An Introduction to Machine Learning L2: Instance Based Estimation

Yahoo! Labs Santa Clara, CA 95051 alex@smola.org

UC Santa Cruz, April 2009

L1: Machine learning and probability theory

Introduction to pattern recognition, classification, regression, novelty detection, probability theory, Bayes rule, density estimation

L2: Instance Based Learning

Nearest Neighbor, Kernels density estimation, Watson Nadaraya estimator, crossvalidation

L3: Linear models

Hebb's rule, perceptron algorithm, regression, classification, feature maps

Nearest Neighbor Rules

Parzen windows

- Smoothing out the estimates
- Examples

Adjusting parameters

Cross validation

Classification and regression with Parzen windows

Watson-Nadaraya estimator

Binary Classification

Goal

Given some data x_i , want to classify using class label y_i . Solution

Use the label of the nearest neighbor.

Modified Solution (classification)

Use the label of the majority of the *k* nearest neighbors. **Modified Solution (regression)**

Use the value of the average of the *k* nearest neighbors.

Key Benefits

- Basic algorithm is very simple.
- Can use arbitrary similarity measures
- Will eventually converge to the best possible result.

Problems

- Slow and inefficient when we have lots of data.
- Not very smooth estimates.

Python Pseudocode

Nearest Neighbor Classifier

```
from pylab import *
from numpy import *
... load data ...
xnorm = sum(x**2)
xtestnorm = sum(xtest**2)
dists = (-2.0*dot(x.transpose(), xtest) + xtestnorm).transpose() + xnorm
```

labelindex = dists.argmin(axis=1)

k-Nearest Neighbor Classifier

```
sortargs = dists.argsort(axis=1)
k = 7
ytest = sign(mean(y[sortargs[:,0:k]], axis=1)))
```

Nearest Neighbor Regression

just drop sign(...)

Nearest Neighbor

7 Nearest Neighbors

7 Nearest Neighbors

Regression Problem

Nearest Neighbor Regression

7 Nearest Neighbors Regression

Nearest Neighbor Rule

Predict same label as nearest neighbor

k-Nearest Neighbor Rule

Average estimates over k neighbors

Details

- Easy to implement
- No training required
- Slow for lots of data (Locally Sensitive Hashing helps)
- Not so great performance **But:** proven to be consistent if $k \to \infty$ with $m \to \infty$.

Data

Continuous valued random variables.

Naive Solution

Apply the bin-counting strategy to the continuum. That is, we discretize the domain into bins.

Problems

- We need lots of data to fill the bins
- In more than one dimension the number of bins grows exponentially:
- Assume 10 bins per dimension, so we have 10 in \mathbb{R}^1
- 100 bins in \mathbb{R}^2
- 10^{10} bins (10 billion bins) in \mathbb{R}^{10} ...

Mixture Density

Sampling from p(x)

Bin counting

Parzen Windows

Naive approach

Use the empirical density

$$p_{\text{emp}}(x) = \frac{1}{m} \sum_{i=1}^{m} \delta(x, x_i).$$

which has a delta peak for every observation.

Problem

What happens when we see slightly different data?

Idea

Smear out p_{emp} by convolving it with a kernel k(x, x'). Here k(x, x') satisfies

$$\int_{\mathfrak{X}} k(x, x') dx' = 1$$
 for all $x \in \mathfrak{X}$.

Estimation Formula

Smooth out p_{emp} by convolving it with a kernel k(x, x').

$$p(x) = \frac{1}{m} \sum_{i=1}^{m} k(x_i, x)$$

Adjusting the kernel width

- Range of data should be adjustable
- Use kernel function k(x, x') which is a proper kernel.
- Scale kernel by radius r. This yields

$$k_r(x,x') := r^n k(rx,rx')$$

Here n is the dimensionality of x.

Discrete Density Estimate

Smoothing Function

Density Estimate

Gaussian Kernel

$$k(x, x') = \left(2\pi\sigma^2\right)^{\frac{n}{2}} \exp\left(-\frac{1}{2\sigma^2} \|x - x'\|^2\right)$$

Laplacian Kernel

$$k(\mathbf{x}, \mathbf{x}') = \lambda^n 2^{-n} \exp\left(-\lambda \|\mathbf{x} - \mathbf{x}'\|_1\right)$$

Indicator Kernel

$$k(x, x') = 1_{[-0.5, 0.5]}(x - x')$$

Important Issue

Size of the kernel matters more than its shape.

Gaussian Kernel

Laplacian Kernel

Indicator Kernel

Gaussian Kernel

Gaussian Kernel with width $\sigma = 1$

Laplacian Kernel

Laplacian Kernel

Laplacian Kernel with width $\lambda = 10$

Goal

We need a method for adjusting the kernel width.

Problem

The likelihood keeps on increasing as we narrow the kernels.

Reason

The likelihood estimate we see is distorted (we are being overly optimistic through optimizing the parameters).

Possible Solution

Check the performance of the density estimate on an unseen part of the data. This can be done e.g. by

- Leave-one-out crossvalidation
- Ten-fold crossvalidation

Expected log-likelihood

What we really want

A parameter such that in expectation the likelihood of the data is maximized

$$p_r(X) = \prod_{i=1}^m p_r(x_i)$$

or equivalently $\frac{1}{m} \log p_r(X) = \frac{1}{m} \sum_{i=1}^m \log p_r(x_i).$

• However, if we optimize *r* for the seen data, we will always overestimate the likelihood.

Solution: Crossvalidation

- Test on unseen data
- Remove a fraction of data from X, say X', estimate using X\X' and test on X'.

Basic Idea

Compute $p(X'|\theta(X \setminus X'))$ for various subsets of X and average over the corresponding log-likelihoods.

Practical Implementation

Generate subsets $X_i \subset X$ and compute the log-likelihood estimate

$$\frac{1}{n}\sum_{i}^{n}\frac{1}{|X_{i}|}\log p(X_{i}|\theta(X|\setminus X_{i}))$$

Pick the parameter which maximizes the above estimate. Special Case: Leave-one-out Crossvalidation

$$p_{X\setminus x_i}(x_i) = \frac{m}{m-1}p_X(x_i) - \frac{1}{m-1}k(x_i, x_i)$$

Cross Validation

Best Fit (λ = 1.9)

Laplacian Kernel with width optimal λ

Discrete Density

- Bin counting
- Problems for continuous variables
- Really big problems for variables in high dimensions (curse of dimensionality)

Parzen Windows

- Smooth out discrete density estimate.
- Smoothing kernel integrates to 1 (allows for similar observations to have some weight).
- Density estimate is average over kernel functions
- Scale kernel to accommodate spacing of data

Tuning it

- Cross validation
- Expected log-likelihood

Goal

Find the least likely observations x_i from a dataset *X*. Alternatively, identify low-density regions, given *X*.

Idea

Perform density estimate $p_X(x)$ and declare all x_i with $p_X(x_i) < p_0$ as novel.

Algorithm

Simply compute $f(x_i) = \sum_j k(x_i, x_j)$ for all *i* and sort according to their magnitude.

Applications

Network Intrusion Detection

Detect whether someone is trying to hack the network, downloading tons of MP3s, or doing anything else *unusual* on the network.

Jet Engine Failure Detection

You can't destroy jet engines just to see *how* they fail. **Database Cleaning**

We want to find out whether someone stored bogus information in a database (typos, etc.), mislabelled digits, ugly digits, bad photographs in an electronic album.

Fraud Detection

Credit Cards, Telephone Bills, Medical Records Self calibrating alarm devices

Car alarms (adjusts itself to where the car is parked), home alarm (furniture, temperature, windows, etc.)

Typical Data

Outliers

Watson-Nadaraya Estimator

Goal

Given pairs of observations (x_i, y_i) with $y_i \in \{\pm 1\}$ find estimator for conditional probability Pr(y|x).

Idea

Use definition p(x, y) = p(y|x)p(x) and estimate both p(x) and p(x, y) using Parzen windows. Using Bayes rule this yields

$$\Pr(y=1|x) = \frac{P(y=1,x)}{P(x)} = \frac{m^{-1}\sum_{y_i=1}k(x_i,x)}{m^{-1}\sum_i k(x_i,x)}$$

Bayes optimal decision

We want to classify y = 1 for Pr(y = 1|x) > 0.5. This is equivalent to checking the sign of

$$\Pr(y=1|x) - \Pr(y=-1|x) \propto \sum_i y_i k(x_i, x)$$

Kernel function import elefant.kernels.vector k = elefant.kernels.vector.CGaussKernel(1)

Compute difference between densities
ytest = k.Expand(xtest, x, y)

Compute density estimate (up to scalar)
density = k.Expand(xtest, x, ones(x.shape[0]))

Parzen Windows Classifier

Parzen Windows Density Estimate

Parzen Windows Conditional

Decision Boundary

Picking y = 1 or y = -1 depends on the sign of

$$\Pr(y = 1|x) - \Pr(y = -1|x) = \frac{\sum_{i} y_{i}k(x_{i}, x)}{\sum_{i} k(x_{i}, x)}$$

Extension to Regression

• Use the same equation for regression. This means that

$$f(x) = \frac{\sum_{i} y_{i} k(x_{i}, x)}{\sum_{i} k(x_{i}, x)}$$

where now $y_i \in \mathbb{R}$.

• We get a locally weighted version of the data

Regression Problem

Watson Nadaraya Regression

Novelty Detection

- Observations in low-density regions are special (outliers).
- Applications to database cleaning, network security, etc.

Watson Nadaraya Estimator

- Conditional density estimate
- Difference between class means (in feature space)
- Same expression works for regression, too

Parzen windows

- Smoothing out the estimates
- Examples

Adjusting parameters

Cross validation

Classification and regression with Parzen windows

- Watson-Nadaraya estimator
- Nearest neighbor classifier

