Sequential Minimal Optimization

Seth Terashima

April 23, 2012

The story so far:

- We've had fun mathing our way to the dual, but...
- It would be nice if we could actually do something with it. So let's take a look at Sequential Minimal Optimization.

We want to find λ that minimizes

$$
\Psi(\lambda)=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \lambda_{i} \lambda_{j}-\sum_{i=1}^{N} \lambda_{i}
$$

subject to the constraints

$$
0 \leq \lambda_{i} \leq C(\text { for all } i) \quad \text { and } \quad \sum_{i=1}^{N} y_{i} \lambda_{i}=0
$$

Each $y_{i}= \pm 1$ is the class of the training data x_{i}, each λ_{i} is the corresponding Lagrange multiplier, and C controls how "soft" we are willing to let the margin be.

A solution for the constraint-free case

We can minimize $F\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ one coordinate at a time. Starting with some point λ,

- Choose some coordinate $j \in\{1,2, \ldots, n\}$
- View F as a single-variable function of λ_{j} by fixing the other $n-1$ inputs
- Minimize F with respect to λ_{j}
- Update λ by setting λ_{j} to its optimal value, then repeat the process for other values of j

Example

$$
F(x, y)=x^{2}+x y+y^{2}
$$

Great, but the solution doesn't meet the constraints.

Our first constraint is $\sum_{i=1}^{N} y_{i} \lambda_{i}=0$. The fix: Substitution.
(1) Choose two coordinates, j and i.
(2) Solve for λ_{j} in terms of λ_{i} (and the other multipliers):

$$
\lambda_{i}=-\frac{1}{y_{i}} \sum_{k \neq i} y_{k} \lambda_{k}=-\frac{y_{j}}{y_{i}} \lambda_{j}+\text { garbage }
$$

(3) We are now back to optimizing a single-variable function.
E.g., if $j=1, i=2$, and $y_{1}=-y_{2}$, then

$$
f\left(\lambda_{1}\right)=F\left(\lambda_{1}, \lambda_{1}+\text { garbage }, \lambda_{3}, \ldots, \lambda_{N}\right)
$$

meets the first constraint for all values of λ_{1}.

Second constraint

The second constraint says that for all $i, 0 \leq \lambda_{i} \leq C$.

This is just a boundary condition. (Slope could be negative.)

To recap, we are trying to minimize

$$
\Psi(\lambda)=\frac{1}{2} \sum_{i=1}^{N} \sum_{j=1}^{N} y_{i} y_{j}\left\langle x_{i}, x_{j}\right\rangle \lambda_{i} \lambda_{j}-\sum_{i=1}^{N} \lambda_{i}
$$

one coordinate at a time (but also changing a second coordinate to meet the linear constraint). When $j=1, i=2$, and $y_{1}=-y_{2}$, we are minimizing

$$
\begin{aligned}
f\left(\lambda_{1}\right) & =\Psi\left(\lambda_{1}, \lambda_{1}+\text { garbage }, \lambda_{3}, \ldots, \lambda_{N}\right) \\
& =c_{2} \lambda_{1}^{2}+c_{1} \lambda_{1}+c_{0} .
\end{aligned}
$$

We can do this analytically (read: quickly)!

Concavity given by second derivative:

$$
f^{\prime \prime}\left(\lambda_{1}\right)=\left\langle x_{1}, x_{1}\right\rangle+\left\langle x_{2}, x_{2}\right\rangle-2\left\langle x_{1}, x_{2}\right\rangle
$$

If this is positive, find global minimum

$$
\lambda_{2}^{\prime}=\lambda_{2}+\frac{y_{2}\left(E_{1}-E_{2}\right)}{f^{\prime \prime}\left(\lambda_{1}\right)}
$$

(where $E_{k}=\hat{y}_{k}-y_{k}$), then use closest $\lambda_{1}^{\text {new }}$ allowed by boundary conditions. Set

$$
\lambda^{\text {new }}=\left(\lambda_{1}^{\text {new }}, \lambda_{1}^{\text {new }}+\text { garbage }, \lambda_{3}, \ldots, \lambda_{N}\right)
$$

Choose new values for i, j, rinse, repeat.

So how do we choose j and i for each iteration?

- There is not a clear-cut solution
- We need some heuristics

And how do we decide when we're done?

- Knowing your destination is a good first step towards getting there.

Choosing j

Choosing j :

- A solution value for λ has the following properties (the KKT conditions):

$$
\begin{align*}
\lambda_{j}=0 & \Longrightarrow y_{j} \hat{y}_{j} \geq 1 \tag{1}\\
\lambda_{j}=C & \Longrightarrow y_{j} \hat{y}_{j} \leq 1 \tag{2}\\
0<\lambda_{j}<C & \Longrightarrow y_{j} \hat{y}_{j}=1 \tag{3}
\end{align*}
$$

- We just want to be "close enough" (within $\varepsilon \approx 0.001$) for all j.
- If there is some j that violates these, j is a candidate for optimization.
- Priority given to "unbound" multipliers (when $0<\lambda_{j}<C$)
- Multipliers tend to become bound over time (why?)

Choosing i

- Recall that the global minimum of $f\left(\lambda_{j}\right)$ has value

$$
\lambda_{i}^{\prime}=\lambda_{i}+\frac{y_{i}\left(E_{j}-E_{i}\right)}{f^{\prime \prime}\left(\lambda_{j}\right)}
$$

- After choosing j, we choose i that maximizes $\left|E_{j}-E_{i}\right|$.
- Intuitively, this heurristic helps "move" λ_{i} by a large amount each iteration.

Recomputing the offset

- Our model is $\hat{y}=w \cdot x-b$
- Although b is not part of the dual (why not?), we need b to evaluate E_{k} and the KTT conditions
- After each iteration, we update b to be halfway between the values that would make x_{i} and x_{j} support vectors

Benchmarks

- Algorithms completed when all KKT conditions met within $\varepsilon=0.001$
The chunking algorithm used in the benchmark used a different convergence condition, but Platt was conservative.
- SMO showed better scaling than chunking, usually by a factor of N
- SMO time dominated by SVM evaluations - very fast with linear SVMs

SMO performed over a 1000 times faster than contemporary state-of-the-art alternatives on real-world data. Not bad.

Conclusion

- We needed an efficient way to minimize the dual
- SMO accomplishes this by changing two multipliers at a time until the KKT conditions are met
- SMO is reasonably simple and very fast compared to previous methods
- Heuristics might be a good place to look for improvements

