
The Dual-Form Perceptron (leading to Kernels)

Stephen Clark

Lent 2013

Machine Learning for Language Processing: Lecture 6

MPhil in Advanced Computer Science

MPhil in Advanced Computer Science

Module L101: Machine Learning for Language Processing

Ranking Structures with the Perceptron

Some notation:

• Assume training data {(si, ti)} (e.g. si is a sentence and ti the correct tree
for si)

• xij is the jth candidate for example i (e.g. the jth tree for sentence i)

• Assume (w.l.o.g.) that xi1 is the correct output for input si (i.e. xi1 = ti)

• h(xij) ∈ R
d is the feature vector for xij

• w ∈ R
d is the corresponding weight vector

• Output of the model on example s (train or test) is argmaxx∈C(s)w · h(x)

• C(s) is the set of candidate outputs for input s

MPhil in Advanced Computer Science 1

Module L101: Machine Learning for Language Processing

Perceptron Training (with the new notation)

Define:
F (x) = w · h(x)
Initialisation: Set parameters w = 0
For i = 1 to n

j = argmax{1,...,ni}
F (xij)

If j 6= 1 then w = w + h(xi1)− h(xij)
Output on test sentence s:

argmaxx∈C(s)F (x)

• For simplicity, only showing one pass over the data and no averaging

• The argmax can be obtained just though enumeration (i.e. we have a ranking

problem, so no need for dynamic programming)

MPhil in Advanced Computer Science 2

Module L101: Machine Learning for Language Processing

Perceptron Training (a dual form)

Define:
G(x) =

∑

(i,j)αi,j(h(xi1) · h(x)− h(xij) · h(x))
Initialisation: Set dual parameters αi,j = 0
For i = 1 to n

j = argmax{1,...,ni}
G(xij)

If j 6= 1 then αi,j = αi,j + 1
Output on test sentence s:

argmaxx∈C(s)G(x)

• Notice there is a dual parameter αi,j for each training example xi,j

MPhil in Advanced Computer Science 3

Module L101: Machine Learning for Language Processing

Equivalence of the Two Forms

• w =
∑

(i,j)αi,j(h(xi1)−h(xij)); therefore G(x) = F (x) throughout training

• Why is this useful? Consider the complexity of the two algorithms

MPhil in Advanced Computer Science 4

Module L101: Machine Learning for Language Processing

Computational Complexity of the Two Forms

• Assume T is the size of the training set; i.e. T =
∑

i ni

• Take d to be the size of the parameter vector w

• Vanilla perceptron takes O(Td) time (time taken to compute F is O(d))

• Assume time taken to compute the inner product between examples is k

• Running time of the dual-form perceptron is O(Tnk)

• Dual-form is therefore more efficient when nk << d (i.e. when time taken to
compute inner products between examples is much less than O(d))

MPhil in Advanced Computer Science 5

Module L101: Machine Learning for Language Processing

Computational Complexity of Inner Products

• Can the time to calculate the inner product between two examples h(x) ·h(y)
ever be less than O(d)?

• Yes! For certain high-dimensional feature representations

• Examples include feature representations which track all sub-trees in a tree, or
all sub-sequences in a tag sequence

MPhil in Advanced Computer Science 6

Module L101: Machine Learning for Language Processing

Tree Kernels

• Tree kernels count the numbers of shared subtrees between trees T1 and T2

– the feature-space, h (T1), can be defined as

hi (T1) =
∑

n∈V1

Ii(n); Ii(n) =

{

1 if sub-tree i rooted at node n

0 otherwise

where Vj is the set of nodes in tree Tj

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 7

Module L101: Machine Learning for Language Processing

Computation of Subtree Kernel

• Can be made computationally efficient by recursively using a counting function:

k(T1, T2) = h(T1)
Th(T2) =

∑

n1∈V1

∑

n2∈V2

f(n1, n2);

– if productions from n1 and n2 differ f(n1, n2) = 0

– for pre-terminals f(n1, n2) =

{

1 if productions are the same
0 otherwise

– for non-pre-terminals and productions the same

f(n1, n2) =
∏|ch(n1)|

i=1 (1 + f(ch(n1, i), ch(n2, i)))

where ch(nj) is the set of children of nj and ch(nj, i) is the ith child of nj

• Algorithm runs in linear time w.r.t. the size of each tree

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 8

Module L101: Machine Learning for Language Processing

Tree Kernels in Practice

• Data-Oriented Parsing (Rens Bod) is a parsing model which uses a similar
all-subtrees representation (but without the efficient computation)

• Collins and Duffy report a 0.6% absolute improvement over the generative
models of Collins

• Alessandro Moschitti has done a lot of work on using various kernels (including
tree kernels) for various tasks (including some parsing tasks)

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 9

Module L101: Machine Learning for Language Processing

References

Michael Collins and Nigel Duffy (2002)
New Ranking Algorithms for Parsing and Tagging: Kernels over Discrete
Structures, and the Voted Perceptron

Rens Bod (2003)
Do All Fragments Count?
Natural Language Engineering, 9(4), 307-323.

Moschitti Tutorial at ACL 2012: State-of-the-Art Kernels for Natural Language
Processing

Cambridge University
Engineering Department

MPhil in Advanced Computer Science 10

