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The problem

The story so far:

We’ve had fun mathing our way to the dual, but. . .

It would be nice if we could actually do something with it.

So let’s take a look at Sequential Minimal Optimization.
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The problem

We want to find λ that minimizes

Ψ(λ) =
1

2

N∑
i=1

N∑
j=1

yiyj〈xi , xj〉λiλj −
N∑
i=1

λi

subject to the constraints

0 ≤ λi ≤ C (for all i) and
N∑
i=1

yiλi = 0.

Each yi = ±1 is the class of the training data xi , each λi is the
corresponding Lagrange multiplier, and C controls how “soft” we
are willing to let the margin be.
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A solution for the constraint-free case

We can minimize F (λ1, . . . , λn) one coordinate at a time. Starting
with some point λ,

Choose some coordinate j ∈ {1, 2, . . . , n}
View F as a single-variable function of λj by fixing the other
n − 1 inputs

Minimize F with respect to λj

Update λ by setting λj to its optimal value, then repeat the
process for other values of j
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Example

F (x , y) = x2 + xy + y2
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Great, but the solution doesn’t meet the constraints.
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First constraint

Our first constraint is
∑N

i=1 yiλi = 0. The fix: Substitution.

1 Choose two coordinates, j and i .

2 Solve for λj in terms of λi (and the other multipliers):

λi = − 1

yi

∑
k 6=i

ykλk = −
yj
yi
λj + garbage

3 We are now back to optimizing a single-variable function.

E.g., if j = 1, i = 2, and y1 = −y2, then

f (λ1) = F (λ1, λ1 + garbage, λ3, . . . , λN)

meets the first constraint for all values of λ1.
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Second constraint

The second constraint says that for all i , 0 ≤ λi ≤ C .

This is just a boundary condition. (Slope could be negative.)
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To recap, we are trying to minimize

Ψ(λ) =
1

2

N∑
i=1

N∑
j=1

yiyj〈xi , xj〉λiλj −
N∑
i=1

λi

one coordinate at a time (but also changing a second coordinate to
meet the linear constraint). When j = 1, i = 2, and y1 = −y2, we
are minimizing

f (λ1) = Ψ(λ1, λ1 + garbage, λ3, . . . , λN)

= c2λ
2
1 + c1λ1 + c0.

We can do this analytically (read: quickly)!
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Concavity given by second derivative:

f ′′(λ1) = 〈x1, x1〉+ 〈x2, x2〉 − 2〈x1, x2〉

If this is positive, find global minimum

λ′2 = λ2 +
y2(E1 − E2)

f ′′(λ1)

(where Ek = ŷk − yk), then use closest λnew
1 allowed by boundary

conditions. Set

λnew = (λnew
1 , λnew

1 + garbage, λ3, . . . , λN).

Choose new values for i , j , rinse, repeat.
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So how do we choose j and i for each iteration?

There is not a clear-cut solution

We need some heuristics

And how do we decide when we’re done?

Knowing your destination is a good first step towards getting
there.
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Choosing j

Choosing j :

A solution value for λ has the following properties (the KKT
conditions):

λj = 0 =⇒ yj ŷj ≥ 1 (1)

λj = C =⇒ yj ŷj ≤ 1 (2)

0 < λj < C =⇒ yj ŷj = 1 (3)

We just want to be “close enough” (within ε ≈ 0.001) for all
j .

If there is some j that violates these, j is a candidate for
optimization.

Priority given to “unbound” multipliers (when 0 < λj < C )

Multipliers tend to become bound over time (why?)
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Choosing i

Recall that the global minimum of f (λj) has value

λ′i = λi +
yi (Ej − Ei )

f ′′(λj)
.

After choosing j , we choose i that maximizes |Ej − Ei |.
Intuitively, this heurristic helps “move” λi by a large amount
each iteration.
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Recomputing the offset

Our model is ŷ = w · x − b

Although b is not part of the dual (why not?), we need b to
evaluate Ek and the KTT conditions

After each iteration, we update b to be halfway between the
values that would make xi and xj support vectors
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Benchmarks

Algorithms completed when all KKT conditions met within
ε = 0.001
The chunking algorithm used in the benchmark used a different
convergence condition, but Platt was conservative.

SMO showed better scaling than chunking, usually by a factor of N

SMO time dominated by SVM evaluations — very fast with linear
SVMs

SMO performed over a 1000 times faster than contemporary
state-of-the-art alternatives on real-world data. Not bad.
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Conclusion

We needed an efficient way to minimize the dual

SMO accomplishes this by changing two multipliers at a time
until the KKT conditions are met

SMO is reasonably simple and very fast compared to previous
methods

Heuristics might be a good place to look for improvements
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