
5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 1 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

DECEMBER 02, 2014

Numerical Optimization: Understanding L-BFGS
(/blog/2014/12/understanding-lbfgs)

Numerical optimization is at the core of much of machine learning. Once you’ve defined your

model and have a dataset ready, estimating the parameters of your model typically boils down

to minimizing some multivariate function (http://en.wikipedia.org/wiki/Multivariable_calculus) 

, where the input  is in some high-dimensional space and corresponds to model

parameters. In other words, if you solve:

then  is the ‘best’ choice for model parameters according to how you’ve set your objective.

In this post, I’ll focus on the motivation for the L-BFGS (http://en.wikipedia.org/wiki/Limited-

memory_BFGS) algorithm for unconstrained function minimization, which is very popular for

ML problems where ‘batch’ optimization makes sense. For larger problems, online methods

based around stochastic gradient descent

(http://en.wikipedia.org/wiki/Stochastic_gradient_descent) have gained popularity, since they

require fewer passes over data to converge. In a later post, I might cover some of these

techniques, including my personal favorite AdaDelta

(http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf).

Note: Throughout the post, I’ll assume you remember multivariable calculus. So if you don’t

recall what a gradient (http://en.wikipedia.org/wiki/Gradient) or Hessian

(http://en.wikipedia.org/wiki/Hessian_matrix) is, you’ll want to bone up first.

f(x) x

= arg f(x)x∗ min
x

x∗ 1

42
 (/)

BLOG (/blog) ACADEMIC (/academic) MEDIA (/media)

http://aria42.com/blog/2014/12/understanding-lbfgs
http://en.wikipedia.org/wiki/Multivariable_calculus
http://en.wikipedia.org/wiki/Limited-memory_BFGS
http://en.wikipedia.org/wiki/Stochastic_gradient_descent
http://www.matthewzeiler.com/pubs/googleTR2012/googleTR2012.pdf
http://en.wikipedia.org/wiki/Gradient
http://en.wikipedia.org/wiki/Hessian_matrix
http://aria42.com/
http://aria42.com/blog
http://aria42.com/academic
http://aria42.com/media


5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 2 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

Newton’s Method

Most numerical optimization procedures are iterative algorithms which consider a sequence of

‘guesses’  which ultimately converge to  the true global minimizer of . Suppose, we have

an estimate  and we want our next estimate  to have the property that 

.

Newton’s method is centered around a quadratic approximation of  for points near .

Assuming that  is twice-differentiable, we can use a quadratic approximation of  for points

‘near’ a fixed point  using a Taylor expansion (http://en.wikipedia.org/wiki/Taylor_series):

where  and  are the gradient and Hessian of  at the point . This

approximation holds in the limit as . This is a generalization of the single-

dimensional Taylor polynomial expansion you might remember from Calculus.

xn x∗ f

xn xn+1

f( ) < f( )xn+1 xn

f xn

f f

x

f(x + ∆x) ≈ f(x) + ∆ ∇f(x) + ∆ ( f(x)) ∆xxT 1
2

xT ∇2

∇f(x) f(x)∇2 f xn

||∆x|| → 0

http://en.wikipedia.org/wiki/Taylor_series


5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 3 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

In order to simplify much of the notation, we’re going to think of our iterative algorithm of

producing a sequence of such quadratic approximations . Without loss of generality, we can

write  and re-write the above equation,

where  and  represent the gradient and Hessian of  at .

We want to choose  to minimize this local quadratic approximation of  at .

Differentiating with respect to  above yields:

Recall that any  which yields  is a local extrema of . If we assume that 

is [postive definite] (psd) then we know this  is also a global minimum for . Solving for 

:

This suggests  as a good direction to move  towards. In practice, we set 

 for a value of  where  is ‘sufficiently’ smaller than .

Iterative Algorithm

The above suggests an iterative algorithm:

The computation of the  step-size can use any number of line search

(http://en.wikipedia.org/wiki/Line_search) algorithms. The simplest of these is backtracking line

search (http://en.wikipedia.org/wiki/Backtracking_line_search), where you simply try smaller

hn

= + ∆xxn+1 xn

(∆x)hn = f( ) + ∆ + ∆ ∆xxn xT gn

1
2

xT Hn

gn Hn f xn

∆x f xn

∆x

= + ∆x
∂ (∆x)hn

∂∆x
gn Hn

∆x = 0∂ (∆x)hn

∂∆x
(⋅)hn Hn

∆x (⋅)hn

∆x 2

∆x = −H−1
n gn

H−1
n gn xn

= − α( )xn+1 xn H−1
n gn α f( )xn+1 f( )xn

NewtonRaphson(f, ) :x0

For n = 0, 1, … (until converged) :
Compute  and  for gn H−1

n xn

d = H−1
n gn

α = f( − αd)min
α≥0

xn

← − αdxn+1 xn

α

http://en.wikipedia.org/wiki/Line_search
http://en.wikipedia.org/wiki/Backtracking_line_search


5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 4 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

and smaller values of  until the function value is ‘small enough’.

In terms of software engineering, we can treat  as a blackbox for any

twice-differentiable function which satisfies the Java interface:

publicpublic interfaceinterface TwiceDifferentiableFunctionTwiceDifferentiableFunction {{
  // compute f(x)

  publicpublic doubledouble valueAtvalueAt((doubledouble[][] x););

  // compute grad f(x)

  publicpublic doubledouble[][] gradientAtgradientAt((doubledouble[][] x););

  // compute inverse hessian H^-1

  publicpublic doubledouble[][][][] inverseHessianinverseHessian((doubledouble[][] x););
}}

With quite a bit of tedious math, you can prove that for a convex function

(http://en.wikipedia.org/wiki/Convex_function), the above procedure will converge to a unique

global minimizer , regardless of the choice of . For non-convex functions that arise in ML

(almost all latent variable models or deep nets), the procedure still works but is only guranteed

to converge to a local minimum. In practice, for non-convex optimization, users need to pay

more attention to initialization and other algorithm details.

Huge Hessians

The central issue with  is that we need to be able to compute the inverse

Hessian matrix.  Note that for ML applications, the dimensionality of the input to  typically

corresponds to model parameters. It’s not unusual to have hundreds of millions of parameters

or in some vision applications even billions of parameters

(http://static.googleusercontent.com/media/research.google.com/en/us/archive/large_deep_networks_nips2012.pdf)

For these reasons, computing the hessian or its inverse is often impractical. For many

functions, the hessian may not even be analytically computable, let along representable.

α

NewtonRaphson

x∗ x0

NewtonRaphson
3 f

http://en.wikipedia.org/wiki/Convex_function
http://static.googleusercontent.com/media/research.google.com/en/us/archive/large_deep_networks_nips2012.pdf


5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 5 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

Because of these reasons,  is rarely used in practice to optimize functions

corresponding to large problems. Luckily, the above algorithm can still work even if 

doesn’t correspond to the exact inverse hessian at , but is instead a good approximation.

Quasi-Newton

Suppose that instead of requiring  be the inverse hessian at , we think of it as an

approximation of this information. We can generalize  to take a 

 policy which is responsible for producing a sequence of .

We’ve assumed that  only requires the former inverse hessian estimate as well

tas the input and gradient differences (  and  respectively). Note that if  just

returns , we recover exact .

In terms of software, we can blackbox optimize an arbitrary differentiable function (with no

need to be able to compute a second derivative) using  assuming we get a

quasi-newton approximation update policy. In Java this might look like this,

NewtonRaphson
H−1

n

xn

H−1
n xn

NewtonRaphson
QuasiUpdate H−1

n

QuasiNewton(f, , , QuasiUpdate) :x0 H−1
0

For n = 0, 1, … (until converged) :
// Compute search direction and step-size 
d = H−1

n gn

α ← f( − αd)min
α≥0

xn

← − αdxn+1 xn

// Store the input and gradient deltas 
← ∇f( )gn+1 xn+1

← −sn+1 xn+1 xn

← −yn+1 gn+1 gn

// Update inverse hessian 
← QuasiUpdate( , , )H−1

n+1 H−1
n sn+1 yn+1

QuasiUpdate
sn yn QuasiUpdate

f( )∇2 xn+1 NewtonRaphson

QuasiNewton



5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 6 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

publicpublic interfaceinterface DifferentiableFunctionDifferentiableFunction {{
  // compute f(x)

  publicpublic doubledouble valueAtvalueAt((doubledouble[][] x););

  // compute grad f(x)

  publicpublic doubledouble[][] gradientAtgradientAt((doubledouble[][] x););  
}}

publicpublic interfaceinterface QuasiNewtonApproximationQuasiNewtonApproximation {{
  // update the H^{-1} estimate (using x_{n+1}-x_n and grad_{n+1}-grad_n)

  publicpublic voidvoid updateupdate((doubledouble[][] deltaX,, doubledouble[][] deltaGrad););

  // H^{-1} (direction) using the current H^{-1} estimate

  publicpublic doubledouble[][] inverseHessianMultiplyinverseHessianMultiply((doubledouble[][] direction););
}}

Note that the only use we have of the hessian is via it’s product with the gradient direction. This

will become useful for the L-BFGS algorithm described below, since we don’t need to represent

the Hessian approximation in memory. If you want to see these abstractions in action, here’s a

link to a Java 8 (https://github.com/aria42/java8-optimize/tree/master/src/optimize) and golang

(https://github.com/aria42/taskar/blob/master/optimize/newton.go) implementation I’ve

written.

Behave like a Hessian

What form should  take? Well, if we have  always return the

identity matrix (ignoring its inputs), then this corresponds to simple gradient descent

(http://en.wikipedia.org/wiki/Gradient_descent), since the search direction is always . While

this actually yields a valid procedure which will converge to  for convex , intuitively this

choice of  isn’t attempting to capture second-order information about .

Let’s think about our choice of  as an approximation for  near :

QuasiUpdate QuasiUpdate

∇fn

x∗ f

QuasiUpdate f

Hn f xn

(d) = f( ) + + dhn xn dT gn

1
2

dT Hn

https://github.com/aria42/java8-optimize/tree/master/src/optimize
https://github.com/aria42/taskar/blob/master/optimize/newton.go
http://en.wikipedia.org/wiki/Gradient_descent


5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 7 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

Secant Condition
A good property for  is that its gradient agrees with  at  and . In other words,

we’d like to ensure:

Using both of the equations above:

Using the gradient of  and canceling terms we get

This yields the so-called “secant conditions” which ensures that  behaves like the Hessian

at least for the diference . Assuming  is invertible (which is true if it is psd),

then multiplying both sides by  yields

where  is the difference in gradients and  is the difference in inputs.

Symmetric
Recall that the a hessian represents the matrix of 2nd order partial derivatives: 

. The hessian is symmetric since the order of differentiation doesn’t

matter.

The BFGS Update
Intuitively, we want  to satisfy the two conditions above:

Secant condition holds for  and 
 is symmetric

Given the two conditions above, we’d like to take the most conservative change relative to 

. This is reminiscent of the MIRA update (http://aria42.com/blog/2010/09/classification-

with-mira-in-clojure/), where we have conditions on any good solution but all other things

(d)hn f xn xn−1

∇ ( )hn xn

∇ ( )hn xn−1

= gn

= gn−1

∇ ( ) − ∇ ( ) = −hn xn hn xn−1 gn gn−1

(⋅)hn+1

( − ) = ( − )Hn xn xn−1 gn gn−1

Hn+1

( − )xn xn−1 Hn

H−1
n

=H−1
n yn sn

yn+1 sn+1

= ∂f/∂ ∂H(i,j) xi xj

Hn

sn yn

Hn

Hn−1

http://aria42.com/blog/2010/09/classification-with-mira-in-clojure/


5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 8 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

equal, want the ‘smallest’ change.

The norm used here  is the weighted frobenius norm

(http://mathworld.wolfram.com/FrobeniusNorm.html).  The solution to this optimization

problem is given by

where . Proving this is relatively involved and mostly symbol crunching. I don’t

know of any intuitive way to derive this unfortunately.

This update is known as the Broyden–Fletcher–Goldfarb–Shanno (BFGS) update, named after

the original authors. Some things worth noting about this update:

min
H−1

s.t. 

∥ −H−1 H−1
n−1∥2

=H−1yn sn

 is symmetric H−1

∥ ⋅ ∥
4

= (I − ) (I − ) +H−1
n+1 ρnynsT

n H−1
n ρnsn yT

n ρnsn sT
n

= (ρn yT
n sn )−1

−1 −1

http://mathworld.wolfram.com/FrobeniusNorm.html


5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 9 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

 is positive definite (psd) when  is. Assuming our initial guess of  is psd, it

follows by induction each inverse Hessian estimate is as well. Since we can choose any 

we want, including the  matrix, this is easy to ensure.

The above also specifies a recurrence relationship between  and . We only need

the history of  and  to re-construct .

The last point is significant since it will yield a procedural algorithm for computing , for a

direction , without ever forming the  matrix. Repeatedly applying the recurrence above

we have

Since the only use for  is via the product , we only need the above procedure to

use the BFGS approximation in .

L-BFGS: BFGS on a memory budget
The BFGS quasi-newton approximation has the benefit of not requiring us to be able to

analytically compute the Hessian of a function. However, we still must maintain a history of the 

 and  vectors for each iteration. Since one of the core-concerns of the 

 algorithm were the memory requirements associated with maintaining

an Hessian, the BFGS Quasi-Newton algorithm doesn’t address that since our memory use can

grow without bound.

H−1
n+1 H−1

n H0

H−1
0

I

H−1
n+1 H−1

n

sn yn H−1
n

dH−1
n

d H−1
n

BFGSMultiply( , { }, { }, d) :H−1
0 sk yk

r ← d

// Compute right product
for i = n, … , 1 :

← rαi ρis
T
i

r ← r − αiyi

// Compute center
r ← rH−1

0

// Compute left product
for i = 1, … , n :

β ← rρiy
T
i

r ← r + ( − β)αn−i+1 si

return r

H−1
n H−1

n gn

QuasiNewton

sn yn

NewtonRaphson



5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 10 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

The L-BFGS algorithm, named for limited BFGS, simply truncates the 

update to use the last  input differences and gradient differences. This means, we only need

to store  and  to compute the update. The center

product can still use any symmetric psd matrix , which can also depend on any  or 

.

L-BFGS variants

There are lots of variants of L-BFGS which get used in practice. For non-differentiable functions,

there is an othant-wise varient (http://research.microsoft.com/en-

us/um/people/jfgao/paper/icml07scalable.pdf) which is suitable for training  regularized

loss.

One of the main reasons to not use L-BFGS is in very large data-settings where an online

approach can converge faster. There are in fact online variants

(http://jmlr.org/proceedings/papers/v2/schraudolph07a/schraudolph07a.pdf) of L-BFGS, but to

my knowledge, none have consistently out-performed SGD variants (including AdaGrad

(http://www.magicbroom.info/Papers/DuchiHaSi10.pdf) or AdaDelta) for sufficiently large data

sets.

1. This assumes there is a unique global minimizer for . In practice, in practice unless  is

convex, the parameters used are whatever pops out the other side of an iterative algorithm.

↩

2. We know  is a local extrema since the gradient is zero, since the Hessian has

positive curvature, we know it’s in fact a local minima. If  is convex, we know the Hessian is

always positive definite and we know there is a single unique global minimum. ↩

3. As we’ll see, we really on require being able to multiply by  for a direction . ↩

4. I’ve intentionally left the weighting matrix  used to weight the norm since you get the

same solution under many choices. In particular for any positive-definite  such that 

, we get the same solution. ↩

BFGSMultiply
m

, , … ,sn sn−1 sn−m−1 , , … ,yn yn−1 yn−m−1

H−1
0 { }sk

{ }yk

L1

f f

− ∇fH−1

f

dH−1 d

W

W

W =sn yn

http://research.microsoft.com/en-us/um/people/jfgao/paper/icml07scalable.pdf
http://jmlr.org/proceedings/papers/v2/schraudolph07a/schraudolph07a.pdf
http://www.magicbroom.info/Papers/DuchiHaSi10.pdf


5/31/17, 8:14 PMNumerical Optimization: Understanding L-BFGS — aria42

Page 11 of 11http://aria42.com/blog/2014/12/understanding-lbfgs

! (http://twitter.com/aria42)  " (http://github.com/aria42)  #
(http://linkedin.com/in/aria42)  ✉ (mailto:me@aria42.com)

© 2016 aria42.com (http://aria42.com/)

http://twitter.com/aria42
http://github.com/aria42
http://linkedin.com/in/aria42
mailto:me@aria42.com
http://aria42.com/

