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The problem

The story so far:
@ We've had fun mathing our way to the dual, but. ..
@ It would be nice if we could actually do something with it.

So let's take a look at Sequential Minimal Optimization.

Seth Terashima Sequential Minimal Optimization



The problem

We want to find X\ that minimizes

ZZWJ i)\ ZA
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subject to the constraints
0 <\ < C (for all i) and > yidi=0.

Each y; = +£1 is the class of the training data x;, each ); is the
corresponding Lagrange multiplier, and C controls how “soft” we
are willing to let the margin be.
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A solution for the constraint-free case

We can minimize F(A1,...,A,) one coordinate at a time. Starting
with some point A,

@ Choose some coordinate j € {1,2,...,n}

e View F as a single-variable function of A; by fixing the other
n — 1 inputs
@ Minimize F with respect to \;

e Update A by setting ); to its optimal value, then repeat the
process for other values of j
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Great, but the solution doesn't meet the constraints.
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First constraint

Our first constraint is E,Nzl yi\i = 0. The fix: Substitution.

@ Choose two coordinates, j and J.

@ Solve for A; in terms of \; (and the other multipliers):

== Zyk)\k = ——)\ + garbage
Yi ki

© We are now back to optimizing a single-variable function.

Eg.,ifj=1 i=2, and y3 = —y», then
f(A1) = F(A1, A1 + garbage, A3, ..., \n)

meets the first constraint for all values of ;.
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Second constraint

The second constraint says that for all i, 0 < \; < C.

AN

Aj = A; + garbage

C

This is just a boundary condition. (Slope could be negative.)
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To recap, we are trying to minimize
ZZWJ X3, )My —ZA
i=1 j=1

one coordinate at a time (but also changing a second coordinate to
meet the linear constraint). When j =1, i =2, and y; = —y», we
are minimizing

f()\l) = W(AL A1 + garbage, As, . .. 7)‘N)
= Cz)\% + 1M1 + .

We can do this analytically (read: quickly)!
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Concavity given by second derivative:
f,/()\l) = <X1,X1> + <X2,X2> - 2<X1,X2>
If this is positive, find global minimum

y2(E1 — E2)

A=A
o = A2+ f”()\l)

(where Ex = §x — yx), then use closest A®W allowed by boundary
conditions. Set
ANEW — (\NEW \NEW | sarbage, A3, ..., Ay).

Choose new values for i, j, rinse, repeat.
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So how do we choose j and i for each iteration?
@ There is not a clear-cut solution
@ We need some heuristics

And how do we decide when we're done?

@ Knowing your destination is a good first step towards getting
there.
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Choosing j

Choosing J:
@ A solution value for A has the following properties (the KKT
conditions):
)\j =0 = yj)?, >1 (1)
AN=C = yy <1 (2)
0<A\<C = yyp=1 (3)

@ We just want to be “close enough” (within € ~ 0.001) for all
J-

@ If there is some j that violates these, j is a candidate for
optimization.

@ Priority given to “unbound” multipliers (when 0 < \; < C)

e Multipliers tend to become bound over time (why?)
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@ Recall that the global minimum of f(;) has value

vi(Ej — Ei)

= A
A TOW

o After choosing j, we choose i that maximizes |E; — E;l.

@ Intuitively, this heurristic helps “move” \; by a large amount
each iteration.
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Recomputing the offset

@ Our modelisy=w-x—0>b
@ Although b is not part of the dual (why not?), we need b to
evaluate E, and the KTT conditions

@ After each iteration, we update b to be halfway between the
values that would make x; and x; support vectors
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@ Algorithms completed when all KKT conditions met within
e =0.001
The chunking algorithm used in the benchmark used a different
convergence condition, but Platt was conservative.

@ SMO showed better scaling than chunking, usually by a factor of N
@ SMO time dominated by SVM evaluations — very fast with linear
SVMs

SMO performed over a 1000 times faster than contemporary
state-of-the-art alternatives on real-world data. Not bad.
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Conclusion

@ We needed an efficient way to minimize the dual

@ SMO accomplishes this by changing two multipliers at a time
until the KKT conditions are met

@ SMO is reasonably simple and very fast compared to previous
methods

@ Heuristics might be a good place to look for improvements
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