constrained convex optimization

virgil pavlu

convex set

a set X in a vector space is **convex** if for any $w_1, w_2 \in X$ and $\lambda \in [0, 1]$ we have $\lambda w_1 + (1 - \lambda)w_2 \in X$

2

convex function

a function f is **convex(concave)** on $X \subseteq Dom(f)$ if for any $w_1, w_2 \in X$ and $\lambda \in [0, 1]$ we have $f(\lambda w_1 + (1 - \lambda)w_2) \leq (\geq)\lambda f(w_1) + (1 - \lambda)f(w_2)$

if f is strict convex and twice differentiable on X then :

convex and differentiable

if f is convex and differentiable then for any w_1, w_2 we have

$$1.f'(w_2)(w_2 - w_1) \ge f(w_2) - f(w_1) \ge f'(w_1)(w_2 - w_1)$$

$$2.\exists w = \lambda w_1 + (1 - \lambda) w_2, \lambda \in [0, 1]$$
 such that

$$f(w_2) - f(w_1) = f'(w)(w_2 - w_1)$$

unconstrained optimization

one variable

interval cutting Newton's Method

several variables

gradient descent conjugate gradient descent

constrained optimization

given convex functions $f, g_1, g_2, \dots, g_k, h_1, h_2, \dots, h_m$ on convex set X, the problem

```
minimize f(\mathbf{w})
subject to g_i(\mathbf{w}) \leq 0 ,for all i
h_j(\mathbf{w}) = 0 ,for all j
```

has as its solution a convex set. If f is strict convex the solution is unique (if exists)

we will assume all the good things one can imagine about functions $f, g_1, g_2, ..., g_k, h_1, h_2, ..., h_m$ like convexity, differentiability etc. That will still not be enough though....

equality constraints only

minimize $f(\mathbf{w})$ subject to $h_j(\mathbf{w}) = 0$, for all j

define the lagrangian function

$$L(\mathbf{w},\beta) = f(\mathbf{w}) + \sum_{j} \beta_{j} h_{j}(\mathbf{w})$$

Lagrange theorem nec[essary] and suff[icient] conditions for a point \tilde{w} to be an optimum (ie a solution for the problem above) are the existence of $\tilde{\beta}$ such that

$$\delta_{\mathbf{w}}L(\widetilde{\mathbf{w}},\widetilde{eta})=$$
0; $\delta_{eta_j}L(\widetilde{\mathbf{w}},\widetilde{eta})=$ 0

7

alpha

inequality constraints

minimize $f(\mathbf{w})$ subject to $g_i(\mathbf{w}) \leq 0$,for all i $h_j(\mathbf{w}) = 0$,for all j

we can rewrite every inequality constraint $h_j(\mathbf{x}) = 0$ as two inequalities $h_j(\mathbf{w}) \leq 0$ and $h_j(\mathbf{w}) \geq 0$. so the problem becomes

minimize $f(\mathbf{w})$ subject to $g_i(\mathbf{w}) \leq 0$,for all i

Karush Kuhn Tucker theorem

minimize $f(\mathbf{w})$ subject to $g_i(\mathbf{w}) \leq 0$,for all iwere g_i are **qualified constraints**

define the lagrangian function

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{w})$$

KKT theorem nec and suff conditions for a point \tilde{w} to be a solution for the optimization problem are the existence of $\tilde{\alpha}$ such that

$$\delta_{\mathbf{w}} L(\widetilde{\mathbf{w}}, \widetilde{\alpha}) = 0$$
; $\widetilde{\alpha}_i g_i(\widetilde{\mathbf{w}}) = 0$
 $g_i(\widetilde{\mathbf{w}}) \le 0$; $\widetilde{\alpha}_i \ge 0$

10

KKT - sufficiency

Assume $(\widetilde{\mathbf{w}}, \widetilde{\alpha})$ satisfies KKT conditions

 $\delta_{\mathbf{w}} L(\tilde{\mathbf{w}}, \tilde{\alpha}) = \delta_{\mathbf{w}} f(\tilde{\mathbf{w}}) + \sum_{i=1}^{k} \widetilde{\alpha_{i}} \delta_{\mathbf{w}} g_{i}(\tilde{\mathbf{w}}) = 0$ $\delta_{\alpha_{i}} L(\tilde{\mathbf{w}}, \tilde{\alpha}) = g_{i}(\tilde{\mathbf{w}}) \leq 0$ $\widetilde{\alpha_{i}} g_{i}(\tilde{\mathbf{w}}) = 0; \ \widetilde{\alpha_{i}} \geq 0$

Then
$$f(\mathbf{w}) - f(\tilde{\mathbf{w}}) \ge (\delta_{\mathbf{w}} f(\tilde{\mathbf{w}}))^T (\mathbf{w} - \tilde{\mathbf{w}}) =$$

$$-\sum_{i=1}^{k} \widetilde{\alpha_{i}}(\delta_{\mathbf{w}} g_{i}(\widetilde{\mathbf{w}}))^{T}(\mathbf{w} - \widetilde{\mathbf{w}}) \geq -\sum_{i=1}^{k} \widetilde{\alpha_{i}}(g_{i}(\mathbf{w}) - g_{i}(\widetilde{\mathbf{w}})) =$$

 $-\sum_{i=1}^{k} \widetilde{\alpha_i} g_i(\mathbf{w}) \geq 0$

so $\widetilde{\mathbf{w}}$ is solution

saddle point

minimize $f(\mathbf{w})$ subject to $g_i(\mathbf{w}) \leq 0$,for all i

and the lagrangian function

$$L(\mathbf{w}, \alpha) = f(\mathbf{w}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{w})$$

 $(\widetilde{\mathbf{w}}, \widetilde{\alpha})$ with $\widetilde{\alpha_i} \ge 0$ is saddle point if $\forall (\mathbf{w}, \alpha), \alpha_i \ge 0$

$$L(\widetilde{\mathbf{w}}, \alpha) \leq L(\widetilde{\mathbf{w}}, \widetilde{\alpha}) \leq L(\mathbf{w}, \widetilde{\alpha})$$

alpha

saddle point - sufficiency

minimize $f(\mathbf{w})$ subject to $g_i(\mathbf{w}) \leq 0$,for all i

lagrangian function $L(\mathbf{w}, \alpha) = f(\mathbf{w}) + \sum_{i} \alpha_{i} g_{i}(\mathbf{w})$ ($\tilde{\mathbf{w}}, \tilde{\alpha}$) is saddle point $\forall (\mathbf{w}, \alpha), \alpha_{i} \geq 0 : L(\tilde{\mathbf{w}}, \alpha) \leq L(\tilde{\mathbf{w}}, \tilde{\alpha}) \leq L(\mathbf{w}, \tilde{\alpha})$

then

1. $\tilde{\mathbf{w}}$ is solution to optimization problem 2. $\tilde{\alpha}_i g_i(\tilde{\mathbf{w}}) = 0$ for all i

saddle point - necessity

minimize $f(\mathbf{w})$ subject to $g_i(\mathbf{w}) \leq 0$, for all iwere g_i are **qualified constraints**

lagrangian function $L(\mathbf{w}, \alpha) = f(\mathbf{w}) + \sum_i \alpha_i g_i(\mathbf{w})$ $\tilde{\mathbf{w}}$ is solution to optimization problem

then

 $\exists \tilde{\alpha} \geq 0 \text{ such that } (\tilde{\mathbf{w}}, \tilde{\alpha}) \text{ is saddle point} \\ \forall (\mathbf{w}, \alpha), \alpha_i \geq 0 : L(\tilde{\mathbf{w}}, \alpha) \leq L(\tilde{\mathbf{w}}, \tilde{\alpha}) \leq L(\mathbf{w}, \tilde{\alpha}) \end{cases}$

constraint qualifications

minimize $f(\mathbf{w})$ subject to $g_i(\mathbf{w}) \leq 0$, for all i

let Υ be the feasible region $\Upsilon = \{\mathbf{w}|g_i(\mathbf{w}) \leq 0 \ \forall i\}$

then the following additional conditions for functions g_i are connected $(i) \Leftrightarrow (ii)$ and $(iii) \Rightarrow (i)$:

(*i*) there exists $w \in \Upsilon$ such that $g_i(\mathbf{w}) \leq 0 \ \forall i$ (*ii*) for all nonzero $\alpha \in [0,1)^k \ \exists w \in \Upsilon$ such that $\alpha_i g_i(\mathbf{w}) = 0 \ \forall i$ (*iii*) the feasible region Υ contains at least two distinct elements, and $\exists w \in \Upsilon$ such that all g_i are are strictly convex at w w.r.t. Υ

KKT-gap

Assume $\tilde{\mathbf{w}}$ is the solution for optimization problem. Then for any (\mathbf{w}, α) with $\alpha \geq 0$ and satisfying

$$\delta_{\mathbf{w}}L(\mathbf{w}, \alpha) = 0$$
 ; $\delta_{\alpha_i}L(\mathbf{w}, \alpha) \geq 0$

we have

$$f(\mathbf{w}) \ge f(\widetilde{\mathbf{w}}) \ge f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w})$$

duality

$$f(\mathbf{w}) \ge f(\widetilde{\mathbf{w}}) \ge f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w})$$

dual maximization problem :

maximize $L(\mathbf{w}, \alpha) = f(\mathbf{w}) + \sum_{i=1}^{k} \alpha_i g_i(\mathbf{w})$ subject to $\alpha \ge 0$; $\delta_{\mathbf{w}} L(\mathbf{w}, \alpha) = 0$

OR

```
set \theta(\alpha) = \inf_{\mathbf{w}} L(\mathbf{w}, \alpha)
maximize \theta(\alpha)
subject to \alpha \ge 0
```

the primal and dual problems have the same objective value iff the gap can be vanished