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convex set
a set X in a vector space is convex if for any w1, w2 ∈ X and λ ∈ [0,1]
we have λw1 + (1 − λ)w2 ∈ X
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convex function
a function f is convex(concave) on X ⊆ Dom(f) if for any w1, w2 ∈ X
and λ ∈ [0,1] we have
f(λw1 + (1 − λ)w2)≤ (≥)λf(w1) + (1 − λ)f(w2)

if f is strict convex and twice differentiable on X then :

♦f ′ = δwf(w) strict increasing

♦f ′′ ≥ 0

♦f ′(x0) = 0 ⇔ x0 is a global minimum
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convex and differentiable
if f is convex and differentiable
then for any w1,w2 we have

1.f ′(w2)(w2 − w1) ≥
f(w2) − f(w1) ≥
f ′(w1)(w2 − w1)

2.∃w = λw1 + (1 − λ)w2, λ ∈ [0,1]

such that

f(w2) − f(w1) = f ′(w)(w2 − w1)
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unconstrained optimization
one variable

interval cutting
Newton’s Method

several variables

gradient descent
conjugate gradient descent
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constrained optimization
given convex functions f, g1, g2, ...., gk, h1, h2, ...., hm on convex set X,
the problem

minimize f(w)
subject to gi(w) ≤ 0 ,for all i

hj(w) = 0 ,for all j

has as its solution a convex set. If f is strict convex the solution
is unique (if exists)

we will assume all the good things one can imagine about functions
f, g1, g2, ...., gk, h1, h2, ...., hm like convexity, differentiability etc.That will
still not be enough though....
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equality constraints only

minimize f(w)
subject to hj(w) = 0 ,for all j

define the lagrangian function

L(w, β) = f(w) +
∑

j

βjhj(w)

Lagrange theorem nec[essary] and suff[icient] conditions for a point
w̃ to be an optimum (ie a solution for the problem above) are the
existence of β̃ such that

δwL(w̃, β̃) = 0 ; δβj
L(w̃, β̃) = 0
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inequality constraints
minimize f(w)
subject to gi(w) ≤ 0 ,for all i

hj(w) = 0 ,for all j

we can rewrite every inequality constraint hj(x) = 0 as two inequalities
hj(w) ≤ 0 and hj(w) ≥ 0. so the problem becomes

minimize f(w)
subject to gi(w) ≤ 0 ,for all i

9



Karush Kuhn Tucker theorem
minimize f(w)
subject to gi(w) ≤ 0 ,for all i
were gi are qualified constraints

define the lagrangian function

L(w, α) = f(w) +
∑

i

αigi(w)

KKT theorem nec and suff conditions for a point w̃ to be a solution
for the optimization problem are the existence of α̃ such that

δwL(w̃, α̃) = 0 ; α̃igi(w̃) = 0

gi(w̃) ≤ 0 ; α̃i ≥ 0
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KKT - sufficiency
Assume (w̃, α̃) satisfies KKT conditions

δwL(w̃, α̃) = δwf(w̃) +
∑k

i=1 α̃iδwgi(w̃) = 0
δαiL(w̃, α̃) = gi(w̃) ≤ 0
α̃igi(w̃) = 0; α̃i ≥ 0

Then
f(w) − f(w̃) ≥ (δwf(w̃))T (w − w̃) =

−∑k
i=1 α̃i(δwgi(w̃))T (w − w̃) ≥ −∑k

i=1 α̃i(gi(w) − gi(w̃)) =

−∑k
i=1 α̃igi(w) ≥ 0

so w̃ is solution
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saddle point
minimize f(w)
subject to gi(w) ≤ 0 ,for all i

and the lagrangian function

L(w, α) = f(w) +
∑

i

αigi(w)

(w̃, α̃) with α̃i ≥ 0 is saddle point if ∀(w, α), αi ≥ 0

L(w̃, α) ≤ L(w̃, α̃) ≤ L(w, α̃)
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saddle point - sufficiency
minimize f(w)
subject to gi(w) ≤ 0 ,for all i

lagrangian function L(w, α) = f(w) +
∑

i αigi(w)
(w̃, α̃) is saddle point
∀(w, α), αi ≥ 0 : L(w̃, α) ≤ L(w̃, α̃) ≤ L(w, α̃)

then

1.w̃ is solution to optimization problem
2.α̃igi(w̃) = 0 for all i
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saddle point - necessity
minimize f(w)
subject to gi(w) ≤ 0 ,for all i
were gi are qualified constraints

lagrangian function L(w, α) = f(w) +
∑

i αigi(w)
w̃ is solution to optimization problem

then

∃α̃ ≥ 0 such that (w̃, α̃) is saddle point
∀(w, α), αi ≥ 0 : L(w̃, α) ≤ L(w̃, α̃) ≤ L(w, α̃)
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constraint qualifications
minimize f(w)
subject to gi(w) ≤ 0 , for all i

let Υ be the feasible region Υ = {w|gi(w) ≤ 0 ∀i}

then the following additional conditions for functions gi

are connected (i) ⇔ (ii) and (iii) ⇒ (i) :

(i) there exists w ∈ Υ such that gi(w) ≤ 0 ∀i

(ii) for all nonzero α ∈ [0,1)k ∃w ∈ Υ such that αigi(w) = 0 ∀i

(iii) the feasible region Υ contains at least two distinct elements, and
∃w ∈ Υ such that all gi are are strictly convex at w w.r.t. Υ
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KKT-gap
Assume w̃ is the solution for optimization problem.Then for any (w, α)
with α ≥ 0 and satisfying

δwL(w, α) = 0 ; δαiL(w, α) ≥ 0

we have

f(w) ≥ f(w̃) ≥ f(w) +
k∑

i=1
αigi(w)
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duality
f(w) ≥ f(w̃) ≥ f(w) +

k∑

i=1
αigi(w)

dual maximization problem :
maximize L(w, α) = f(w) +

∑k
i=1 αigi(w)

subject to α ≥ 0 ; δwL(w, α) = 0

OR

set θ(α) = infw L(w, α)
maximize θ(α)
subject to α ≥ 0

the primal and dual problems have the same objective value iff the
gap can be vanished
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