
Figure 1. The random fields used in this work are constructed on
labeled and unlabeled examples. We form a graph with weighted
edges between instances (in this case scanned digits), with labeled
data items appearing as special “boundary” points, and unlabeled
points as “interior” points. We consider Gaussian random fields
on this graph.

show how the extra evidence of class priors can help classi-
fication in Section 4. Alternatively, we may combine exter-
nal classifiers using vertex weights or “assignment costs,”
as described in Section 5. Encouraging experimental re-
sults for synthetic data, digit classification, and text clas-
sification tasks are presented in Section 7. One difficulty
with the random field approach is that the right choice of
graph is often not entirely clear, and it may be desirable to
learn it from data. In Section 6 we propose a method for
learning these weights by entropy minimization, and show
the algorithm’s ability to perform feature selection to better
characterize the data manifold.

2. Basic Framework
We suppose there are labeled points ,
and unlabeled points ; typically .
Let be the total number of data points. To be-
gin, we assume the labels are binary: . Consider
a connected graph with nodes correspond-
ing to the data points, with nodes corre-
sponding to the labeled points with labels , and
nodes corresponding to the unla-
beled points. Our task is to assign labels to nodes . We
assume an symmetric weight matrix on the edges
of the graph is given. For example, when , the
weight matrix can be

(1)

where is the -th component of instance represented
as a vector , and are length scale
hyperparameters for each dimension. Thus, nearby points
in Euclidean space are assigned large edge weight. Other

weightings are possible, of course, and may be more appro-
priate when is discrete or symbolic. For our purposes the
matrix fully specifies the data manifold structure (see
Figure 1).

Our strategy is to first compute a real-valued function
on with certain nice properties, and to

then assign labels based on . We constrain to take val-
ues on the labeled data .
Intuitively, we want unlabeled points that are nearby in the
graph to have similar labels. This motivates the choice of
the quadratic energy function

(2)

To assign a probability distribution on functions , we form
the Gaussian field , where is an “inverse
temperature” parameter, and is the partition function

, which normalizes over
all functions constrained to on the labeled data.

It is not difficult to show that the minimum energy function
argmin is harmonic; namely, it satisfies

on unlabeled data points , and is equal to
on the labeled data points . Here is the combinatorial
Laplacian, given in matrix form as where
diag is the diagonal matrix with entries
and is the weight matrix.

The harmonic property means that the value of at each
unlabeled data point is the average of at neighboring
points:

for (3)

which is consistent with our prior notion of smoothness of
with respect to the graph. Expressed slightly differently,

, where . Because of the maximum
principle of harmonic functions (Doyle & Snell, 1984), is
unique and is either a constant or it satisfies
for .

To compute the harmonic solution explicitly in terms of
matrix operations, we split the weight matrix (and sim-
ilarly ) into 4 blocks after the th row and column:

(4)

Letting where denotes the values on the un-

labeled data points, the harmonic solution subject
to is given by

(5)


