regret bound based on Theorem

B.1

Do the same (pseudo-code and regret bound) for the Online New-
ton Step algorithm applied to portfolio selection.

. Download stock prices from your favorite online finance website

over a period of at least three years. Create a dataset for test-
ing portfolio selection algorithms by creating price-return vectors.
Implement the OGD and ONS algorithms and benchmark them
on your data.
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4.5 Bibliographic Remarks

The Geometric Brownian Motion model for stock prices was suggested
and studied as early as 1900 in the PhD thesis of Louis Bachelier (17),
see also Osborne (83)), and used in the Nobel Prize winning work of
Black and Scholes on options pricing (19)). In a strong deviation from
standard financial theory, Thomas Cover (32) put forth the universal
portfolio model, whose algorithmic theory we have historically sketched
in chapter [I] Some bridges between classical portfolio theory and the
universal model appear in (I). Options pricing and its relation to regret
minimization was recently also explored in the work of (36)).
Exp-concave functions have been considered in the context of pre-
diction in (68)), see also (29) (Chapter 3.3 and bibliography). For the
square-loss, (15) gave a specially tailored and near-optimal prediction
algorithm. Logarithmic regret algorithms for online convex optimiza-
tion and the Online Newton Step algorithm were presented in (54)).
The Sherman-Morrison formula, a.k.a. the matrix inversion lemma,
gives the form of the inverse of a matrix after a rank-1 update, see (89).
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Regularization

In the previous chapters we have explored algorithms for OCO that are
motivated by convex optimization. However, unlike convex optimiza-
tion, the OCO framework optimizes the Regret performance metric.
This distinction motivates a family of algorithms, called “Regularized
Follow The Leader” (RFTL), which we introduce in this chapter.

In an OCO setting of regret minimization, the most straightforward
approach for the online player is to use at any time the optimal decision
(i.e., point in the convex set) in hindsight. Formally, let

t

i1 = argmin Y £,(6)
xek ;o1

This flavor of strategy is known as “fictitious play” in economics, and
has been named “Follow the Leader” (FTL) in machine learning. It is
not hard to see that this simple strategy fails miserably in a worst-case
sense. That is, this strategy’s regret can be linear in the number of
iterations, as the following example shows: Consider K = [—1, 1], let

filz) = %m, and let f; for 7 = 2,...,T alternate between —x or x.

69
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Thus,
¢ %x, t is odd
Z fr(x) =
=1 —%x, otherwise
The FTL strategy will keep shifting between z; = —1 and xz; = 1,

always making the wrong choice.

The intuitive FTL strategy fails in the example above because it is
unstable. Can we modify the FTL strategy such that it won’t change
decisions often, thereby causing it to attain low regret?

This question motivates the need for a general means of stabilizing
the FTL method. Such a means is referred to as “regularization”.

5.1 Regularization functions

In this chapter we consider regularization functions, denoted R : K —
R, which are strongly convex and smooth (recall definitions in .
Although it is not strictly necessary, we assume that the regular-
ization functions in this chapter are twice differentiable over K and, for
all points x € int(K) in the interior of the decision set, have a Hessian
V2R(x) that is, by the strong convexity of R, positive definite.
We denote the diameter of the set IC relative to the function R as

Dp = | max{R(x) — R(y)}
x,yEK

Henceforth we make use of general norms and their dual. The dual
norm to a norm || - || is given by the following definition:

IylI* £ max (x,y)
lIx[I<1
A positive definite matrix A gives rise to the matrix norm ||x||4 =
VxT Ax. The dual norm of a matrix norm is ||x[/* = ||x||4-1.

The generalized Cauchy-Schwarz theorem asserts (x,y) < ||x||||y|*
and in particular for matrix norms, (x,y) < [|x[/ally]l% (see exercise
).

In our derivations, we usually consider matrix norms with respect
to V2R(x), the Hessian of the regularization function R(x). In such
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cases, we use the notation

Ixlly £ 1]l w2 r(y)

and similarly
Iy = 1%l v-2r()

A crucial quantity in the analysis of OCO algorithms that use reg-
ularization is the remainder term of the Taylor approximation of the
regularization function, and especially the remainder term of the first
order Taylor approximation. The difference between the value of the
regularization function at x and the value of the first order Taylor
approximation is known as the Bregman divergence, given by

Definition 5.1. Denote by Bgr(x||y) the Bregman divergence with re-
spect to the function R, defined as

Br(x|ly) = R(x) — R(y) — VR(y) " (x — y)

For twice differentiable functions, Taylor expansion and the mean-
value theorem assert that the Bregman divergence is equal to the second
derivative at an intermediate point, i.e., (see exercises)

1
Br(xlly) = 5lx - vl

for some point z € [x,y], meaning there exists some a € [0,1] such
that z = ax + (1 — a)y. Therefore, the Bregman divergence defines a
local norm, which has a dual norm. We shall denote this dual norm by

[ [
X,y z°

With this notation we have
1
Br(x|ly) = 5x - yllzy-

In online convex optimization, we commonly refer to the Bregman di-
vergence between two consecutive decision points x; and x;41. In such
cases, we shorthand notation for the norm defined by the Bregman di-
vergence with respect to R on the intermediate point in [x;,x¢11] as
[ -1lt = || - lIx¢,xcs1 - The latter norm is called the local norm at iteration
t. With this notation, we have Bg(x¢||xi11) = 3 [x¢ — X¢41]7.
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Finally, we consider below generalized projections that use the Breg-
man divergence as a distance instead of a norm. Formally, the projec-
tion of a point y according to the Bregman divergence with respect to
function R is given by

arg min Br(x||y)
xekl

5.2 The RFTL algorithm and its analysis

Recall the caveat with straightforward use of follow-the-leader: as in
the bad example we have considered, the predictions of FTL may vary
wildly from one iteration to the next. This motivates the modification of
the basic FTL strategy in order to stabilize the prediction. By adding
a regularization term, we obtain the RFTL (Regularized Follow the
Leader) algorithm.

We proceed to formally describe the RFTL algorithmic tem-
plate and analyze it. The analysis gives asymptotically optimal regret
bounds. However, we do not optimize the constants in the regret bounds
in order to improve clarity of presentation.

Throughout this chapter, recall the notation of V; to denote the
gradient of the current cost function at the current point, i.e.,

Vi £ Vft(xt)

In the OCO setting, the regret of convex cost functions can be bounded
by a linear function via the inequality f(x;) — f(x*) < V] (x; — x*).
Thus, the overall regret (recall definition (1.1))) of an OCO algorithm
can be bounded by

D filxe) = flx*) < 3V (xe = x). (5.1)

5.2.1 Meta-algorithm definition

The generic RFTL meta-algorithm is defined in Algorithm The
regularization function R is assumed to be strongly convex, smooth,
and twice differentiable.
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Algorithm 10 Regularized Follow The Leader

1: Input: n > 0, regularization function R, and a convex compact set

K.

2: Let x; = arg mingex {R(x)}.
3: fort=1toT do
4:  Predict x;.
5. Observe the payoff function f; and let Vi = V fi(xy).
6:  Update
t
X1 = arg min {77 Z V;rx + R(x)}
xeX s=1
7. end for

5.2.2 The regret bound
Theorem 5.1. The RFTL Algorithm attains for every u € K the

following bound on the regret:

T
R(u) - R
regrety < 20 [[Vel[;* + M

t=1
If an upper bound on the local norms is known, i.e. ||V¢|; < Gg for
all times ¢, then we can further optimize over the choice of 7 to obtain

regrety < 2DrGRrv2T.

To prove Theorem we first relate the regret to the “stability”
in prediction. This is formally captured by the following lemmaﬂ

Lemma 5.2. For every u € K, Algorithm [10| guarantees the following
regret bound

T
regrety < Z V! (%) — Xe41) + ED%
=1 N
Historically, this lemma, is known as the “FTL-BTL,” which stands for follow-
the-leader vs. be-the-leader. BTL is a hypothetical algorithm that predicts x;41 at
iteration ¢, where x; is the prediction made by FTL. These terms were coined by
Kalai and Vempala (63).
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Proof. For convenience of the derivations, define the functions
1
go(x) = ER(X) , gi(x) £ Vix.

By equation (5.1)), it suffuces to bound Y7, [g:(x¢) — g¢(u)]. As a first
step, we prove the following inequality:

Lemma 5.3.

T
Do gi(w) > gi(xeta)
=0

t=0

Proof. by induction on 7"

Induction base: By definition, we have that x; = argmin, ., {R(x)},
and thus go(u) > go(x1) for all u.

Induction step: Assume that for 7’, we have

i 7
> ogi(u) > > gi(xe41)
i=0 i=0

and let us prove the statement for 7’ + 1. Since Xpi4o =
arg ming {51 gi(x)} we have:

T'+1 T'+1

Z gt(u) Z gt (X1742)
t=0

t=0
T

= Z 9t(X7r42) + 97741 (X7 12)
t=0

Tl

Z 9t (Xe11) + 97741 (X7742)
t=0

T'+1

= Z gt(Xt+1).-
t=0

AV

v

Where in the third line we used the induction hypothesis for u =
XT742- O
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We conclude that

T

T

D lgx) —g(w)] < D lgi(xe) — ge(xeg1)] + [go(u) — go(x1)]

t=1 =1
L 1

= th (x0) = gu(xe4) + - [R(w) = Rxa)]

4 1
th Xt) — gt(Xt41) + DR

IN

O

Proof of Theorem[5.1] Recall that R(x) is a convex function and K is
a convex set. Denote:

t

Oy(x) £ {77 > Vix+ R(X)}
s=1

By the Taylor expansion (with its explicit remainder term via the mean-

value theorem) at x;41, and by the definition of the Bregman diver-

gence,

By (xp41) + (% — Xe31)  V(Xp41) + Ba, (X¢]|%441)
> ®y(x441) + Ba, (%] [xe41)
Oy (x441) + Br(x¢||xi41).

(I)t (Xt)

The inequality holds since x;11 is a minimum of ®; over K, as in The-
orem The last equality holds since the component V. x is linear
and thus does not affect the Bregman divergence. Thus,

IN

Dy (xy) — Pp(xt41) (5.2)
= (Pe1(xe) — Peo1(xe41)) + 0V] (% — Xes1)

< 1V, (x¢—x41) (x¢ is the minimizer)

Br(x||xt+1)

To proceed, recall the shorthand for the norm induced by the Bregman
divergence with respect to R on point xs, X¢41 as || - |t = || [|x¢,xes -

Similarly for the dual local norm |[[-[|; = ||-][%, x,.,,- With this notation,
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we have Br(x|[x¢+1) = 3|/x¢ — x¢41[|7. By the generalized Cauchy-
Schwarz inequality,

VI (0 = x111) < [[Vill} - I — X [ Cauchy-Schwarz
= HVtIIZ‘ 2BR(Xt||Xt+1)
< Vells - V20 V] (0 = xe40)- 62)

After rearranging we get
Vi (% = xi41) < 27| Ve]l2.

Combining this inequality with Lemma [5.2] we obtain the theorem
statement. O

5.3  Online Mirrored Descent

In the convex optimization literature, “Mirrored Descent” refers to a
general class of first order methods generalizing gradient descent. On-
line mirrored descent (OMD) is the online counterpart of this class of
methods. This relationship is analogous to the relationship of online
gradient descent to traditional (offline) gradient descent.

OMD is an iterative algorithm that computes the current decision
using a simple gradient update rule and the previous decision, much
like OGD. The generality of the method stems from the update being
carried out in a “dual” space, where the duality notion is defined by
the choice of regularization: the gradient of the regularization function
defines a mapping from R™ onto itself, which is a vector field. The
gradient updates are then carried out in this vector field.

For the RFTL algorithm the intuition was straightforward—the
regularization was used to ensure stability of the decision. For OMD,
regularization has an additional purpose: regularization transforms the
space in which gradient updates are performed. This transformation
enables better bounds in terms of the geometry of the space.

The OMD algorithm comes in two flavors: an agile and a lazy ver-
sion. The lazy version keeps track of a point in Euclidean space and
projects onto the convex decision set I only at decision time. In con-
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trast, the agile version maintains a feasible point at all times, much like
OGD.

Algorithm 11 Online Mirrored Descent

1: Input: parameter 7 > 0, regularization function R(x).
2: Let y; be such that VR(y;) = 0 and x; = arg mingex Br(x||y1)-
3: fort=1to T do
4:  Play x;.
5. Observe the payoff function f; and let V; = V fi(xy).
6:  Update y; according to the rule:

[Lazy version] VER(yi+1) = VR(y:) =0V

[Agile version] VR(yi+1) = VR(x¢) —n' V4

Project according to Bp:
Xi+1 = argmin Br(X||yi+1)
xeK

7: end for

Both versions can be analysed to give roughly the same regret
bounds as the RFTL algorithm. In light of what we will see next, this
is not surprising: for linear cost functions, the RFTL and lazy-OMD
algorithms are equivalent!

Thus, we get regret bounds for free for the lazy version. The agile
version can be shown to attain similar regret bounds, and is in fact
superior in certain settings that require adaptivity, though the latter
issue is beyond our scope.

5.3.1 Equivalence of lazy OMD and RFTL
The OMD (lazy version) and RFTL are identical for linear cost func-
tions, as we show next.

Lemma 5.4. Let fi,..., fr be linear cost functions. The lazy OMD and
RFTL algorithms produce identical predictions, i.e.,

t—1
arg min Br(x||y:) = arg min (n Z Vix+ R(X)) .
xeK xeK

s=1
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Proof. First, observe that the unconstrained minimum

t—1

1
x; £ arg min { > Vix+ R(X)}
x€R”™ s=1 n

satisfies -
VR(x}) = —n Z Vs.
s=1

By definition, y; also satisfies the above equation, but since R(x) is
strictly convex, there is only one solution for the above equation and
thus y; = x;. Hence,

Br(x|lyt) = R(x) — R(y:) — (VR(yt)) " (x — y)
t—1
= R(x) = R(y)) +n ) Vi (x=y1) .
s=1
Since R(y:) and Y.'} V/]y; are independent of x, it follows that
Bpr(x||ly:) is minimized at the point x that minimizes R(x) +
n Zi;ll V.1 x over K which, in turn, implies that

t—1
1
argmin Br(x||y:) = argmin{ g VSTX—FR(X)} .
xek xek —1 n

5.4 Application and special cases

In this section we illustrate the generality of the regularization tech-
nique: we show how to derive the two most important and famous online
algorithms—the online gradient descent algorithm and the online expo-
nentiated gradient (based on the multiplicative update method)—from
the RFTL meta-algorithm.

Other important special cases of the RFTL meta-algorithm are
derived with matrix-norm regularization—mamely, the von Neumann
entropy function, and the log-determinant function, as well as self-
concordant barrier regularization—which we shall explore in detail in
the next chapter.
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5.4.1 Deriving online gradient descent

To derive the online gradient descent algorithm, we take R(x) = 1||x —
%03 for an arbitrary x¢ € K. Projection with respect to this divergence
is the standard Euclidean projection (see exercise |3]), and in addition,
VR(x) = x — x¢. Hence, the update rule for the OMD Algorithm

becomes:
X = lg(yt), Vi =Yi-1 —nVio1 lazy version

Xt = 1’;[(}’15), Yt =Xt-1 —NVi1 agile version

The latter algorithm is exactly online gradient descent, as described
in Algorithm [6] in Chapter [3] Furthermore, both variants are identical
for the case in which /C is the unit ball (see exercise [4]).

Theorem gives us the following bound on the regret (where
Dg, || - ||+ are the diameter and local norm defined with respect to the
regularizer R as defined in the beginning of this chapter, and D is the
Euclidean diameter as defined in chapter [2))

1 1
regrety < 51)%% +20 ) |IVellf? < %D2 +20 > ||Ve|> < 2GDVT,
t t
1

where the second inequality follows since for R(x) = 3||x — xo||? and
the local norm || - [|; reduces to the Euclidean norm.

5.4.2 Deriving multiplicative updates

Let R(x) = xlogx = ), x;logx; be the negative entropy function,
where logx is to be interpreted elementwise. Then VR(x) = 1 + log x,
and hence the update rules for the OMD algorithm become:

x; = arg min Br(x||y:), logy: =logy:—1 —nVi—1 lazy version
xek

x; = argmin Br(x||y:), logy: =logx;—1 —nV,_1 agile version
xek
With this choice of regularizer, a notable special case is the experts
problem we encountered in §I.3] for which the decision set K is the
n-dimensional simplex A, = {x € R} | > ;x; = 1}. In this special
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case, the projection according to the negative entropy becomes scaling
by the ¢; norm (see exercise , which implies that both update rules
amount to the same algorithm:

x¢(i) - e~ 1Ve ()
i) e )
which is exactly the Hedge algorithm from the first chapter!

Theorem gives us the following bound on the regret:

regrety < 2\/2D%{Z [Vell72.

xe41(1) =

t

If the costs per individual expert are in the range [0, 1], it can be shown
that

IVilli < Ville <1 = GRr.
In addition, when R is the negative entropy function, the diameter over
the simplex can be shown to be bounded by D% < logn (see exercises),
giving rise to the bound

regrety < 2DpGRrV2T < 24/2T logn.

For an arbitrary range of costs, we obtain the exponentiated gradi-
ent algorithm described in Algorithm

Algorithm 12 Exponentiated Gradient

1: Input: parameter n > 0.
2: Lety; =1, x1 = ”;'11“1.
3: fort=1toT do

4:  Predict x;.
5
6
7

Observe f;, update y;.1(i) = yi(i)e 7Vt for all i € [n)].
Project: x;41 = ”yyttﬁ
: end for

The regret achieved by the exponentiated gradient algorithm can
be bounded using the following corollary of Theorem

Corollary 5.5. The exponentiated gradient algorithm with gradients
bounded by ||[Vi|leoe < Goo and parameter n = ,/-25%

2TGZ,
bounded by
regrety < 2Goo/2T logn.

has regret
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5.5 Randomized regularization

The connection between stability in decision making and low regret
has motivated our discussion of regularization thus far. However, this
stability need not be achieved only using strongly convex regularization
functions. An alternative method to achieve stability in decisions is by
introducing randomization into the algorithm. In fact, historically, this
method preceded methods based on strongly convex regularization (see
bibliography).

In this section we first describe a deterministic algorithm for online
convex optimization that is easily amenable to speedup via random-
ization. We then give an efficient randomized algorithm for the special
case of OCO with linear losses.

Oblivious vs. adaptive adversaries. For simplicity, we consider our-
selves in this section with a slightly restricted version of OCO. So far,
we have not restricted the cost functions in any way, and they could
depend on the choice of decision by the online learner. However, when
dealing with randomized algorithms, this issue becomes a bit more
subtle: can the cost functions depend on the randomness of the deci-
sion making algorithm itself? Furthermore, when analyzing the regret,
which is now a random variable, dependencies across different iterations
require probabilistic machinery which adds little to the fundamental
understanding of randomized OCO algorithms. To avoid these compli-
cations, we make the following assumption throughout this section: the
cost functions {f;} are adversarially chosen ahead of time, and do not
depend on the actual decisions of the online learner. This version of
OCO is called the oblivious setting, to distinguish it from the adaptive
setting.

5.5.1 Perturbation for convex losses

The prediction in Algorithm [13]is according to a version of the follow-
the-leader algorithm, augmented with an additional component of ran-
domization. It is a deterministic algorithm that computes the expected
decision according to a random variable. The random variable is the
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minimizer over the decision set according to the sum of gradients of
the cost functions and an additional random vector.

In practice, the expectation need not be computed exactly. Estima-
tion (via random sampling) up to a precision that depends linearly on
the number of iterations would suffice.

The algorithm accepts as input a distribution D over vectors in n-
dimensional Euclidean space which we denote by n € R”. For o, L € R,
we say that a distribution D is (o, L) = (04, L) stable with respect to
the norm || - ||, if

B [[nl];] = o0,

and
v, / 'D(n) — D(n — u)|dn < La|[ull’.

n
Here n ~ D denotes a vector n € R” sampled according to distribution
D, and D(x) denotes the measure assigned to x according to D. The
subscript a is omitted if clear from the context.

The first parameter, o, is related to the variance of D, while the
second, L, is a measure of the sensitivity of the distributiorﬂ For ex-
ample, if D is the uniform distribution over the hypercube [0, 1], then
it holds that (see exercises) for the Euclidean norm

o2 <vn, Ly <1

Reusing notation from previous chapters, denote by D = D, the di-
ameter of the set K according to the norm || - ||, and by D* = D?
the diameter according to its dual norm. Similarly, denote by G = G,
and G* = G an upper bound on the norm (and dual norm) of the
gradients.

Theorem 5.6. Let the distribution D be (o, L)-stable with respect to
norm || - ||o. The FPL algorithm attains the following bound on the
regret:

1
regrety < nDG**LT + —oD.
n

2In harmonic analysis of Boolean functions, a similar quantity is called “average
sensitivity”.
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Algorithm 13 Follow-the-perturbed-leader for convex losses
1: Input: n > 0, distribution D over R", decision set K C R™.
2: Let x; € K be arbitrary.

3: fort=1to T do

4

5

Predict x;.
Observe the loss function f;, suffer loss f;(x;) and let V; =
Vft(Xt).
6:  Update
t
xi+1 = E_|argmin nZVSTX—FnTx (5.3)
n~D XEK: s=1
7: end for

We can further optimize over the choice of 1 to obtain
regrety < 2LDG*VoT.
Proof. Define the random function gg as
go(x) = ln X.

It follows from Lemma 5.3 applied to the functions {g;(x) = V; x}
that
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and thus,

T
Z Vi(x: — x)

t=1

M=

T
gt(xt) — th(X*)
t=1

T

9e(xt) = D 9e(%e+1) + Elgo(x") — go(x1)]
t=1

t

I
—

IN
M=

W
I
—

AN
M=

1
Vi(xe — Xp41) + p E[||n|/*||x* — x1]|] Cauchy-Schwarz

W
Il
—_

IN
M=

1
Vt(Xt — Xt+1) + HO-D

ir
I,

Hence,

ZtT:1 fe(xe) — ZtT:1 Je(x¥)
<Y Vi (% = x)
< V] (%t — xe41) + %O’D above

<G YL % — x|l + %O’D. Cauchy-Schwarz (5.4)

We now argue that ||x; — x¢41|| = O(n). Let
t—1
h — . VT T ’
+(n) arg min {nszzl sX+n x}

and hence x; = Epp[ht(n)]. Recalling that D(n) denotes the measure
of n € R" according to D, we can write:

xi= [ hin)Dn)dn,
neRn?
and:

xi1= [ (atqVoDmidn= [ h(n)D(n - yVidn.
ncR” neR”
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Notice that x;,x;4+1 may depend on each other. However, by linearity
of expectation, we have that

l[xt — X1
= [ () = e +790)D(w)dn]

ncR”
= [ m@)®m) - Dm—yV,)dn]|

neR”
1| [ (hela) = Be(0))(D(n) ~ Dl ~ V)|

neR”™
< [ @) = O] [P@) - Dln - 70)|dn

neR™

<D [ D)~ D -1V dn I — h(0)] < D
< Dr}f%;\vtﬂ* <nDLG". D is (o, L)-stable.

Substituting this bound back into (5.4)) we have
T T )
2 filxe) = 22 filx*) <nLDG™T + JoD.

O

For the choice of D as the uniform distribution over the unit
hypercube [0,1]", which has parameters oo < /n and Ly < 1 for
the Euclidean norm, the optimal choice of 1 gives a regret bound of
DGnY/4\/T. This is a factor nl/* worse than the online gradient de-
scent regret bound of Theorem [3.1] For certain decision sets K a better
choice of distribution D results in near-optimal regret bounds.

5.5.2 Perturbation for linear cost functions

The case of linear cost functions fi(x) = gtT x is of particular interest
in the context of randomized regularization. Denote

¢
. T T
wi(n) = arg min {nng X+ n X}

s=1
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By linearity of expectation, we have that
filxe) = il B [wn(m))) = B [fi(wi(n))].

Thus, instead of computing x; precisely, we can sample a single vector
ng ~ D, and use it to compute X; = wy(ng), as illustrated in Algorithm

14
Algorithm 14 FPL for linear losses

1: Input: > 0, distribution D over R", decision set K C R™.
2: Sample ng ~ D. Let %; € arg minycx-{—n] x}.
3: fort=1to T do
4:  Predict X;.
5. Observe the linear loss function, suffer loss g, x;.
6: Update
t—1
Xy = arg min {n Z g;,rx + na—x}
xek s—1
7: end for

By the above arguments, we have that the expected regret for the
random variables X; is the same as that for x;. We obtain the following

Corollary:
Corollary 5.7.
T T 1
E > filk) =) fi(x*)| <nLDG?T + —oD.
no~D |3 =1 N

The main advantage of this algorithm is computational: with a sin-
gle linear optimization step over the decision set K (which does not even
have to be convex!), we attain near optimal expected regret bounds.

5.5.3 Follow-the-perturbed-leader for expert advice

An interesting special case (and in fact the first use of perturbation in
decision making) is that of non-negative linear cost functions over the
unit n-dimensional simplex with costs bounded by one, or the problem
of prediction of expert advice we have considered in Chapter
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Algorithm [14] applied to the probability simplex and with exponen-
tially distributed noise is known as the follow-the-perturbed-leader for
prediction from expert advice method. We spell it out in Algorithm

Algorithm 15 FPL for prediction from expert advice

1: Input: n >0
2: Draw n exponentially distributed variables n(i) ~ e™"*.
3: Let x; = argming,ca, {—€/ x}.
4: fort=1to 7 do
5. Predict using expert 4; such that x; = e;,
6:  Observe the loss vector and suffer loss g, %; = g (i)
7. Update (w.l.o.g. choose X;4+1 to be a vertex)
t
X¢41 = argmin {Z g;rx — nTx}
xEA, s—1
8: end for

Notice that we take the perturbation to be distributed according
to the one-sided negative exponential distribution, i.e., n(i) ~ e~"", or
more precisely

Prin(i) <z]=1—e"7 Vz>0.

Corollary gives regret bounds that are suboptimal for this spe-
cial case, thus we give here an alternative analysis that gives tight
bounds up to constants amounting to the following theorem.

Theorem 5.8. Algorithm outputs a sequence of predictions
X1,...,Xp € A, such that:

(1n)E[ngf<t

Notice that as a special case of the above theorem, choosing n =

4logn
< min Tx* + .
S ; gt 1

10% yields a regret bound of

regret = O(1/T logn),
which is equivalent up to constant factors to the guarantee given for
the Hedge algorithm in Theorem
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Proof. We start with the same analysis technique throughout this chap-
ter: let g = —n. It follows from Lemma [5.3| applied to the functions

{fi(x) = g/ x} that

T T
E lzggu > E Zg:ﬁﬂrl] )
t=0 t=0
and thus,
T T
E [Z g (ki —x")| <E lz g/ (% — %ep1)| + Elgy (x" —x1)]
t=1 t=1
T
<E lz g/ (% — %41 | + Efln|oc|lx" — x1 [1]
t=1
T
<Y Elg (i~ %) [ %]+ - logn,  (55)
t=1

where the second inequality follows by the generalized Cauchy-Schwarz
inequality, and the last inequality follows since (see exercises)

2logn
E [Inlls] < 27

We proceed to bound Elg/ (%; — %X¢+1)[%s], which is naturally
bounded by the probability that %X; is not equal to %X;y; multiplied
by the maximum value that g; can attain (i.e., its {s norm):

Elg, (% —%i41) | %] < [|gelloo - Prl&e # %ep1 | %] < Prl&, # %iqa | %¢).

Above we have that [|gi]lcc < 1 by assumption that the losses are
bounded by one.

To bound the latter, notice that the probability x; = e;, is the
leader at time ¢ is the probability that —n(i;) > v for some value v that
depends on the entire loss sequence till now. On the other hand, given
%X;, we have that X;y; = %X; remains the leader if —n(i;) > v + g (i),
since it was a leader by a margin of more than the cost it will suffer.
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Thus,

PI’[)A(t 75 Xit1 | )A(t] =1- Pr[—n(it) > v+ gt(it) | — n(it) > U]

] 176_771

-1 v+goto(it)

e~ Nx
o M

=1 — e n8elic)
< ngi(it) = ng/ %t
Substituting this bound back into we have
E[Ethl gl (% —x%)] <Y, Eulg %) + 410#7

which simplifies to the Theorem. O

5.6 * Optimal regularization

Thus far we have introduced regularization as a general methodology
for deriving online convex optimization algorithms. The main theorem
of this chapter, Theorem [5.1] bounds the regret of the RFTL algorithm
for any strongly convex regularizer as

regrety < max \/22 V|32 Br(ul|x1).
t

In addition, we have seen how to derive the online gradient descent
and the multiplicative weights algorithms as special cases of the RFTL
methodology. But are there other special cases of interest, besides these
two basic algorithms, that warrant such general and abstract treat-
ment?

There are surprisingly few cases of interest besides the Euclidean
and Entropic regularizations and their matrix analoguesﬂ However, in
this chapter we will give some justification of the abstract treatment of
regularization.

Our treatment is motivated by the following question: thus far we
have thought of R as a strongly convex function. But which strongly
convex function should we choose to minimize regret? This is a deep

30ne such example is the self-concordant barrier regularization which we shall
explore in the next chapter.
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and difficult question which has been considered in the optimization
literature since its early developments. Naturally, the optimal regular-
ization should depend on both the convex underlying decision set, as
well as the actual cost functions (see exercises for a natural candidate
of a regularization function that depends on the convex decision set).

We shall treat this question no differently than we treat other op-
timization problems throughout this manuscript itself: we’ll learn the
optimal regularization online! That is, a regularizer that adapts to the
sequence of cost functions and is in a sense the “optimal” regularization
to use in hindsight.

To be more formal, let us consider the set of all strongly convex
regularization functions with a fixed and bounded Hessian in the set

Vx e K. V2R(x)=V?eH2{X eR""; Tr(X)<1, X =0}

The set H is a restricted class of regularization functions (which
does not include the entropic regularization). However, it is a general
enough class to capture online gradient descent along with any rotation
of the Euclidean regularization.

Algorithm 16 AdaGrad

1: Input: parameters n,x; € K.
2: Initialize: Sy = Gy = 0,
3: fort=1to T do
4:  Predict xy, suffer loss fi(x;).
5. Update:
St =S1+ VtVtT, Gy = St1/2
Y1 =x — Gy 'V,
i1 = argmin |y - x|,
xeX
6: end for

The problem of learning the optimal regularization has given rise to
Algorithm (16, known as the AdaGrad (Adaptive subGradient method)
algorithm. In the algorithm definition and throughout this chapter, the
notation A~! refers to the Moore-Penrose pseudoinverse of the matrix
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A. Perhaps surprisingly, the regret of AdaGrad is at most a constant
factor larger than the minimum regret of all RFTL algorithm with
regularization functions whose Hessian is fixed and belongs to the class
‘H. The regret bound on AdaGrad is formally stated in the following
theorem.

Theorem 5.9. Let {x;} be defined by Algorithm [16] with parameters
n = D, where
D= — .
max [|lu — x|z

Then for any x* € £,

t;(AdaGrad) < 2D |mi i 5.6
regret(AdaGrad) < glel%;”VtHH (5.6)

Before proving this theorem, notice that it delivers on one of the
promised accounts: comparing to the bound of Theorem and ignor-
ing the diameter D and dimensionality, the regret bound is as good as
the regret of RFTL for the class of regularization functions.

We proceed to prove Theorem First, we give a structural result
which explicitly gives the optimal regularization as a function of the
gradients of the cost functions. For a proof see the exercises.

Proposition 5.1. Let A > 0. The minimizer of the following minimiza-
tion problem:

min Tr(X 'A)
X
subject to X =0
Tr(X) <1,
is X = A/2/Tr(A'/?), and the minimum objective value is Tr?(A'/?).
A direct corollary of this proposition is that

Corollary 5.10.

[min 2Vl = Vmingey Te(H-1Y, V,V])

=Tr\/>, ViV] = Tr(Gr)
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Hence, to prove Theorem it suffices to prove the following
lemma.

Lemma 5.11.

t(Ad d) < 2DTr(Gr) = 2D i 2
regrety (AdaGrad) < 2DTr(Gr) = 2D, g 37 Vil

Proof. By the definition of y;1:
Yir1 — X =% — x* — GV, (5.7)
and
Gt(ytJrl — X*) = Gt(Xt — X*) - th. (58)
Multiplying the transpose of (5.7)) by (5.8]) we get
(yer1 — X)) Gilyer1 —x¥) =
(xi—x*) TGy (x,—x*) — 20V, (% —x*) + 7°V] GV, (5.9)
Since x¢41 is the projection of y; 1 in the norm induced by G, we have
(see @11)
(yer1 = x) Golyesr —x) = |yes1 = XG> Ixep1 —x7NE,-

This inequality is the reason for using generalized projections as op-
posed to standard projections, which were used in the analysis of on-
line gradient descent (see §3.1| Equation (3.2))). This fact together with

(B9) gives
_ 1
VI Ga—x) < VTGV oo (I =X, e =Xz

Now, summing up over t = 1 to T" we get that

T
_ 1
ZVT (x¢ — x¥) < ﬂz VGV 4 —|xi = x|, (5.10)
pat 2 = 2n
LS o (P S N QLY S -
2n — 1 Gy t Gy_1 2n + Gr
77 T 1 T
<5 Zv}aglvt + % > (xe—x*) T (Gy — Gio1) (x¢ —x7).
t=1 t=1

In the last inequality we use the fact that Gy = 0. We proceed to bound
each of the terms above separately.
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Lemma 5.12. With S;, G; as defined in Algorithm

T T
YV GV <2) V]IGE'V, < 2Tx(Gr).
t=1 t=1

Proof. We prove the lemma by induction. The base case follows since

V]GV, = Te(GTVIV])
= Tr(G;'GY)
= Tr(Gy).

Assuming the lemma holds for 7" — 1, we get by the inductive hy-
pothesis

T
N V)GV, < 2Tx(Gro1) + VG Vr
t=1

= 2Tr((G% — Vo V)2 + Te (G VI VL)
< 2Tr(Gyp).

Here, the last inequality is due to the matrix inequality for positive
definite matrices A = B > 0 (see exercises):

2Tr((A — B)'/?) + Tr(A"'/2B) < 2Tr(AY?).

Lemma 5.13.
T
Z(Xt—X*)T(Gt - thl)(Xt—X*) S DQT‘I'(GT)
t=1
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Proof. By definition S; = Sy_1, and hence G; = G¢_1. Thus,

T
Y (i —x) T (Gy — Gor)(xe—x7)

t=1

T
S ZDz)\max(Gt - Gt—l)

T
< D*Y Tr(Gy — Gi-1) A=0 = Apax(A) < Tr(A)
t=1
T
= D? Z(TI'(Gt) — Tr(Gi-1)) linearity of the trace
t=1
< D*Tr(G7)

Plugging both lemmas into Equation ([5.10]), we obtain

T
1
SV (x —x*) < Tr(Gr) + %DZTr(GT) < 2DTr(G7r).
t=1

Regularization
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5.7 Exercises

1. (a) Show that the dual norm to a matrix norm given by A > 0
corresponds to the matrix norm of A=1.

(b) Prove the generalized Cauchy-Schwarz inequality for any
norm, i.e.,

(6 y) < lxlliyll*

2. Prove that the Bregman divergence is equal to the local norm at
an intermediate point, that is:

1
Br(x|ly) = 5 lx -yl
where z € [x,y] and the interval [x,y] is defined as

x,y|={v=ax+(1-a)y, a€l0,1]}

3. Let R(x) = %||x — x0||? be the (shifted) Euclidean regularization
function. Prove that the corresponding Bregman divergence is the
Euclidean metric. Conclude that projections with respect to this
divergence are standard Euclidean projections.

4. Prove that both agile and lazy versions of the OMD meta-
algorithm are equivalent in the case that the regularization is
Euclidean and the decision set is the Euclidean ball.

5. For this problem the decision set is the n-dimensional simplex. Let
R(x) = xlogx be the negative entropy regularization function.
Prove that the corresponding Bregman divergence is the relative
entropy, and prove that the diameter Dy of the n-dimensional
simplex with respect to this function is bounded by logn. Show
that projections with respect to this divergence over the simplex
amounts to scaling by the #; norm.

6. Prove that for the uniform distribution D over the unit hypercube
[0,1]™, the parameters o, L defined in with respect to the
Euclidean norm can be bounded as o < /n, L <1.
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7.

10.

11.

Regularization

Let D be a one-sided multi-dimensional exponential distribution,
such that a vector n ~ D is distributed over each coordinate
exponentially:

Prin; <z]=1—-¢e* Vie[n], z>0.

Prove that
E [|n|e] < 2logn.
n~D

(Hint: use the Chernoff bound)

Extra credit: prove that Eyp[||n||e] = Hy, where H,, is the n-th
harmonic number.

* A set K C R? is symmetric if x € K implies —x € K. Symmet-
ric sets gives rise to a natural definition of a norm. Define the
function | - || : R? > R as

1
||x||xc = arg min {x € IC}
a>0 |«
Prove that || - ||« is a norm if and only if I is convex.

** Prove a lower bound of €(T") on the regret of the RFTL algo-
rithm with [ - ||x as a regularizer.

* Prove that for positive definite matrices A = B > 0 it holds
that

(a) Al/2 = B1/2
(b) 2Tr((A — B)Y/?) + Tr(A~'/2B) < 2Tr(AY/?).
* Consider the following minimization problem where A > 0:
min Tr(X 'A)
X
subject to X >0
Tr(X) <1.

Prove that its minimizer is given by X = AY/2/Tr(A'Y?), and the
minimum is obtained at Tr?(A/2).
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5.8 Bibliographic Remarks

Regularization in the context of online learning was first studied in (48))
and (67). The influential paper of Kalai and Vempala (63)) coined the
term “follow-the-leader” and introduced many of the techniques that
followed in OCO. The latter paper studies random perturbation as a
regularization and analyzes the follow-the-perturbed-leader algorithm,
following an early development by (49) that was overlooked in learning
for many years.

In the context of OCO, the term follow-the-regularized-leader was
coined in (99;96)), and at roughly the same time an essentially identical
algorithm was called “RFTL” in (2). The equivalence of RFTL and
Online Mirrored Descent was observed by (55). The AdaGrad algorithm
was introduced in (38} B7), its diagonal version was also discovered in
parallel in (75). Adaptive regularization has received much attention
recently, see e.g., (82]).

There is a strong connection between randomized perturbation and
deterministic regularization. For some special cases, adding randomiza-
tion can be thought of as a special case of deterministic strongly convex
regularization, see (3} 4)).






6

Bandit Convex Optimization

In many real-world scenarios the feedback available to the decision
maker is noisy, partial or incomplete. Such is the case in online routing
in data networks, in which an online decision maker iteratively chooses
a path through a known network, and her loss is measured by the length
(in time) of the path chosen. In data networks, the decision maker can
measure the RTD (round trip delay) of a packet through the network,
but rarely has access to the congestion pattern of the entire network.

Another useful example is that of online ad placement in web search.
The decision maker iteratively chooses an ordered set of ads from an
existing pool. Her payoff is measured by the viewer’s response—if the
user clicks a certain ad, a payoff is generated according to the weight
assigned to the particular ad. In this scenario, the search engine can
inspect which ads were clicked through, but cannot know whether dif-
ferent ads, had they been chosen to be displayed, would have been
clicked through or not.

The examples above can readily be modeled in the OCO framework,
with the underlying sets being the convex hull of decisions. The pitfall
of the general OCO model is the feedback; it is unrealistic to expect

99
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that the decision maker has access to a gradient oracle at any point in
the space for every iteration of the game.

6.1 The Bandit Convex Optimization model

The Bandit Convex Optimization (short: BCO) model is identical to
the general OCO model we have explored in previous chapters with the
only difference being the feedback available to the decision maker.

To be more precise, the BCO framework can be seen as a structured
repeated game. The protocol of this learning framework is as follows:
At iteration t, the online player chooses x; € K. After committing to
this choice, a convex cost function f; € F : K — R is revealed. Here
F is the bounded family of cost functions available to the adversary.
The cost incurred to the online player is the value of the cost function
at the point she committed to fi(x¢). As opposed to the OCO model,
in which the decision maker has access to a gradient oracle for f; over
K, in BCO the loss fi(x;) is the only feedback available to the
online player at iteration ¢. In particular, the decision maker does
not know the loss had she chosen a different point x € C at iteration t.

As before, let T' denote the total number of game iterations (i.e.,
predictions and their incurred loss). Let A be an algorithm for BCO,
which maps a certain game history to a decision in the decision set. We
formally define the regret of A that predicted z, ...,z to be

regretp(A) = sup {Z;‘F:lft(xt) —min L, f; (x)} _
{fr,fr}CF x€eK

6.2 The Multi Armed Bandit (MAB) problem

A classical model for decision making under uncertainty is the multi-
armed bandit (MAB) model. The term MAB nowadays refers to a
multitude of different variants and sub-scenarios that are too large to
survey. This section addresses perhaps the simplest variant—the non-
stochastic MAB problem—which is defined as follows:

Iteratively, a decision maker chooses between n different actions
ir € {1,2,...,n}, while, at the same time, an adversary assigns each
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action a loss in the range [0,1]. The decision maker receives the loss
for 7; and observes this loss, and nothing else. The goal of the decision
maker is to minimize her regret.

The reader undoubtedly observes this setting is identical to the
setting of prediction from expert advice, the only difference being the
feedback available to the decision maker: whereas in the expert setting
the decision maker can observe the payoffs or losses for all experts in
retrospect, in the MAB setting, only the losses of the decisions actually
chosen are known.

It is instructive to explicitly model this problem as a special case
of BCO. Take the decision set to be the set of all distributions over n
actions, i.e., K = A,, is the n-dimensional simplex. The loss function is
taken to be the linearization of the costs of the individual actions, that

1S:
n

filx) =6/ x =" 4()x(i) VxeK,
i=1

where /;(7) is the loss associated with the i’th action at the ¢’th itera-
tion. Thus, the cost functions are linear functions in the BCO model.

The MAB problem exhibits an exploration-exploitation tradeoff: an
efficient (low regret) algorithm has to explore the value of the different
actions in order to make the best decision. On the other hand, hav-
ing gained sufficient information about the environment, a reasonable
algorithm needs to exploit this action by picking the best action.

The simplest way to attain a MAB algorithm would be to separate
exploration and exploitation. Such a method would proceed by

1. With some probability, explore the action space (i.e., by choosing
an action uniformly at random). Use the feedback to construct
an estimate of the actions’ losses.

2. Otherwise, use the estimates to apply a full-information experts
algorithm as if the estimates are the true historical costs.

This simple scheme already gives a sublinear regret algorithm, pre-
sented in Algorithm [I7]
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Algorithm 17 Simple MAB algorithm
1: Input: OCO algorithm A, parameter 9.
2: fort=1toT do
3:  Let b be a Bernoulli random variable that equals 1 with proba-
bility 9.

4: if by =1 then
5 Choose i; € {1,2,...,n} uniformly at random and play i;.
Let
R 5 l(i), i=1y
(i) =
0, otherwise

7: Let f(x) = ¢/ x and update x,41 = A(f1, ..., fr).
8: else
9: Choose i; ~ x; and play ;.
10: Update ft = O,gt =0, X441 = A(fl, . ft)
11:  end if
12: end for

Lemma 6.1. Algorithm with A being the the online gradient de-
scent algorithm, guarantees the following regret bound:

T T
E |Y" (i) —min ) 4()| < O(T%/n)
t=1 t=1

Proof. For the random functions {/;} defined in Algorithm notice
that

L. E[f,(i)] = Pr[by = 1] - Prfiy = ilb = 1] - $,(i) = £().
2. |[8lla < % - [s(ir)| < %

Therefore E[ ft] = f;, and therefore the expected regret with respect to
the functions {f;} is equal to that with respect to the functions {f;}.
Thus, the regret of the simple algorithm can be related to that of A on
the estimated functions.

On the other hand, the simple MAB algorithm does not always
play according to the distribution generated by A: with probability §
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it plays uniformly at random, which may lead to a regret of one on
these exploration iterations. Let Sy C [T] be those iterations in which
by = 1.

E[regrety]
= E[Zthl fe(x¢) — mingen,, ZtT:1 fe(x)]
= E[X{1) bi(ir) — ming 33/ £4(3)]
= B[/ lie) — i b))
< E[Ztgst @t(it) — Zt¢ST l@(z’*) + > ies, 1] t* is indep. of ?,
<E[X s, 04(i) — min; > t¢ Sy 0(3) + Yyes, 1]

< %GD\/T—F 6-T Theorem [B3.1]
<3GVT+6-T For A,,, D <2
<32VT+6-T 6] < %

1

— O(T /n). § = /nl~i

6.2.1 EXP3: simultaneous exploration-exploitation

The simple algorithm of the previous section can be improved by com-
bining the exploration and exploitation steps. This gives a near-optimal
regret algorithm, called EXP3, presented below.

Algorithm 18 EXP3 - simple version

1: Input: parameter € > 0. Set x; = (1/n)1.
2: fort € {1,2,...,T} do
3:  Choose iy ~ x; and play .

4: Let 1
o xt(i7) Et(zt)a 1=1
li(i) =
0, otherwise
5 Update yip1(i) = x,(i)e00) | %,y = 2

6: end for
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As opposed to the simple multi-armed bandit algorithm, the EXP3
algorithm explores every iteration by always creating an unbiased es-
timator of the entire loss vector. This results in a possibly large mag-
nitude of the vectors ¢ and a large gradient bound for use with online
gradient descent. However, the large magnitude vectors are created
with low probability (proportional to their magnitude), which allows
for a finer analysis.

Ultimately, the EXP3 algorithm attains a worst case regret bound
of O(v/Tnlogn), which is nearly optimal (up to a logarithmic term in
the number of actions).

logn
Tn

Lemma 6.2. Algorithm with non-negative losses and ¢ =
guarantees the following regret bound:

E[Z O (ig) — mjnZEt(i)] < 2y/Tnlogn.
Proof. For the random losses {/;} defined in Algorithm [18 notice that
Bl0,(i)] = Prliy = i] - £ = x,(0) - £ = 4,(0).

Elx/ 2] = Y, x:(1)%0:(i)% < X 44(i)? < . (6.1)

Therefore we have E| ft] = f¢, and the expected regret with respect to
the functions { ft} is equal to that with respect to the functions {f:}.
Thus, the regret with respect to ft can be related to that of ¢;.

The EXP3 algorithm applies Hedge to the losses given by Zt, which
are all non-negative and thus satisfy the conditions of Theorem [1.5
Thus, the expected regret with respect to @t, can be bounded by,

Efregrety] = E[-[ £:(ir) — min; 32 £4(i)]
= E[XL b(i) — X b))
<E[XL l(x) =L 0,3 i* is indep. of ¢,
<E[eXl Y0 f(i)*x(i) + "] Theorem

<eTn+ bfn equation ({6.1)
< 2y/Tnlogn. by choice of ¢
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We proceed to derive an algorithm for the more general setting of
bandit convex optimization that attains near-optimal regret.

6.3 A reduction from limited information to full information

In this section we derive a low regret algorithm for the general set-
ting of bandit convex optimization. In fact, we shall describe a general
technique for designing bandit algorithms, which is composed of two
parts:

1. A general technique for taking an online convex optimization al-
gorithm that uses only the gradients of the cost functions (for-
mally defined below), and applying it to a family of vector random
variables with carefully chosen properties.

2. Designing the random variables that allow the template reduction
to produce meaningful regret guarantees.

We proceed to describe the two parts of this reduction, and in
the remainder of this chapter we describe two examples of using this
reduction to design bandit convex optimization algorithms.

6.3.1 Part 1: using unbiased estimators

The key idea behind many of the efficient algorithms for bandit convex
optimization is the following: although we cannot calculate V fi(x;)
explicitly, it is possible to find an observable random variable g; that
satisfies E[g;] = V fi(x;) = V;. Thus, g; can be seen as an estimator of
the gradient. By substituting g; for V; in an OCO algorithm, we will
show that many times it retains its sublinear regret bound.

Formally, the family of regret minimization algorithms for which
this reduction works is captured in the following definition.

Definition 6.1. (first order OCO Algorithm) Let A be an OCO
(deterministic) algorithm receiving an arbitrary sequence of differential
loss functions f1,..., fr, and producing decisions x; + A(0),x; «
A(fr,..., fi—1). Ais called a first order online algorithm if the following
holds:
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e The family of loss functions is closed under addition of linear
functions: if f € Fy and u € R” then f +u'x € F.

e Let f; be the linear function fy(x) = Vfi(x;) "%, then for every
iteration ¢ € [T

A(fr, . fie1) = A(f1, oo fie1)

We can now consider a formal reduction from any first order online
algorithm to a bandit convex optimization algorithm as follows.

Algorithm 19 Reduction to bandit feedback.

1: Input: convex set K C R", first order online algorithm A.

2: Let x1 = .A(Q))

3: fort=1to T do

4:  Generate distribution Dy, sample y; ~ D, with E[y;] = x;.
5. Play yy.

6:  Observe f;(y:), generate g; with E[g;] = V fi(xy).

7 Let Xty1 = A(gl, ...,gt).

8: end for

Perhaps surprisingly, under very mild conditions the reduction
above guarantees the same regret bounds as the original first order
algorithm up to the magnitude of the estimated gradients. This is cap-
tured in the following lemma.

Lemma 6.3. Let u be a fized point in K. Let f1,...,fr : K — R
be a sequence of differentiable functions. Let A be a first order on-
line algorithm that ensures a regret bound of the form regret,(A) <
BaA(V f1(x1),...,Vfr(xr)) in the full information setting. Define the
points {x;} as: x1 + A(0), x; < A(g1,...,8—1) where each g; is a
vector valued random variable such that:

E[gt|x17 f17 ey Xy ft] = vft(xt)
Then the following holds for all u € K:

T T
E[Y filx0)] =Y fe(u) <E[Balgi, ..., &r)l.
t=1 t=1
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Proof. Define the functions h; : L — R as follows:
hi(x) = fi(x) + S:x, where &, = g1 — V fi(xy).

Note that
Vhi(x¢) = Vfi(xe) + 8 — Vfi(x¢) = g

Therefore, deterministically applying a first order method A on the
random functions h; is equivalent to applying A on a stochastic first
order approximation of the deterministic functions f;. Thus by the full-
information regret bound of A we have:

T T
> hu(xe) =Y he(w) < Balgi, -, 81). (6.2)
t=1 t=1
Also note that:
Elhi(x¢)] = E[fe(x:)] + E[€] x¢]
= E[ft(xt)] + E[E[ég—xt|x17 fla cee s Xt ft]]
= E[fi(x:)] + E[E[&|x1, f1,- -, %t fi] Txi]
= E[fi(x)].
where we used E[§,|x1, f1,...,X¢, ft] = 0. Similarly, since u € K is
fixed we have that E[h;(u)] = fi(u). The lemma follows from taking
the expectation of Equation (6.2]). O

6.3.2 Part 2: point-wise gradient estimators

In the preceding part we have described how to convert a first order
algorithm for OCO to one that uses bandit information, using specially
tailored random variables. We now describe how to create these vector
random variables.

Although we cannot calculate V fi(x;) explicitly, it is possible to
find an observable random variable g; that satisfies E[g;] ~ V f;, and
serves as an estimator of the gradient.

The question is how to find an appropriate g;, and in order to
answer it we begin with an example in a 1-dimensional case.



108 Bandit Convex Optimization

Example 6.1. A 1-dimensional gradient estimate
Recall the definition of the derivative:

9) — -0
Plo) = gy [OHD 10 =0)

The above shows that for a 1-dimensional derivative, two evaluations

of f are required. Since in our problem we can perform only one eval-
uation, let us define g(x) as follows:

@ ,  with probability %
o(@) = ) (6.3)
_ @ , with probability %

It is clear that Ft ) — S )
Elg(a)] = =

Thus, in expectation, for small §, g(x) approximates f’(x).

The sphere sampling estimator

We will now show how the gradient estimator (6.3]) can be extended to
the multidimensional case. Let x € R", and let Bs and S5 denote the
n-dimensional ball and sphere with radius ¢ :

Bs = {x||x|| <4},
S5 = {x|[x|| = o} .
We define f(x) = f5(x) to be a d-smoothed version of f(x):
fs(x) = B [f (x+ V)], (6:4)

ve
where v is drawn from a uniform distribution over the unit ball. This
construction is very similar to the one used in Lemma [2.6]in context of
convergence analysis for convex optimization. However, our goal here
is very different.

Note that when f is linear, we have f5(x) = f(x). We shall address
the case in which f is indeed linear as a special case, and show how to
estimate the gradient of f (x), which, under the assumption, is also the
gradient of f(x). The following lemma shows a simple relation between
the gradient V f5 and a uniformly drawn unit vector.
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Lemma 6.4. Fix § > 0. Let f(s(x) be as defined in (6.4), and let u be

a uniformly drawn unit vector u ~ S. Then

B[ (x+owu) = 2V ().

Proof. Using Stokes’ theorem from calculus, we have

V/f(x—i—v)dv:/f(x—l—u)idu. (6.5)
[[u
Bs Ss
From (6.4]), and by definition of expectation, we have
Jfx+v)dv
A Bs
= 6.6
where vol(By) is the volume of an n-dimensional ball of radius J. Sim-
ilarly,
Sff (x +u) Tandu
E == : :
ues [f (x+0ou)u] vol(Ss) (6.7)

Combining (6.4), (6.5), (6.6), and (6.7), and the fact that the ratio of

the volume of a ball in n dimensions and the sphere of dimension n —1
is vol,, Bs/vol,,—1S5s = 0 /n gives the desired result. d

Under the assumption that f is linear, Lemma [6.4] suggests a simple
estimator for the gradient V f. Draw a random unit vector u, and let
g(x)=%f(x+du)u.

The ellipsoidal sampling estimator

The sphere estimator above is at times difficult to use: when the center
of the sphere is very close to the boundary of the decision set only a
very small sphere can fit completely inside. This results in a gradient
estimator with large variance.

In such cases, it is useful to consider ellipsoids rather than spheres.
Luckily, the generalisation to ellipsoidal sampling for gradient estima-
tion is a simple corollary of our derivation above:
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Corollary 6.5. Consider a continuous function f : R®™ — R, an invert-
ible matrix A € R™*" and let v ~ B"™ and u ~ S". Define the smoothed
version of f with respect to A:
f(x) = E[f(x+ Av)].
Then the following holds:
Vi(x)=nE[f(x+ Au)A™ u].
Proof. Let g(x) = f(Ax), and §(x) = Eyen[g(x + v)].

nE[f(x + Au)A™'u] =nA"'E[f(x+ Au)u]
=nA"E[g(A % + u)u]
= A"1Vj(A ) Lemma [6.4]
= ATTAVf(x) = Vf(x).

6.4 Online gradient descent without a gradient

The simplest and historically earliest application of the BCO-to-OCO
reduction outlined before is the application of the online gradient de-
scent algorithm to the bandit setting. The FKM algorithm (named
after its inventors, see bibliographic section) is outlined in Algorithm
201

For simplicity, we assume that the set K contains the unit ball
centered at the zero vector, denoted 0. Denote K5 = {x | 155x € K}.
It is left as an exercise to show that s is convex for any 0 < 6 < 1
and that all balls of radius § around points in X5 are contained in /C.

We also assume for simplicity that the adversarially chosen cost
functions are bounded by one over K, i.e. that |f;(x)| < 1 for all x € K.

The FKM algorithm is an instantiation of the generic reduction
from bandit convex optimization to online convex optimization with
spherical gradient estimators over the set ICs. It iteratively projects onto
Ks, in order to have enough space for spherical gradient estimation.
This degrades its performance by a controlled quantity. Its regret is
bounded as follows.
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Figure 6.1: The Minkowski set /Cs.

Algorithm 20 FKM Algorithm

1: Input: decision set I containing 0, set x; = 0, parameters 6, .
2: fort=1to T do

3:  Draw u; € S; uniformly at random, set y; = x; + du.

4:  Play y;, observe and incur loss f; (y:). Let g = % ft (y¢) us.
5. Update x441 = ’1C'[ [x: — nge].

6: end for '

Theorem 6.6. Algorithm with parameters n = 77;;3/4,5 = T11/4

guarantees the following expected regret bound
/4 /
EE y minE x) < InDGT3* = O(T3/%).
2 [fe(ye)] xek - 1ft( ) < ( )

Proof. Recall our notation of x* = arg miny.x >.r_; fi(x). Denote

X5 = ’1;[ (x*).
5

Then by properties of projections we have ||x5 — x*|| < 6D, where D
is the diameter of /C. Thus, assuming that the cost functions {f;} are
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G-Lipschitz, we have

T T T
ZE[ft(yf:)]—th( Z [fe(ye)] Z (x}) + 6TGD. (6.8)

=1 t=1

Denote ft = f§t = Eyp[f(x + du)] for shorthand. We can now
bound the regret by

Z [fe(yt)] th
t=1

!

T
< Z [fe(xt)] Z fi(x*) + 6DGT Lemma 2.0
T
< Z [fe(xz)] th x3) + 20DGT Inequality
t=1 =
T A A
<Y E[fi(x)] — th(xg) +46DGT Lemma 2.6
t=1 t=1
< regretoap(gl, -, g7r) + 40DGT Lemma [6.3]
T 2
9 D
<n Z llgt||© + — + 40DGT OGD regret, Theorem
t=1 n
n? D?
D 1
3/4 _ —
< InDGT?'*. n= T/ )= Ti/d
0

6.5 * Optimal regret algorithms for BLO

A special case of BCO that is of considerable interest is BLO—Bandit
Linear Optimization. This setting has linear cost functions, and cap-
tures the network routing and ad placement examples discussed in the
beginning of this chapter, as well as the non-stochastic MAB problem.

In this section we give near-optimal regret bounds for BLO using
techniques from interior point methods for convex optimization.

The generic OGD method of the previous section suffers from three
pitfalls:
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1. The gradient estimators are biased, and estimate the gradient of
a smoothed version of the real cost function.

2. The gradient estimators require enough “wiggle room” and are
thus ill-defined on the boundary of the decision set.

3. The gradient estimates have potentially large magnitude, propor-
tional to the distance from the boundary.

Fortunately, the first issue is non-existent for linear functions - the
gradient estimators turn out to be unbiased for linear functions. In the
notation of the previous chapters, we have for linear functions:

fo) = B [fx+6v)] = f(x).

Thus, Lemma gives us a stronger guarantee:
0 _ )
E x+du)u] = —Vfs(x) = -Vf(x).
E[f (x+0u)u] = V5 (x) = ~Vf(x)
To resolve the second and third issues we use self-concordant barrier
functions, a rather advanced technique from interior point methods for
convex optimization.

6.5.1 Self-concordant barriers

Self-concordant barrier functions were devised in the context of interior
point methods for optimization as a way of ensuring that the Newton
method converges in polynomial time over bounded convex sets. In this
brief introduction we survey some of their beautiful properties that will
allow us to derive an optimal regret algorithm for BLO.

Definition 6.2. Let K € R™ be a convex set with a nonempty interior
int(K). A function R : int(K) — R is called v-self-concordant if:

1. R is three times continuously differentiable and convex, and ap-
proaches infinity along any sequence of points approaching the
boundary of K.

2. For every h € R" and x € int(K) the following holds:
V3R (x)[h, b, h]| < 2(V?*R(x)[h, h])*/?,
[VR(x)[h]| < v!/2(V*R(x)[h, h])'/?
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where the third order differential is defined as:
83

s hhhl & ——
VIR(x)[b, b, b] = o

R(X +tith+th+ tgh)

t1=to=t3=0
The Hessian of a self-concordant barrier induces a local norm at every
x € int(K), we denote this norm by || - ||x and its dual by || - ||%, which
are defined Vh € R" by

Ihx = VhTV2R(0R, | = /hT(V2R(x)) 'h.

We assume that V2R (x) always has full rank. In BCO applications this
is easy to ensure by adding a fictitious quadratic function to the barrier,

which does not affect the overall regret by more than a constant.
Let R be a self-concordant barrier and x € int(K). The Dikin el-
lipsoid is
S(x):={y e R": [ly = x[lx <1},

i.e., the || - ||x-unit ball centered around x, is completely contained in
K.

In our next analysis we will need to bound R(y) — R(x) for x,y €
int(/C), for which the following lemma is useful:

Lemma 6.7. Let R be a v-self concordant function over K, then for all
X,y € int(K):

Y

R(y) — R(x) < vlog T—m(y)

where mx(y) = inf{t > 0: x+t "}y — x) € K}.

The function mx(y) is called the Minkowski function for I, and its
output is always in the interval [0, 1]. Moreover, as y approaches the
boundary of K then mx(y) — 1.

Another important property of self-concordant functions is the re-
lationship between a point and the optimum, and the norm of the
gradient at the point, according to the local norm, as given by the
following lemma.

Lemma 6.8. Let x € int(K) be such that |[VR(x)||% <
x* = arg min,x R(x). Then

1% = x*le < 2[[VR(x)[x-

i , and let
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6.5.2 A near-optimal algorithm

We have now set up all the necessary tools to derive a near-optimal
BLO algorithm, presented in Algorithm

Algorithm 21 SCRIBLE
1: Let x; € int(K) be such that VR (x;) = 0.
2: fort=1toT do
3. Let Ay = [VzR(xt)}_l/Q .

4:  Pick u; € S uniformly, and set y; = x; + Asuy.
5. Play y;, observe and suffer loss f; (y;). let g, = nf; (y¢) A7 'uy.
6: Update
t
X¢+1 = arg min {77 Z glx+ R(x)} .
xeK =1
7. end for

Theorem 6.9. For appropriate choice of §, the SCRIBLE algorithm
guarantees

T
> Elfily:)] - %%th(x) <0 (ﬁlogT) :
=1

t=1

Proof. First, we note that x; € K never steps outside of the decision
set. The reason is that y; € K and x; lies in the Dikin ellipsoid centered
at Y-

Further, by Corollary we have that

Elgi] = V/i(x:) = Vfi(x),

where the latter equality follows since f; is linear, and thus its smoothed
version is identical to itself.

A final observation is that line [] in the algorithm is an invocation
of the RFTL algorithm with the self-concordant barrier R serving as a
regularisation function. The RFTL algorithm for linear functions is a
first order OCO algorithm and thus Lemma [6.3] applies.
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We can now bound the regret by

T T
ZE fi(ye)] th
t=1

=1

~

T T
S Z Z fe =Tt E[Yt] = X
t=1 =1
< regretpprr (81, -, 8T) Lemma [6.3]
T
R(x*)—R _
< Z g/ (¢ — X¢q1) + x') (1) Lemma (.2
_ n
t=1

<

M=

g5, 1% — X4l + Cauchy-Schwarz

I
A

To bound the last expression, we use Lemma and the definition
of X;41 = argming . ®;(x) where &;(x) = 3L glx + R(x) is a
self-concordant barrier. Thus,

%0 = Xeq1llx, < 2[[VOu(xe)[%, = 21V Pe—1(xt) + ngellx, = 2nll&ellx,
since ®;_1(x¢) = 0 by definition of xt Recall that to use Lemma (6.8} -,

we need [|[V®(x;)[|%, = nllgellx, < %, which is true by choice of 7 and
since

gl 2 < n*uT A7TV 2 R(x) A7 u < n?.

Thus,

M=
M=

T . <
E[fi(y)] = Y filx*) <20 llgdllz” + R(x*) = R(x1)
1 t=1 t=1 n
R —Rix1)

n

-
Il

< 2nn*T +

It remains to bound the Bregman divergence with respect to x*, for
which we use a similar technique as in the analysis of Algorithm [20]
and bound the regret with respect to xj, which is the projection of x*
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onto K. Using equation , we can bound the overall regret by:

T T
< ZE[ft(yt)] - Z fi(x3) +dTGD equation

= 29n°T + + 6TGD above derivation
n
9 14 lOg 1 7|—x1 (x*)
<2m T + L=82 + 0TGD Lemma [6.7]
n
9 vlog &
< 2qn*T + ——2 + 6TGD x3 € Ks.
n

Taking n = O( 1T) and § = O(%), the above bound implies our theo-
rem.

O
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6.6

Bandit Convex Optimization

Exercises

. Prove a lower bound on the regret of any algorithm for BCO:

show that for the special case of BCO over the unit sphere, any
online algorithm must incur a regret of Q(v/T).

* Strengthen the above bound: show that for the special case
of BLO over the d-dimensional unit simplex, with cost functions
bounded in ¢, norm by one, any online algorithm must incur a

regret of Q(vVdT) as T — oc.

. Let K be convex. Show that the set Kj is convex.

. Let I be convex and contain the unit ball centered at zero. Show

that for any point x € Kg, the ball of radius § centered at x is
contained in /C.

. Consider the BCO setting with H-strongly convex functions, H

is known a-priori to the online learner. Show that in this case we
can attain a regret bound of O(T2/3).

Hint: recall that we can attain a regret bound of O(logT) in
the full-information OCO with H-strongly convex functions, and
recall that the notation O(-) hides constant and poly-logarithmic
terms.

Consider the BCO setting with the following twist: at every it-
eration, the player is allowed to observe two evaluations of the
function, as opposed to just one. That is, the player gives x¢, y,
and observes fi(x;), fi(y). Regret is measured w.r.t. x4, as usual:

> filx) = min 3 fi(x")

Give an efficient algorithm for this setting that attains O(v/T)
regret.
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6.7 Bibliographic Remarks

The Multi-Armed Bandit problem has history going back more than
fifty years to the work of Robbins (90)), see the survey of (25) for a
much more detailed history. The non-stochastic MAB problem and
the EXP3 algorithm, as well as tight lower bounds were given in the
seminal paper of (I3). The logarithmic gap in attainable regret for
non-stochastic MAB was resolved in (12).

Bandit Convex Optimization for the special case of linear cost func-
tions and the flow polytope, was introduced and studied by Awerbuch
and Kleinberg (14]) in the context of online routing. The full generality
BCO setting was introduced by Flaxman, Kalai and McMahan in (42)),
who gave the first efficient and low-regret algorithm for BCO.

The special case in which the cost functions are linear, called Ban-
dit Linear Optimization, received significant attention. Dani, Kakade
and Hayes (33) gave an optimal regret algorithm up to constants de-
pending on the dimension. Abernethy, Hazan and Rakhlin (2) gave
an efficient algorithm and introduced self-concordant barriers to the
bandit setting. Self-concordant barrier functions were devised in the
context of polynomial-time algorithms for convex optimization in the
seminal work of Nesterov and Nemirovskii (79).

In this chapter we have considered the expected regret as a per-
formance metric. Significant literature is devoted to high probability
guarantees on the regret. High probability bounds for the MAB prob-
lem were given in (I3]), and for bandit linear optimization in (5)). Other
more refined metrics have been recently explored in (35) and in the
context of adaptive adversaries in (80; 108}, [40; 74} [107]).
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Projection-free Algorithms

In many computational and learning scenarios the main bottleneck of
optimization, both online and offline, is the computation of projections
onto the underlying decision set (see . In this section we intro-
duce projection-free methods for OCO.

The motivating example throughout this chapter is the problem
of matrix completion, which is a widely used and accepted model in
the construction of recommendation systems. For matrix completion
and related problems, projections amount to expensive linear algebraic
operations and avoiding them is crucial in big data applications.

In this chapter we detour into classical offline convex optimization
and describe the conditional gradient algorithm, also known as the
Frank-Wolfe algorithm. Afterwards, we describe problems for which
linear optimization can be carried out much more efficiently than pro-
jections. We conclude with an OCO algorithm that eschews projections
in favor of linear optimization, in much the same flavor as its offline
counterpart.

121
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7.1 Review: relevant concepts from linear algebra

This chapter addresses rectangular matrices, which model applications
such as recommendation systems naturally. Consider a matrix X &
R™™ A non-negative number o € Ry is said to be a singular value
for X if there are two vectors u € R™, v € R™ such that

XTu= ov, Xv=ou

The vectors u, v are called the left and right singular vectors respec-
tively. The non-zero singular values are the square roots of the eigen-
values of the matrix XX T (and X T X). The matrix X can be written
as

X=UxV' 6 UeR™ VI eR>*™,

where p = min{n, m}, the matrix U is an orthogonal basis of the left
singular vectors of X, the matrix V' is an orthogonal basis of right
singular vectors, and ¥ is a diagonal matrix of singular values. This
form is called the singular value decomposition for X.

The number of non-zero singular values for X is called its rank,
which we denote by k < p. The nuclear norm of X is defined as the ¢;
norm of its singular values, and denoted by

p
X[l = o
=1

It can be shown (see exercises) that the nuclear norm is equal to the
trace of the square root of the matrix times its transpose, i.e.,

X[l = Tr(VXTX)

We denote by A e B the inner product of two matrices as vectors in
R™ ™ that is

AeB=>">"A;B;j =Tr(AB")

i=1j=1
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7.2 Motivation: matrix completion and recommendation sys-
tems

Media recommendations have changed significantly with the advent of
the Internet and rise of online media stores. The large amounts of data
collected allow for efficient clustering and accurate prediction of users’
preferences for a variety of media. A well-known example is the so called
“Netflix challenge”—a competition of automated tools for recommen-
dation from a large dataset of users’ motion picture preferences.

One of the most successful approaches for automated recommenda-
tion systems, as proven in the Netflix competition, is matrix comple-
tion. Perhaps the simplest version of the problem can be described as
follows.

The entire dataset of user-media preference pairs is thought of as
a partially-observed matrix. Thus, every person is represented by a
row in the matrix, and every column represents a media item (movie).
For simplicity, let us think of the observations as binary—a person
either likes or dislikes a particular movie. Thus, we have a matrix M €
{0,1,%}™*™ where n is the number of persons considered, m is the
number of movies at our library, and 0/1 and x signify “dislike”, “like”
and “unknown” respectively:

0, person ¢ dislikes movie j
M;; = q 1, person ¢ likes movie j

, preference unknown

The natural goal is to complete the matrix, i.e. correctly assign
0 or 1 to the unknown entries. As defined so far, the problem is ill-
posed, since any completion would be equally good (or bad), and no
restrictions have been placed on the completions.

The common restriction on completions is that the “true” matrix
has low rank. Recall that a matrix X € R™ " has rank k < p =
min{n, m} if and only if it can be written as

X =UV, UeR™ Vv eR>m
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The intuitive interpretation of this property is that each entry in M
can be explained by only £ numbers. In matrix completion this means,
intuitively, that there are only k factors that determine a persons pref-
erence over movies, such as genre, director, actors and so on.

Now the simplistic matrix completion problem can be well-
formulated as in the following mathematical program. Denote by ||-||on
the Euclidean norm only on the observed (non starred) entries of M,
ie.,

X = 3 X2
M %
The mathematical program for matrix completion is given by
.1
XeRnxm 2
s.t. rank(X) <k.

IX = M|%p

Since the constraint over the rank of a matrix is non-convex, it is
standard to consider a relaxation that replaces the rank constraint by
the nuclear norm. It is known that the nuclear norm is a lower bound
on the matrix rank if the singular values are bounded by one (see
exercises). Thus, we arrive at the following convex program for matrix
completion:

.1
min —
XeRnxm 2
st || X« < E.

IX = M|%p (7.1)

We consider algorithms to solve this convex optimization problem
next.

7.3 The conditional gradient method

In this section we return to the basics of convex optimization—
minimization of a convex function over a convex domain as studied
in Chapter

The conditional gradient (CG) method, or Frank-Wolfe algorithm,
is a simple algorithm for minimizing a smooth convex function f over
a convex set K C R™. The appeal of the method is that it is a first
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order interior point method - the iterates always lie inside the convex
set, and thus no projections are needed, and the update step on each
iteration simply requires to minimize a linear objective over the set.
The basic method is given in Algorithm 22

Algorithm 22 Conditional gradient
1: Input: step sizes {n; € (0,1), t € [T]}, initial point x; € K.
2: fort=1to 1 do

3 Vi 4 arg minkeg {xTVf(xt)}.

4

5

X1 & X¢ + (Vi — X¢).
. end for

Note that in the CG method, the update to the iterate x; may be
not be in the direction of the gradient, as v; is the result of a linear
optimization procedure in the direction of the negative gradient. This
is depicted in Figure

Figure 7.1: Direction of progression of the conditional gradient algorithm.

The following theorem gives an essentially tight performance guar-
antee of this algorithm over smooth functions. Recall our notation from
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Chapter [2} x* denotes the global minimizer of f over IC, D denotes the
diameter of the set K, and hy = f(x¢)— f(x*) denotes the suboptimality
of the objective value in iteration t¢.

Theorem 7.1. The CG algorithm applied to 8-smooth functions with
step sizes n; = %, for H > max{1, h1}, attains the following conver-
gence guarantee

28 H D?
hy < Bt

Proof. As done before in this manuscipt, we denote Vy = V f(x¢), and
also denote H > max{hy, 1}, such that n, = % For any set of step
sizes, we have

J(Xer1) = f(xX*) = f(xe +me(ve — x¢)) — f(x¥)

B
< fxe) — fF(XF) +m(ve — xt)TVt + 17t2§HVt — xtH2 B-smoothness
B L
< fxe) — f(X) +me(x* — xt)TVt + nf§\|vt — xﬂ|2 v; optimality

< ) = F(XT) +me(f(XT) = f(xe)) + nfgllw = x|*  convexity of f

B
< (1= m)(F(xe) = F(x*)) + 15D2 (7.2)
We reached the recursion hy4q1 < (1 —n)he + U?BTDQ, and by induction,
D2
hipr < (1 —m)he + U?ﬁT

28HD?  ,BD?

<(1—mn) . i induction hypothesis

a 2H )25HD2 4H? BD? e of
_—_— value O

= t t 2 2 n

_2BHD* 2H?BD?

ot t2
23H D? 1

< Bt (1—;) since H > 1
28H D? -1 ¢

S i1 T St
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7.3.1 Example: matrix completion via CG

As an example of an application for the conditional gradient algorithm,
recall the mathematical program given by ([7.1)). The gradient of the
objective function at point X? is

)(% —>A4ﬁ, @,j) € OB
V(X" = (X' = M)op = (7.3)
0, otherwise

Over the set of bounded-nuclear norm matrices, the linear optimization
of line [3] in Algorithm [22] becomes,

rnhl)(o'VQ s VG 22‘7f()(0
st | X < k.

For simplicity, let’s consider square symmetric matrices, for which the
nuclear norm is equivalent to the trace norm, and the above optimiza-
tion problem becomes

min X e V;
s.t. Tr(X) < k.

It can be shown that this program is equivalent to the following (see
exercises):

min x| Vix
xeR™

st ||x[]3 < k.

Hence, this is an eigenvector computation in disguise! Computing the
largest eigenvector of a matrix takes linear time via the power method,
which also applies more generally to computing the largest singu-
lar value of rectangular matrices. With this, step [3] of Algorithm
which amounts to mathematical program , becomes computing
Vmax(—V f(X?)), the largest eigenvector of —V f(X*). Algorithm
takes on the modified form described in Algorithm [23]
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Algorithm 23 Conditional gradient for matrix completion

1: Let X! be an arbitrary matrix of trace k in K.
2: fort=1to T do

3 Vi = VEk - Umax(—Vy).

4 X = X 4 p(vev) — X for my € (0,1).
5: end for

Comparison to other gradient-based methods. How does this com-
pare to previous convex optimization methods for solving the same
matrix completion problem? As a convex program, we can apply gra-
dient descent, or even more advantageously in this setting, stochastic
gradient descent as in Recall that the gradient of the objective
function at point X' takes the simple form . A stochastic estimate
for the gradient can be attained by observing just a single entry of the
matrix M, and the update itself takes constant time as the gradient
estimator is sparse. However, the projection step is significantly more
difficult.

In this setting, the convex set K is the set of bounded nuclear norm
matrices. Projecting a matrix onto this set amounts to calculating the
SVD of the matrix, which is similar in computational complexity to
algorithms for matrix diagonalization or inversion. The best known al-
gorithms for matrix diagonalization are superlinear in the matrices’
size, and thus impractical for large datasets that are common in appli-
cations.

In contrast, the CG method does not require projections at all,
and replaces them with linear optimization steps over the convex set,
which we have observed to amount to singular vector computations.
The latter can be implemented to take linear time via the power method
(or Lanczos algorithm, see bibliography).

Thus, the Conditional Gradient method allows for optimization of
the mathematical program with a linear-time operation (eigen-
vector using power method) per iteration, rather than a significantly
more expensive computation (SVD) needed for gradient descent.
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7.4 Projections vs. linear optimization

The conditional gradient (Frank-Wolfe) algorithm described before
does not resort to projections, but rather computes a linear optimiza-
tion problem of the form
arg min {XTU} . (7.4)
xeX

When is the CG method computationally preferable? The overall com-
putational complexity of an iterative optimization algorithm is the
product of the number of iterations and the computational cost per
iteration. The CG method does not converge as well as the most effi-
cient gradient descent algorithms, meaning it requires more iterations
to produce a solution of a comparable level of accuracy. However, for
many interesting scenarios the computational cost of a linear optimiza-
tion step is significantly lower than that of a projection step.

Let us point out several examples of problems for which we have
very efficient linear optimization algorithms, whereas our state-of-the-
art algorithms for computing projections are significantly slower.

Recommendation systems and matrix prediction. In the example
pointed out in the preceding section of matrix completion, known
methods for projection onto the spectahedron, or more generally the
bounded nuclear-norm ball, require singular value decompositions,
which take superlinear time via our best known methods. In contrast,
the CG method requires maximal eigenvector computations which can
be carried out in linear time via the power method (or the more so-
phisticated Lanczos algorithm).

Network routing and convex graph problems. Various routing and
graph problems can be modeled as convex optimization problems over
a convex set called the flow polytope.

Consider a directed acyclic graph with m edges, a source node
marked s and a target node marked ¢t. Every path from s to ¢ in the
graph can be represented by its identifying vector, that is a vector in
{0,1}"™ in which the entries that are set to 1 correspond to edges of
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the path. The flow polytope of the graph is the convex hull of all such
identifying vectors of the simple paths from s to t. This polytope is
also exactly the set of all unit s— flows in the graph if we assume
that each edge has a unit flow capacity (a flow is represented here as
a vector in R in which each entry is the amount of flow through the
corresponding edge).

Since the flow polytope is just the convex hull of s—t paths in the
graph, minimizing a linear objective over it amounts to finding a min-
imum weight path given weights for the edges. For the shortest path
problem we have very efficient combinatorial optimization algorithms,
namely Dijkstra’s algorithm.

Thus, applying the CG algorithm to solve any convex optimization
problem over the flow polytope will only require iterative shortest path
computations.

Ranking and permutations. A common way to represent a permuta-
tion or ordering is by a permutation matrix. Such are square matrices
over {0, 1}™*™ that contain exactly one 1 entry in each row and column.

Doubly-stochastic matrices are square, real-valued matrices with
non-negative entries, in which the sum of entries of each row and each
column amounts to 1. The polytope that defines all doubly-stochastic
matrices is called the Birkhoff-von Neumann polytope. The Birkhoff-
von Neumann theorem states that this polytope is the convex hull of
exactly all n X n permutation matrices.

Since a permutation matrix corresponds to a perfect matching in
a fully connected bipartite graph, linear minimization over this poly-
tope corresponds to finding a minimum weight perfect matching in a
bipartite graph.

Consider a convex optimization problem over the Birkhoff-von Neu-
mann polytope. The CG algorithm will iteratively solve a linear opti-
mization problem over the BVN polytope, thus iteratively solving a
minimum weight perfect matching in a bipartite graph problem, which
is a well-studied combinatorial optimization problem for which we know
of efficient algorithms. In contrast, other gradient based methods will
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require projections, which are quadratic optimization problems over
the BVN polytope.

Matroid polytopes. A matroid is pair (E,I) where E is a set of ele-
ments and [ is a set of subsets of E called the independent sets which
satisfy various interesting proprieties that resemble the concept of linear
independence in vector spaces. Matroids have been studied extensively
in combinatorial optimization and a key example of a matroid is the
graphical matroid in which the set E is the set of edges of a given graph
and the set [ is the set of all subsets of E' which are cycle-free. In this
case, I contains all the spanning trees of the graph. A subset S € [
could be represented by its identifying vector which lies in {0, 1}/Z!
which also gives rise to the matroid polytope which is just the convex
hull of all identifying vectors of sets in I. It can be shown that some
matroid polytopes are defined by exponentially many linear inequalities
(exponential in |E|), which makes optimization over them difficult.

On the other hand, linear optimization over matroid polytopes is
easy using a simple greedy procedure which runs in nearly linear time.
Thus, the CG method serves as an efficient algorithm to solve any
convex optimization problem over matroids iteratively using only a
simple greedy procedure.

7.5 The online conditional gradient algorithm

In this section we give a projection-free algorithm for OCO based on the
conditional gradient method, which is projection-free and thus carries
the computational advantages of the CG method to the online setting.

It is tempting to apply the CG method straightforwardly to the
online appearance of functions in the OCO setting, such as the OGD
algorithm in However, it can be shown that an approach that
only takes into account the last cost function is doomed to fail. The
reason is that the conditional gradient method takes into account the
direction of the gradient, and is insensitive to its magnitude.
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Instead, we apply the CG algorithm step to the aggregate sum of
all previous cost functions with added Euclidean regularization. The
resulting algorithm is given formally in Algorithm

Algorithm 24 Online conditional gradient

1: Input: convex set K, T, x1 € K, parameters 1, {o;}.
2: fort=1,2,...,7 do

3:  Play x; and observe f;.

4 Let Fy(x) = 0 VIix+ [lx — x|

5. Compute v; = arg mingex { VEF;(x¢) - x}.

6: Set Xi41 = (1 — O't)Xt + OV

7. end for

We can prove the following regret bound for this algorithm. While
this regret bound is suboptimal in light of the previous upper bounds
we have seen, its suboptimality is compensated by the algorithm’s lower
computational cost.

Theorem 7.2. Online conditional gradient (Algorithm [24]) with param-
eters n = ﬁ, or = min{1, tl%}, attains the following guarantee

T T
regrety = X;) — min x*) < 8DGT3/*
grety ;ft( t) x*elC;ft( ) <

As a first step in analyzing Algorithm consider the points

X} = arg mi}rcl Fi(x).
X€E

These are exactly the iterates of the RFTL algorithm from Chapter
namely Algorithm [10{ with the regularization being R(x) = [x — x1||?,
applied to cost functions with a shift, namely:

fo = felx+ (xf = x0)).

The reason is that V; in Algorithm refers to V fi(x;), whereas in
the RFTL algorithm we have V; = V fi(x}). Notice that for any point
x € K we have | fi(x)—fi(x)| < G||x;—x}||. Thus, according to Theorem
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(.1 we have that

ZtT:1 ft(X?) - Zthl ft(X*)
<2G Y, |Ixe — X7l + iy filxt) — X fi(x*)
<2G' Y, |Ixe = x| +20GT + L D. (7.5)

Using our previous notation, denote by hi(x) = Fy(x) — Fi(x}),
and by hy = hi(x¢). The main lemma we require to proceed is the
following, which relates the iterates x; to the optimal point according
to the aggregate function Fj.

Lemma 7.3. Assume that the parameters 7,0, are chosen such that
NG/ hi41 < %203. Then the iterates x; of Algorithm satisfy for all
t>1

h < 2D%0;.

Proof. As the functions F} are 1-smooth, applying the offline Frank-
Wolfe analysis technique, and in particular Equation (|7.2)) to the func-
tion F} we obtain:

hie(xt41) = Fy(Xev1) — Fi(x})
2

D
< (1-o)(Fi(x) = Fi(x) + 50f  Equation (7.2)
2

=1 —o)ht + D?UtQ'
In addition, by definition of F} and h; we have
hiv1 = Fy(xe1) — Fr(xi4q) + 1V (Xes1 — X741)
< ha(xi4q) + Vi1 (Xep1 — X74q) Fy(x7) < Fi(xii)
< hy(xe41) + 0G| %1 — X)) Cauchy-Schwarz
Since F; is 1-strongly convex, we have
Ix = x{|* < Fi(x) = Fi(x).
Thus,
hip1 < he(Xes1) + G Xer1 — X7 ||

< hi(Xeg1) + Gy Py
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From the above we have the recursion:

D2
hiy1 < he(1—o0¢) + 703 +nGy/hii

< h¢(1 — 0y) + D%o?. since nGy/hi41 < %203

We now claim that the theorem follows inductively. The base of the
induction holds since, for ¢t = 1, the definition of Fj implies

h1 = F1<X1> - Fl(X*) = HXl - X*”2 S D2 S 2D20'1.

Assuming the bound is true for ¢, we now show it holds for ¢t +1 as

well:
2 2
hivi < h(l —oy) + D70}
< 2D% (1 — 0y) + D0}
— 2D%, (1 - m)
2
< 2D%0441,

as required. The last inequality follows by the definition of o; (see
exercises).

O
We proceed to use this lemma in order to prove our theorem:

Proof of Theorem[7.2. By definition, the functions F; are 1l-strongly
convex. Thus, we have for x} = arg minycx Fy(X):

I —xf||* < Fy(x) — F(x7).
Hence,
fi(xe) = fi(x}) < Gllx — x|

< G\/Fi(x) — Fu(x})
< 2GD,/oy. Lemma [7.3] (7.6)

Putting everything together we obtain:
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Regret;(OCG) = Z fi(x¢) — Z fe(x¥)

T
=Y [felxe) — fulxF) + folxF) — fulx)]
t=1
T
<N 2GDo; + Y [felxF) — fi(x*)] by (76)
t=1 t

< 4GDTY + 3" [(x) — fi)

1
<AGDT* 1+ 2G Y |Jx; — x}|| + 20GT + ED. by (7.5)
t

Let n = 2GTL3/4’ and notice that this satisfies the constraint of

Lemma which requires nG+/hi11 < %202. In addition, n < 1 for T
large enough. We thus obtain:

2
regretp(OCG) < 4GDT3/* 4 29G*T + s
n

< 4GDT?? + DGTY* + 2DGT3/* < 8DGT?/4,
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7.6

1.

Projection-free Algorithms

Exercises

Prove that if the singular values are smaller than or equal to one,
then the nuclear norm is a lower bound on the rank, i.e., show

rank(X) > || X]|s.

. Prove that the trace is related to the nuclear norm via

X[, = Te(VXXT) = Te(VXTX).

Show that maximizing a linear function over the spectahedron is
equivalent to a maximal eigenvector computation. That is, show
that the following mathematical program:

min X ¢ C
XeSy={XeR™ X 3=0, Tr(X) <1},
is equivalent to the following:

min x' Cx
xeRd

st. ||x|2 < L.

. Prove that for any c € [0,1] and oy = 2 it holds that

tc

g,
o(1 — Et) < Oty1-

. Download the MovieLens dataset from the web. Implement an

online recommendation system based on the matrix completion
model: implement the OCG and OGD algorithms for matrix com-
pletion. Benchmark your results.
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7.7 Bibliographic Remarks

The matrix completion model has been extremely popular since its
inception in the context of recommendation systems (103} 88} 94} [70}
926; [101).

The conditional gradient algorithm was devised in the seminal pa-
per by Frank and Wolfe (43)). Due to the applicability of the FW
algorithm to large-scale constrained problems, it has been a method
of choice in recent machine learning applications, to name a few:
(6% 69; 605 [39; BO; B8 9K (16} 104 [40; 47 [11).

The online conditional gradient algorithm is due to (58)). An optimal
regret algorithm, attaining the O(+/T) bound, for the special case of
polyhedral sets was devised in (47)).
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Games, Duality and Regret

In this chapter we tie the material covered thus far to some of the most
intriguing concepts in optimization and game theory. We shall use the
existence of OCO algorithms to prove convex duality as well as von
Neumann’s minimax theorem.

Historically, the theory of games was developed by von Neumann
in the early 1930’s, separately from the development of linear program-
ming (LP) by Dantzig a decade later. In Dantzig’s memoirs, a meeting
between him and von Neumann at Princeton is described, in which von
Neumann essentially formulated and proved linear programming dual-
ity. At that time, no mention was made to the existence and uniqueness
of equilibrium in zero-sum games, which is captured by the minimax
theorem. Both concepts were originally captured and proved using very
different mathematical techniques: the minimax theorem was originally
proved using machinery from mathematical topology, whereas linear
programming duality was shown using convexity and geometric tools.

More than half a century later, Freund and Schapire tied both con-
cepts, which were by then known to be strongly related, to regret min-
imization. We shall follow their lead in this chapter, introduce the rel-
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evant concepts and give concise proofs using the machinery developed
earlier in this manuscript.

The chapter can be read with basic familiarity with linear program-
ming and little or no background in game theory. We define LP and
zero-sum games succinctly, barely enough to prove the duality theo-
rem and the minimax theorem. The reader is referred to the numerous
wonderful texts available on linear programming and game theory for
a much more thorough introduction and definitions.

8.1 Linear programming and duality

Linear programming is a widely successful and practical convex opti-
mization framework. Amongst its numerous successes is the Nobel prize
award given on account of its application to economics. It is a special
case of the convex optimization problem from Chapter [2|in which K is
a polyhedron (i.e., an intersection of a finite set of halfspaces) and the
objective function is a linear function. Thus, a linear program can be
described as follows, where (A € R™*™):

minimize c'x
s.t. Ax>b

The above formulation can be transformed into several different forms
via basic manipulations. For example, any LP can be transformed to an
equivalent LP with the variables taking only non-negative values. This
can be accomplished by writing every variable x as x = 2™ — 2, with
2,2~ > 0. It can be verified that this transformation leaves us with
another LP, whose variables are non-negative, and contains at most
twice as many variables (see exercises section for more details).

We are now ready to define a central notion in LP and state the
duality theorem:

Theorem 8.1 (The duality theorem). Given a linear program:

minimize c'x
s.t. Ax > b,
x>0
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its dual program is given by:

maximize by
s.t. Aly <e,
y=>0

and the objectives of both problems are either equal or unbounded.

8.2 Zero-sum games and equilibria

The theory of games and zero-sum games in particular are a field of
study by themselves with significant applications in economics. We give
here brief definitions of the main concepts studied in this chapter.

Let us start with an example of a zero-sum game we all know: the
rock-paper-scissors game. In this game each of the two players chooses
a strategy: either rock, scissors or paper. The winner is determined
according to the following table, where 0 denotes a draw, —1 denotes
that the row player wins, and 1 denotes a column player victory.

- scissors | paper | rock
rock —1 1 0
paper 1 0 —1

scissors 0 -1 1

Table 8.1: Example of a zero-sum game in matrix representation.

The rock-paper-scissors game is called a “zero-sum” game since
one can think of the numbers as losses for the row player (loss of —1
resembles victory, 1 loss and 0 draw), in which case the column player
receives a loss which is exactly the negation of the loss of the row
player. Thus the sum of losses which both players suffer is zero in
every outcome of the game.

Noticed that we termed one player as the “row player” and the
other as the “column player” corresponding to the matrix losses. Such
a matrix representation is far more general:

Definition 8.1. A two-player zero-sum-game in normal form is given
by a matrix A € [0, 1]™*"™. The loss for the row player playing strategy
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i € [n] is equal to the negative loss (payoff) of the column player playing
strategy j € [m] and equal to A;;.

The fact that the losses were defined in the range [0, 1] is arbitrary,
as the concept of main importance we define next is invariant to scaling
and shifting by a constant.

A central concept in game theory is equilibrium. There are many
different notions of equilibria. In two-player zero-sum games, an equilib-
rium is a pair of strategies (7, j) € [n] x [m] with the following property:
given that the column player plays j, there is no strategy that dom-
inates i - i.e., every other strategy k € [n] gives higher or equal loss
to the row player. Equilibrium requires that a symmetric property for
strategy j holds - it is not dominated by any other strategy given that
the row player plays i.

It turns out that some games do not have an equilibrium as defined
above, e.g., the rock-paper-scissors game above. However, we can ex-
tend the notion of a strategy to a mized strategy - a distribution over
“pure” strategies. The loss of a mixed strategy is the expected loss ac-
cording to the distribution over pure strategies. More formally, if the
row player chooses x € A,, and column player chooses y € A,,, then
the expected loss of the row player (which is the negative payoff to the
column player) is given by:

E[loss] = Z X; Z y;iA(i, j) = x Ay.
i€[n]  jeln]
We can now generalize the notion of equilibrium to mixed strategies.
Given a row strategy x, it is dominated by X with respect to a column
strategy y if and only if

x| Ay > %' Ay.

We say that x is dominant with respect to y if and only if it is not
dominated by any other mixed strategy. A pair (x,y) is an equilibrium
for game A if and only if both x and y are dominant with respect to
each other (can you find the equilibrium for the example we started
with?).



8.2. Zero-sum games and equilibria 143

At this point, some natural questions arise: Is there always an equi-
librium in a given zero-sum game? Is it unique? Can it be computed effi-
ciently? Are there natural repeated-game-playing strategies that reach
it?

It turns out that the answer to all questions above is affirmative.
Let us rephrase these questions in a different way. Consider the optimal
row strategy, i.e., a mixed strategy x, such that E[loss] is minimized,
no matter what the column player does. The optimal strategy for the
row player would be:

x* € argmin max x ' Ay.
XCEA, YEAm
Notice that we use the notation x* € rather than x* =, since in gen-
eral the set of strategies attaining the minimal loss over worst-case
column strategies can contain more than a single strategy. Similarly,
the optimal strategy for the column player would be:
y* € argmax min x ' Ay.
yEA M, xXEA,
Playing these strategies, no matter what the column player does,
the row player would pay no more than
: T * T
G O SR
and column player would earn at least
. T : T *
Ao = s R A = e A

With these definitions we can state von Neumann’s famous minimax

theorem:

Theorem 8.2 (von Neumann minimax theorem). In any zero-sum game,
it holds that Agr = A\¢.

This theorem answers all our above questions on the affirmative.
The value \* = Ao = Apr is called the value of the game, and its
existence and uniqueness imply that any x* and y* in the appropriate
optimality sets are an equilibrium.

We proceed to give a constructive proof of von Neumann’s theorem
which also yields an efficient algorithm as well as natural repeated-game
playing strategies that converge to it.
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8.2.1 Equivalence of von Neumann Theorem and LP duality

The von Neumann theorem is equivalent to the duality theorem of
linear programming in a very strong sense, and either implies the other
via simple reduction (thus it suffices to prove only von Neumann’s
theorem to prove the duality theorem).

The first part of this equivalence is shown by representing a zero-
sum game as a primal-dual linear program instance.

Observe that the definition of an optimal row strategy and value is
equivalent to the following LP:

min A
s.t. in =1
Vi€ [m].x' Ae; <\
Vien].x; >0
To see that the optimum of the above LP is attained at A\g, note that

the constraint x"Ae; < A Vi € [m] is equivalent to the constraint
Vy € A, . x" Ay < ), since:

Vy € Ay, . XTAy:ZXTAej.yj §)\Zy1‘ —\
J=1 j=1

The dual program to the above LP is given by

max

7
s.t. Zyi =1

Vie[n]. e Ay > p

Vie[m].y; >0

By similar arguments, the dual program precisely defines A\ and
y*. The duality theorem asserts that A\g = Ac = A*, which gives von
Neumann’s theorem.

The other direction, i.e., showing that von Neumann’s theorem im-
plies LP duality, is slightly more involved. Basically, one can convert
any LP into the format of a zero-sum game. Special care is needed to
ensure that the original LP is indeed feasible, as zero-sum games are
always feasible. The details are left as an exercise at the end of this
chapter.
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8.3 Proof of von Neumann Theorem

In this section we give a proof of von Neumann’s theorem using online
convex optimization algorithms.

The first part of the theorem, which is also known as weak duality
in the LP context, is rather straightforward:

Direction 1 (Ar > A¢):

Proof.
Ap = min max x' Ay
XEA, yeAwn

= max x*' Ay definition of x*
y€A7VL

> max min x' Ay
YEA, XEA,

=\
0

The second and main direction, known as strong duality in the LP
context, requires the technology of online convex optimization we have
proved thus far:

Direction 2 (Ar < A¢):

Proof. We consider a repeated game A (as defined by the n x m matrix
above), for t = 1,2,...,T. Tteratively, the row player provides a mixed
strategy x; € A,, column player plays mixed strategy y; € A,,, and
the loss of the row player, which equals to the payoff of the column
player, equals x; Ay;.

The row player generates the mixed strategies x; according to
an OCO algorithm—i.e., using the Exponentiated Gradient algorithm
from Chapter [5| The convex decision set is taken to be the n dimen-
sional simplex K = A, = {x € R" | x(i) > 0,>_x(i) = 1}. The loss
function at time ¢ is given by

fi(x) =x"Ay; (fy is linear with respect to x)

Spelling out the EG strategy for this particular instance, we have
Xt(i)e_nAiyt
5, xi(i)e A

X¢+1 <’L) —
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Then, by appropriate choice of n and Corollary we have
D filxe) < H}g,lCth(X*) + V2T logn . (8.1)
t x t

The column player plays his best response to the row player’s strat-
egy, that is:

-
= arg max x, A 8.2
y: = arg max x; Ay (8.2)

m

Denote the average mixed strategies by:

t
Z Xr , Y=
T=1

X =

| =

¢
Doy
T=1
Then, we have
Ap = minmax x' Ay
x |y
< maxx ' Ay special case
y
1
=7 ; x: Ay*
1
< T Z xt Ayt by (8.2)
t
1
< 7 min Zt: x' Ay; +/2logn/T by 1)

T g
= minx Ay + /2logn/T

. T .
gm}z}xm}%nx Ay + /2logn/T special case

= Ac +/2logn/T

Thus Ag < Ao + 2logn/T. As T — oo, we obtain part 2 of the
theorem. m

Discussion. Notice that besides the basic definitions, the only tool
used in the proof is the existence of low-regret algorithms for OCO.
The fact that the regret bounds for EG, and more generally OCO
algorithms, were defined without restricting the cost functions, and
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that they can even be adversarially chosen, is crucial for the proof.
The functions f; are defined according to y;, which is chosen based on
X¢. Thus, the cost functions we constructed are adversarially chosen
after the decision x; was made by the row player.

8.4 Approximating Linear Programs

The technique in the preceding section not only proves the minimax
theorem (and thus linear programming duality), but also entails an
efficient algorithm for solving zero-sum games, and, by equivalence,
linear programs.

Consider the following simple algorithm:

Algorithm 25 Simple LP
1: Input: linear program in zero-sum game format, by matrix A €
RTLXTI’L.
Let x; = [1/n,1/n,...,1/n]
fort=1toT do
Compute y; = maxyen,, x; Ay
x4 (i)e 1AVt

Update Vi . Xt+1(i) — W

end for

@

7: return X = %2?21 Xy

Almost immediately we obtain from the previous derivation the
following:

Lemma 8.3. The returned vector p of Algorithm is a YZlosn

VT
approximate solution to the zero-sum game / LP.
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Proof. Following the exact same steps of the previous derivation, we
have

T 1
S § : *
Hl)E,i,XX T . Xt Ay

<*ZXtAyt by
L .
§Tm>gnzt:xTAyt+\/2logn/T by

I
= minx Ay + +/2logn/T

. T .
gmt?xm)}nx Ay +y/2logn/T special case
=N+ /2logn/T

Therefore, for each i € [m]:

v2logn
vT

%" Ae; < N+

O

Thus, to obtain an e-approximate solution, one would need 21?#

iterations, each involving a very simple update procedure.
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Exercises

. In this question we prove a special case of Sion’s generalization to

the minimax theorem. Let f: X XY — R be a real valued func-
tion on X x Y, where X,Y are bounded convex sets in Euclidean
space R?%. Let f be convex-concave, i.e.,

(a) For every y € Y, the function f(-,y) : X — R is convex.
(b) For every x € X, the function f(x,-):Y — R is concave.

Prove that

min max fxy) = max min f(xy)

Read the paper of Adler (), and explain in brief how to convert
a linear program to a zero-sum game.

Consider a repeated zero-sum game over a matrix A in which
both players change their mixed strategies according to a low-
regret algorithm over the linear cost/payoff functions of the game.
Prove that the average value of the game approaches that of an
equilibrium of the game given by A.
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8.6 Bibliographic Remarks

Game theory was founded in the late 1920’s-early ’30s, whose corner-
stone was laid in the classic text “Theory of Games and Economic
Behavior” by von Neumann and Morgenstern (81)).

Linear programming is a fundamental mathematical optimization
and modeling tool, dating back to the 1940’s and the work of Kan-
torovich (64) and Dantzig (34). Duality for linear programming was
conceived by von Neumann, as described by Dantzig in an interview
(8]).

The beautiful connection between low-regret algorithms and solv-
ing zero-sum games was discovered by Freund and Schapire (45]). More
general connections of convergence of low-regret algorithms to equi-
libria in games were studied by Hart and Mas-Collel (51I)), and more
recently in (41} 93)).

Approximation algorithms that arise via simple Lagrangian relax-
ation techniques were pioneered by Plotkin, Schmoys and Tardos (84]).
See also the survey (11) and more recent developments that give rise
to sublinear time algorithms (30} £9).
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Learning Theory, Generalization and OCO

In our treatment of OCO so far we have only implicitly discussed learn-
ing theory. The framework of OCO was shown to capture applications
such as learning classifiers online, prediction with expert advice and
online portfolio selection. We have introduced the metric of regret and
gave efficient algorithms to minimize regret in various settings. We have
also argued that minimizing regret is a meaningful approach for a host
of online prediction problems.

In this section we draw a formal and strong connection between
OCO and the theory of learning. We begin by giving the basic defi-
nitions of statistical learning theory, and proceed to describe how the
applications studied in this manuscript relate to this model. We then
continue to show how regret minimization in the OCO setting gives
rise to computationally efficient learning algorithms.

9.1 The setting of statistical learning theory

The theory of statistical learning models the problem of learning a
concept from examples. A concept is a mapping from domain X to
labels Y, denoted C : X — ). As an example, the problem of optical
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character recognition has the domain X of all 8 x 8 bitmap images, the
label set ) is the latin alphabet, and the concept C' maps a bitmap
into the character depicted in the image.

Statistical theory models the problem of learning a concept by al-
lowing access to labelled examples from the target distribution. The
learning algorithm has access to pairs from an unknown distribution

(x,y)~D , x€X,yc).

The goal is to be able to predict y as a function of x, i.e., to learn a
hypothesis, or a mapping from X to ), denoted h : X — ), with small
error with respect to the distribution D. In the case that the label set is
binary ) = {0, 1}, or discrete such as in optical character recognition,
the generalization error of an hypothesis h with respect to distribution
D is given by

error(h) = (x&]’:)JND[h(X) # 9.

More generally, the goal is to learn a hypothesis that minimizes the
loss according to a (usually convex) loss function £ : Y x Y — R. In
this case the generalization error of a hypothesis is defined as:

error(h) £ B [((h(x),y)].
(xy)~D

We henceforth consider learning algorithms A that observe a sample
from the distribution D , denoted S ~ D™ for a sample of m examples,
S ={(x1,y1)s -y (Xm,Ym)}, and produce a hypothesis A(S) : X — Y
based on this sample.

The goal of statistical learning can thus be summarised as follows:

Given access to i.i.d. samples from an arbitrary distribu-
tion over X X Y corresponding to a certain concept, learn
a hypothesis h : X — Y which has arbitrarily small gen-
eralization error with respect to a given loss function.

9.1.1 Overfitting

In the problem of optical character recognition the task is to recognize
a character from a given image in bitmap format. To model it in the
statistical learning setting, the domain X is the set of all n x n bitmap
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images for some integer n. The label set ) is the latin alphabet, and
the concept C maps a bitmap into the character depicted in the image.

Consider the naive algorithm which fits the perfect hypothesis for
a given sample, in this case set of bitmaps. Namely, A(S) is the hy-
pothesis which correctly maps any given bitmap input x; to its correct
label y;, and maps all unseen bitmaps to the character “1.”

Clearly, this hypothesis does a very poor job of generalizing from
experience - all possible future images that have not been observed
yet will be classified without regard to their properties, surely an erro-
neous classification most times. However - the training set, or observed
examples, are perfectly classified by this hypothesis!

This disturbing phenomenon is called “overfitting,” a central con-
cern in machine learning. Before continuing to add the necessary com-
ponents in learning theory to prevent overfitting, we turn our attention
to a formal statement of when overfitting can appear.

9.1.2 No free lunch?

The following theorem shows that learning, as stated in the goal of sta-
tistical learning theory, is impossible without restricting the hypothesis
class being considered. For simplicity, we consider the zero-one loss in
this section.

Theorem 9.1 (No Free Lunch Theorem). Consider any domain X" of
size |X| = 2m > 4, and any algorithm A which outputs a hypothesis
A(S) given a sample S. Then there exists a concept C' : X — {0,1}
and a distribution D such that:

e The generalization error of the concept C' is zero.

e With probability at least 1—10, the error of the hypothesis generated

by A is at least error(A(S)) > 4.

The proof of this theorem is based on the probabilisitic method, a
useful technique for showing the existence of combinatorial objects by
showing that the probability they exist in some distributional setting
is bounded away from zero. In our setting, instead of explicitly con-
structing a concept C' with the required properties, we show it exists
by a probabilistic argument.
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Proof. We show that for any learner, there is some learning task (i.e.
“hard” concept) that it will not learn well. Formally, take D to be
the uniform distribution over X'. Our proof strategy will be to show
the following inequality, where we take a uniform distribution over all
concepts X +— {0,1}
def 1
@= C:XE{O,l}[SN]%m[error(A(S))H =
as an intermediate step, and then use Markov’s Inequality to conclude
the theorem.
We proceed by using the linearity property of expectations, which
allows us to swap the order of expectations, and then conditioning on
the event that x € S.

+ BBA(S)(x) £ COolx ¢ 5] Prlx ¢ S]]

All terms in the above expression, and in particular the first term,
are non-negative and at least 0. Also note that since the domain size
is 2m and the sample is of size |S| < m, we have Pr(x ¢ S) > 1.
Finally, observe that Pr[A(S)(x) # C(x)] = 1 for all x ¢ S since we
are given that the “true” concept C' is chosen uniformly at random over
all possible concepts. Hence, we get that:

11 1

Q=0+ 5331
which is the intermediate step we wanted to show. The random vari-
able Eg.pm[error(A(S))] attains values in the range [0,1]. Since its
expectation is at least %, the event that it attains a value of at least i

is non-empty. Thus, there exists a concept such that

1
E [error(A(S))] > -
B lerror(A(9))] =
where, as assumed beforehand, D is the uniform distribution over X.
We now conclude with Markov’s Inequality: since the expectation

above over the error is at least one-fourth, the probability over examples
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such that the error of A over a random sample is at least one-tenth is

at least
P SH>—) > —.
s (e”or(A( )=z 10) “1-L1 710

9.1.3 Examples of learning problems

The conclusion of the previous theorem is that the space of possible
concepts being considered in a learning problem needs to be restricted
for any meaningful guarantee. Thus, learning theory concerns itself
with concept classes, also called hypothesis classes, which are sets of
possible hypotheses from which one would like to learn. We denote the
concept (hypothesis) class by H ={h: X — V}.

Common examples of learning problems that can be formalized in
this model and the corresponding definitions include:

e The problem of optical character recognition has the domain X
of all n x n bitmap images for some integer n, the label set )
is the latin alphabet, and the concept C maps a bitmap into the
character depicted in the image. A common (finite) hypothesis
class for this problem is the set of all decision trees with bounded
depth.

e Linear classification for text: the domain is a subset of Euclidean
space, i.e., X C R? where a document is represented in its bag-
of-words representation and d is the size of the dictionary. The
label set ) is binary, where one indicates a certain classification
or topic, e.g. “Economics,” and zero others. The hypothesis class
is the set of all bounded-norm vectors in Euclidean space H =
{hw , w € R | ||w|2 < w} such that hy(x) = w'x. The loss
function is chosen to be the hinge loss, i.e., £(g,y) = max{0,1 —
9y}

The resulting formulation is known as soft-margin SVM, which
we have encountered in previous chapters.
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9.1.4 Defining generalization and learnability

We are now ready to give the fundamental definition of statistical learn-
ing theory, called Probably Approximately Correct (PAC) learning:

Definition 9.1 (PAC learnability). A hypothesis class H is PAC learn-
able with respect to loss function £ : ) x )V +— R if the following holds.
There exists an algorithm A that accepts St = {(x¢,yt), t € [T]} and
returns hypotheses A(S7) € ‘H that satisfies: for any €, > 0 there ex-
ists a sufficiently large natural number 7" = T'(¢, §), such that for any
distribution D over pairs (x,y) and T samples from this distribution,
it holds that with probability at least 1 — §

error(A(St)) < e.
A few remarks regarding this definition:

e The set St of samples from the underlying distribution is called
the training set. The error in the above definition is called the
generalization error, as it describes the overall error of the con-
cept as generalized from the observed training set. The behavior
of the number of samples T' as a function of the parameters ¢, §
and the concept class is called the sample complexity of H.

e The definition of PAC learning says nothing about computational
efficiency. Computational learning theory usually requires, in ad-
dition to the definition above, that the algorithm A is efficient,
i.e., polynomial running time with respect to ¢, log % and the rep-
resentation of the hypothesis class. The representation size for a
discrete set of concepts is taken to be the logarithm of the number
of hypotheses in H, denoted log |#|.

e If the hypothesis A(S7) returned by the learning algorithm be-
longs to the hypothesis class H, as in the definition above, we say
that H is properly learnable. More generally, A may return
hypothesis from a different hypothesis class, in which case we say
that H is non-properly learnable.

The fact that the learning algorithm can learn up to any desired
accuracy € > 0 is called the realizability assumption and greatly
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reduces the generality of the definition. It amounts to requiring that
a hypothesis with near-zero error belongs to the hypothesis class. In
many cases, concepts are only approximately learnable by a given hy-
pothesis class, or inherent noise in the problem prohibits realizability
(see exercises).

This issue is addressed in the definition of a more general learning
concept, called agnostic learning:

Definition 9.2 (agnostic PAC learnability). The hypothesis class H is
agnostically PAC learnable with respect to loss function £: Y x Y — R
if the following holds. There exists an algorithm A that accepts Sy =
{(xt,yt), t € [T]} and returns hypothesis A(S7) that satisfies: for any
g,0 > 0 there exists a sufficiently large natural number T" = T'(g,0)
such that for any distribution D over pairs (x,y) and T samples from
this distribution, it holds that with probability at least 1 — ¢

error(A(St)) < iréiﬁ{error(h)} +e.

With these definitions, we can state the fundamental theorem of
statistical learning theory for finite hypothesis classes:

Theorem 9.2 (PAC learnability of finite hypothesis classes). Every finite
concept class H is agnostically PAC learnable with sample complexity
that is poly(e, d, log |H]).

In the following sections we prove this theorem, and in fact a more
general statement that holds also for certain infinite hypothesis classes.
The complete characterization of which infinite hypothesis classes are
learnable is a deep and fundamental question, whose complete answer
was given by Vapnik and Chervonenkis (see bibliography).

The question of which (finite or infinite) hypothesis classes are ef-
ficiently PAC learnable, especially in the non-proper sense, is still at
the forefront of learning theory today.

9.2 Agnostic learning using OCO

In this section we show how to use online convex optimization for ag-
nostic PAC learning. Following the paradigm of this manuscript, we
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describe and analyze a reduction from agnostic learning to OCO for
convex loss functions. The reduction is formally described in Algorithm
20

Algorithm 26 Reduction: Learning = OCO

1: Input: OCO algorithm A, convex hypothesis class H C R, convex
loss function ¢, parameters ¢, 6.

: Let hy <+ A(@)

:fort=1to T do

Draw labeled example (x,y;) ~ D.

Let fi(h) = €(h(x¢), y)-

Update

S gk W

hiv1 = A(f1, - ft)-

7. end for
8: Return h = % Zthl hy.

For this reduction we assumed that the concept (hypothesis) class is
a convex subset of Euclidean space. A similar reduction can be carried
out for discrete hypothesis classes (see exercises). In fact, the technique
we explore below will work for any hypothesis set H that admits a low
regret algorithm, and can be generalized to infinite hypothesis classes
that are known to be learnable.

Let h* = arg minpey{error(h)} be the hypothesis in class H that
minimizes the error. Given that A guarantees sublinear regret, our
simple reduction implies learning, as given in the following theorem.

Theorem 9.3. Let A be an OCO algorithm whose regret after T itera-
tions is guaranteed to be bounded by regrety(.A). Then for any § > 0,
with probability at least 1 — §, it holds that

. regrety(A) 8log(%)

h) < )+ ———= .
error(h) < error(h*) + T + T

In particular, for T = O(% log 5 + T:(A)), where T.(A) is the integer
T such that % < g, we have

error(h) < error(h*) + €.
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How general is the theorem above? In the previous chapters we have
described and analyzed OCO algorithms with regret guarantees that
behave asymptotically as O(v/T) or better. This translates to sample
complexity of O(gi2 log %) (see exercises), which is known to be tight
for certain scenarios.

To prove this theorem we need some tools from probability theory,
and in particular concentration inequalities which we survey next.

9.2.1 Reminder: measure concentration and martingales

Let us briefly discuss the notion of a martingale in probability theory.
For intuition, it is useful to recall the simple random walk. Let X; be
a Rademacher random variable which takes values

1,  with probability

N =

X; =
—1, with probability

D=

A simple symmetric random walk is described by the sum of such ran-
dom variables, depicted in Figure Let X = ngrzl X, be the position
after T steps of this random walk. The expectation and variance of this
random variable are E[X] =0, Var(X)=1T.

The phenomenon of measure concentration addresses the probabil-
ity of a random variable to attain values within range of its standard
deviation. For the random variable X, this probability is much higher
than one would expect using only the first and second moments. Using
only the variance, it follows from Chebychev’s inequality that

Pr[|X| > VT < Ci?

However, the event that |X| is centred around O(v/T) is in fact much
tighter, and can be bounded by the Hoeffding-Chernoff lemma as fol-
lows

_2
Pr[|X| > ¢VT] < 2e>  Hoeffding-Chernoff lemma.

Thus, deviating by a constant from the standard deviation de-
creases the probability exponentially, rather than polynomially. This
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Figure 9.1: Symmetric random walk: 12 trials of 200 steps. The black dotted lines
are the functions ++/z and +2,/x respectively.

well-studied phenomenon generalizes to sums of weakly dependent ran-
dom variables and martingales, which are important for our applica-
tion.

Definition 9.3. A sequence of random variables X1, Xo, ... is called a
martingale if it satisfies:

E[Xt—‘,—l‘Xt;Xt—l-qu] =X; Vt>0.

A similar concentration phenomenon to the random walk sequence
occurs in martingales. This is captured in the following theorem by
Azuma.

Theorem 9.4 (Azuma’s inequality). Let {Xi}iT:1 be a martingale of T
random variables that satisfy | X; — X;+1| < 1. Then:
.2
Pr[| Xt — Xo| > ] <2e2T.

By symmetry, Azuma’s inequality implies,

2

Pr[Xr—Xo>d =Pr[Xo— Xp>d <ear. (9.1)
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9.2.2 Analysis of the reduction

We are ready to prove the performance guarantee for the reduction in
Algorithm [26] Assume for simplicity that the loss function ¢ is bounded
in the interval [0, 1], i.e.,

Vi, y e Y, Ly,y) €[0,1].

Proof of Theorem[9.3. We start by defining a sequence of random vari-
ables that form a martingale. Let

t
Zy & error(hy) — £(he(xt),9¢), Xt = Z Z;.
i=1

Let us verify that {X;} is indeed a bounded martingale. Notice that by
definition of error(h), we have that

E [Z)|X;_1] =error(hy) — E [l(h(x),y)] =0
(x7y)~'D[ t| Xi—1] (he) (x’y)ND[( +(x), )]

Thus, by the definition of Z,
E[X11|Xt,...X1] =E[Z1| X + X = X4

In addition, by our assumption that the loss is bounded, we have that
(see exercises)

| X: — X1 =24 < 1. (9.2)
Therefore we can apply Azuma’s theorem to the martingale {X,;}, or

rather its consequence (9.1)), and get

_2
Pr[ Xt > ] <e?r.

Plugging in the definition of Xp, dividing by 7 and using ¢ =

\/2T log(3):

1 & 1 & 2log(2
Pr T;error(ht)—T;E(ht(xt),yt)> T(‘;) <

A similar martingale can be defined for hA* rather than h;, and
repeating the analogous definitions and applying Azuma’s inequality
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we get:

LS~ o) - LY 21053)| _ o
Pr T;error(h)—T;l(h*(xt),yt)<— —7 gi, (9.4)

For notational convenience, let us use the following notation:

1 & 1 &
Fl = — Zerror(ht) - = Zﬁ(ht(xt),yt),
T t=1 T t=1

1 & 1 &
Py = =3 error(h*) — = S (0" (x0), ).
= =
Next, observe that
1
— Z error(hy) — error(h™)
Ti=
1 & 1 &
=It—-Ty+ T D l(ha(xt),ye) — T D P (x4), ye)
t=1 t=1

< regretp(A)

- T
where in the last inequality we have used the definition f;(h) =
£(h(x¢),y:). From the above and Inequalities (9.3)), (9.4) we get

regrety(A) 4o 2log(%)
T T

+F1 _F27

1 I
Pr [T Z error(hy) — error(h*) >

t=1

[ 2log(l)
<Pr|l;—Ty>2 T5

[ 2log(%) 210g(%)
<Pr|I'1 > T +Pr |y < — T

<é. Inequalities (9.3)), (9.4))

By convexity we have that error(h) < %Z?zl error(h;). Thus, with
probability at least 1 — ¢,
L regret(A) 8log(3)

- 1
error(h) < T Zerror(ht) < error(h*) + T + =2
t=1
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Exercises

1. Strengthen the no free lunch Theorem [9.1] to show the following:

For any € > 0, there exists a finite domain X, such that for any
learning algorithm A which given a sample S produces hypothesis
A(S), there exists a distribution D and a concept C' : X — {0,1}
such that

e error(C) =0

e Eg . pmlerror(A(S))] > 5 —¢

N[

. Let A be an agnostic learning algorithm for the finite hypothesis

class H : X — Y and the zero-one loss. Consider any concept
C : X — Y which is realized by H, and the concept C which
is obtained by replacing the label associated with each domain
entry € X randomly with probability g > 0 every time z is
sampled independently. That is:

1, with probability <
C(xr) =1 0, with probability £
C(z), otherwise

Prove that A can e-approximate the concept C: that is, show that
A can be used to produce a hypothesis h 4 that has error

1
< —
erlrjor(hA) < 50 +e

with probability at least 1 — ¢ for every €, § with sample complex-
ity polynomial in %, log %, log |H|.

. Prove inequality

(Sample complexity of SVM)
Consider the class of hypothesis given by hyperplanes in Eu-
clidean space with bounded norm

H={xeR", [jx]> <A}
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Give an algorithm to PAC-learn this class with respect to the
hinge loss function using reduction 26} Analyze the resulting com-
putational and sample complexity.

5. Show how to use a modification of reduction [20] to learn a finite
(non-convex) hypothesis class.
HINT: instead of returning h, consider returning a hypothesis at
random.
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9.4 Bibliographic Remarks

The foundations of statistical and computational learning theory were
put forth in the seminal works of Vapnik (106) and Valiant (105) re-
spectively. There are numerous fantastic texts on statistical and com-
putational learning theory, see e.g., (65).

Reductions from the online to the statistical (a.k.a. “batch”) setting
were initiated by Littlestone (72)). Tighter and more general bounds
were explored in (27} 28; 109).

The probabilistic method is attributed to Paul Erdos, see the illu-
minating text of Alon and Spencer (10).
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