Residual Blocks & Normalization Layers — Lecture Notes

1. Residual Blocks

1.1 Motivation

Deep neural networks suffer from:

- Vanishing gradients in deep architectures
- Degradation problem: deeper networks often perform worse, not better
- Difficulty learning identity mappings when layers are unnecessary

Residual connections were introduced in ResNet (He et al., 2015) to solve these issues.

1.2 Key Idea

Instead of forcing a stack of layers to learn a complete transformation:

the network learns only the residual:

$$R(x) = H(x) - x$$

and outputs:

$$H(x) = x + R(x)$$

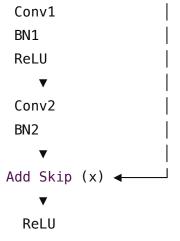
This makes optimization easier because:

- Learning a zero residual → identity mapping is trivial
- Gradients have a clear bypass path (skip connection)

1.3 Structure of a Basic Residual Block

Diagram

Sql ☐ Copy code



This is the standard 2-convolution basic block used in ResNet-18/34.

Why two convolutions?

- A single convolution after the skip has limited expressive power.
- Two stacked convolutions with a nonlinearity form a **second-order transform** capable of meaningful feature refinement.
- More convolutions (3, 4+) are possible, but:
 - more expensive
 - · harder to train
 - unnecessary for most tasks
 - bottleneck blocks handle depth more efficiently (1×1 → 3×3 → 1×1)

Thus two convolutions is the optimal compromise between expressivity and efficiency.

1.4 Residual Block Implementation (using custom LazyConv2d_scratch)

```
identity = x
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
return F.relu(out + identity)
```

Why not reuse the same conv for both operations?

Because using the **same weights twice** collapses the block into a **single transformation**:

$$W(\sigma(Wx))$$

This reduces expressive power and breaks the underlying assumptions of ResNets. Each layer must learn a **different** linear transform.

1.5 Incorporating Residual Blocks into BNLeNet

Example (one residual block per stage):

```
nginx

Conv → BN → ReLU → ResidualBlock → MaxPool

Conv → BN → ReLU → ResidualBlock → MaxPool

Conv → BN → ReLU → ResidualBlock → MaxPool
```

This yields a "LeNet + residuals" hybrid — deeper, more expressive, and easier to train.

2. Batch Normalization (BN)

2.1 Motivation

- Makes optimization of deep nets more stable.
- Controls activation distributions ("internal covariate shift").
- Allows larger learning rates.
- Provides a regularization effect.
- Essential for training very deep CNNs.

2.2 BN (Training-Time) Forward Pass

For input x of shape (N, C, H, W):

1. Compute mean over batch (and spatial dims for CNN):

$$\mu_c = rac{1}{NHW} \sum_{n,h,w} x_{n,c,h,w}$$

2. Compute variance:

$$\sigma_c^2 = rac{1}{NHW}\sum_{n,h,w}(x_{n,c,h,w}-\mu_c)^2$$

3. Normalize:

$$\hat{x}_{n,c,h,w} = rac{x_{n,c,h,w} - \mu_c}{\sqrt{\sigma_c^2 + \epsilon}}$$

4. Scale + Shift (learnable):

$$y = \gamma_c \hat{x} + \beta_c$$

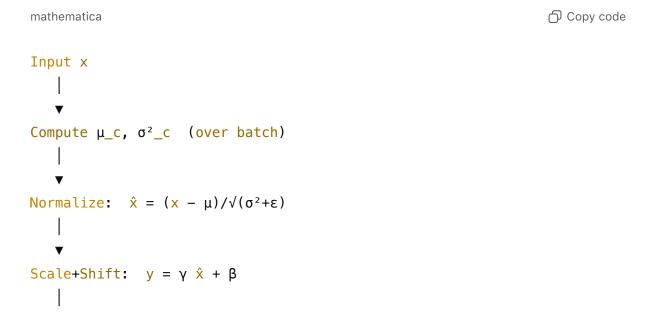
2.3 Inference-time behavior

BatchNorm does **not** use batch statistics during inference.

It uses running averages collected during training:

$$\mu_c^{(running)}, \quad \sigma_{c,(running)}^2$$

2.4 Diagram



3. Layer Normalization (LN)

3.1 Why BN fails for RNNs/Transformers

BN depends on batch statistics, but:

- · RNNs process sequences step-by-step
- Each time step would have different batch stats → unstable
- Transformers often use tiny or variable batch sizes
- Token-level independence must be preserved

Thus **BN** is unsuitable for sequence models.

3.2 LayerNorm Operation

Given tensor:

$$x \in \mathbb{R}^{B imes T imes F}$$
,

LN computes mean/variance within each sample, across the feature dimension:

$$\mu = rac{1}{F} \sum_{j=1}^F x_j, \qquad \sigma^2 = rac{1}{F} \sum_{j=1}^F (x_j - \mu)^2$$

Normalize:

$$\hat{x}_j = rac{x_j - \mu}{\sqrt{\sigma^2 + \epsilon}}$$

Scale/Shift (one γ , β per feature):

$$y_j = \gamma_j \hat{x}_j + eta_j$$

3.3 Key Difference: Axes of Reduction

Operation	BN	LN
Normalize across	Batch (and spatial dims)	Features (per sample)
Depends on batch size	Yes	No

Operation	BN	LN
Good for CNN?	Excellent	OK but less common
Good for RNN/Transformer?	Bad	Excellent
Uses running stats?	Yes	No
Training = Inference?	No	Yes

4. Toy Example Showing BN vs LN

Input matrix:

```
ini

x = [
   [ 1, 2, 3 ], # sample 0
   [10, 20, 30 ] # sample 1
]
shape = (2, 3)
```

4.1 BatchNorm (normalize across batch – down columns)

```
Feature 0: [1, 10] \rightarrow \text{mean} = 5.5
Feature 1: [2, 20] \rightarrow \text{mean} = 11
Feature 2: [3, 30] \rightarrow \text{mean} = 16.5
```

Variance yields z-scores:

BN(x) becomes:

```
Copy code

[
[-1, -1, -1],
[+1, +1, +1]
]
```

Interpretation:

• BN makes each feature dimension (column) have zero mean and unit variance.

• Samples are compared to each other.

4.2 LayerNorm (normalize within each sample – across row)

```
Sample 0 mean = 2 \rightarrow normalized: [-1, 0, +1]
Sample 1 mean = 20 \rightarrow normalized: [-1, 0, +1]
```

LN(x) becomes:

Copy code

```
[
[-1, 0, +1],
[-1, 0, +1]
```

Interpretation:

- LN makes each sample internally normalized.
- Samples remain independent.

5. Summary

Residual Blocks

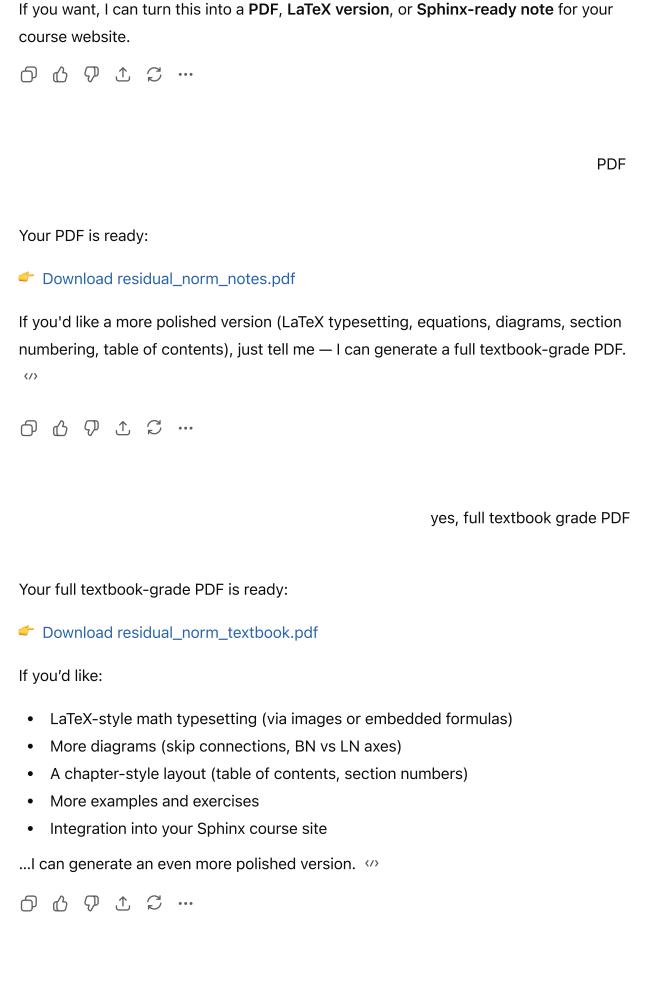
- Enable deep networks to learn identity mappings easily.
- Provide stable gradients via skip connections.
- Typically use **two convolution layers** for optimal expressivity.

BatchNorm

- Normalizes per feature across the mini-batch.
- Important for CNNs.
- Uses running statistics in inference.
- Sensitive to batch size.

LayerNorm

- Normalizes per sample across features.
- Ideal for RNNs, LSTMs, Transformers.
- No running statistics; training and inference identical.



In deep learning (especially PyTorch and CNNs), a 4-D tensor that represents an image batch is written as:

(N, C, H, W)

Here is what each letter means:

N — Batch size

Number of images (or samples) in the batch.

Examples:

- N = 32 → training with 32 images at a time
- $N = 1 \rightarrow a$ single image
- N = 128 → larger mini-batch

🎨 C — Channels

Number of **feature channels** (or color channels):

Examples:

- C = 1 → grayscale image
- $C = 3 \rightarrow RGB \text{ image}$
- $C = 16 / 32 / 64 / etc. \rightarrow output of convolution layers$

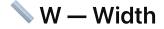
After several convolution layers, C grows because the network extracts more feature maps.

H — Height

Vertical pixel dimension of the image / feature map.

Examples:

- CIFAR-10 \rightarrow H = 32
- MNIST \rightarrow H = 28
- After pooling or stride, H becomes smaller.



Horizontal pixel dimension.

Examples:

- CIFAR-10 → W = 32
- MNIST \rightarrow W = 28

Like H, this shrinks after pooling/stride.

Putting it together

Example 1 — Batch of 32 RGB CIFAR-10 images:

(32, 3, 32, 32)

Example 2 — Output of first conv layer (16 filters):

Copy code (32, 16, 32, 32)

Example 3 — After max-pool (height/width reduced by 2):

(32, 16, 16, 16)

Summary

Symbol	Meaning	Example
N	Batch size	32 images
С	Channels	RGB=3, conv features=64
Н	Height	32 pixels
W	Width	32 pixels

If you'd like, I can also draw a diagram showing how Conv2D transforms (N, C, H, W) step by step.

And (BTF) for RNN?

Yes — for RNNs, LSTMs, GRUs, and Transformers (sequence models), we use a 3dimensional tensor, commonly written as:

(B, T, F)

Here's what each dimension means:

B — Batch size

Number of independent sequences processed in parallel.

Examples:

- B = 32 → training with 32 sentences/sequences at once
- $B = 1 \rightarrow$ one sequence (e.g., inference)

How many tokens / timesteps / elements in each sequence.

Examples:

- Words in a sentence
- Characters in a string
- Time steps in a timeseries
- Frames in audio/video processing

Examples:

- $T = 10 \rightarrow 10$ -word sentence
- $T = 50 \rightarrow 50$ -timestep sequence
- T = varies → dynamic-length sequences (often padded)

F — Feature dimension (Embedding or hidden size)

The vector dimension of each timestep.

Examples:

- Word embedding size \rightarrow F = 128, 256, 768, etc.
- LSTM hidden size \rightarrow F = 256, 512

For a Transformer:

• F = model dimension (e.g., 512 for GPT-2 small, 4096 for GPT-3-style models)

Put it together

Example 1 — Batch of 32 sentences, each 20 tokens, each token is a 128dim vector:

```
Copy code (32, 20, 128)
```

Example 2 — Output of LSTM with hidden size 256, batch size 16, sequence length 50:

```
Copy code (16, 50, 256)
```

Example 3 — Transformer token embeddings (batch 8, seq len 128, dimension 768):

```
(8, 128, 768)
```

Summary Table

Symbol	Meaning	Example
В	Batch size	32 sequences

Symbol	Meaning	Example
Т	Sequence length	20 tokens
F	Feature dimension	embedding/hidden size

Visual intuition

Imagine a batch of sentences:

```
arduino

[
    [ token1 → vector of size F ],
    [ token2 → vector of size F ],
    ...
]
```

Stack **B** of those sentences, each with **T** tokens \rightarrow you get a 3-D tensor.

If you want, I can also show how LSTM weights interact with (B, T, F), or how Transformers apply attention over TxT matrices.

Can you produce a better toy example for BN vs LN? Something like 3 batches , 5 features

Absolutely — here is a **much clearer**, **larger**, **more realistic toy example** for comparing **BatchNorm (BN)** versus **LayerNorm (LN)** using:

- Batch size = 3
- Features = 5

This example is designed to be *lecture-quality*, easy to follow, and clearly illustrates the difference in normalization axes.

We take a batch of 3 samples, each with 5 features:

$$x = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 10 & 20 & 30 & 40 & 50 \\ 7 & 14 & 21 & 28 & 35 \end{bmatrix}$$

Shape: (B=3, F=5)

Let's compute BatchNorm and LayerNorm step-by-step.

Part 1 — BatchNorm (BN)

BN normalizes each feature column across the batch.

So we compute **mean and variance per feature**:

1. Means (column-wise)

Feature	Values in batch	Mean
0	1, 10, 7	6
1	2, 20, 14	12
2	3, 30, 21	18
3	4, 40, 28	24
4	5, 50, 35	30

2. Variances (column-wise)

$$\sigma^2 = rac{(x_1 - \mu)^2 + (x_2 - \mu)^2 + (x_3 - \mu)^2}{3}$$

Every feature column has values spaced proportionally, giving:

Feature	Variance	Std (σ)
0	14	√14 ≈ 3.742
1	56	√56 ≈ 7.483
2	126	√126 ≈ 11.225

Feature	Variance	Std (σ)
3	224	√224 ≈ 14.966
4	350	√350 ≈ 18.708

3. BN normalized output

$$\hat{x}_{i,f} = rac{x_{i,f} - \mu_f}{\sigma_f}$$

Computing each row:

Row 0 (1, 2, 3, 4, 5):

Copy code
☐ Copy code

[(1-6)/3.742, (2-12)/7.483, (3-18)/11.225, (4-24)/14.966, (5-30)/18.708] $\approx [-1.336, -1.337, -1.336, -1.336]$

Row 1 (10,20,30,40,50):

Copy code ☐ Copy code

[(10-6)/3.742, (20-12)/7.483, (30-18)/11.225, (40-24)/14.966, (50-30)/18.7 $\approx [1.069, 1.069, 1.069, 1.069]$

Row 2 (7,14,21,28,35):

[(7-6)/3.742, (14-12)/7.483, (21-18)/11.225, (28-24)/14.966, (35-30)/18.70 $\approx [0.267, 0.267, 0.267, 0.267, 0.267]$

BatchNorm Output (rounded)

$$\mathrm{BN}(x) pprox egin{bmatrix} -1.34 & -1.34 & -1.34 & -1.34 \ 1.07 & 1.07 & 1.07 & 1.07 \ 0.27 & 0.27 & 0.27 & 0.27 \end{bmatrix}$$

- **Every feature (column) has mean 0, variance 1 across the batch.**
- Each row is shifted based on its magnitude relative to other samples.

Part 2 — LayerNorm (LN)

LN normalizes each sample row independently across features.

Compute mean and variance per row.

Row 0: [1, 2, 3, 4, 5]

$$\mu=3,\quad \sigma=\sqrt{2}$$

LN output:

swift

Copy code

$$[(1-3)/\sqrt{2}, (2-3)/\sqrt{2}, (3-3)/\sqrt{2}, (4-3)/\sqrt{2}, (5-3)/\sqrt{2}]$$

= $[-1.414, -0.707, 0, 0.707, 1.414]$

Row 1: [10, 20, 30, 40, 50]

$$\mu = 30, \quad \sigma = \sqrt{200}$$

LN output:

swift

Copy code

```
[(10-30)/\sqrt{200}, ..., (50-30)/\sqrt{200}]
= [-1.414, -0.707, 0, 0.707, 1.414]
```

Row 2: [7, 14, 21, 28, 35]

$$\mu = 21$$
, $\sigma = \sqrt{98}$