# constrained convex optimization 

virgil pavlu

## convex set

a set $X$ in a vector space is convex if for any $w_{1}, w_{2} \in X$ and $\lambda \in[0,1]$ we have $\lambda w_{1}+(1-\lambda) w_{2} \in X$


Non-convex set


## convex function

a function $f$ is convex(concave) on $X \subseteq \operatorname{Dom}(f)$ if for any $w_{1}, w_{2} \in X$ and $\lambda \in[0,1]$ we have $f\left(\lambda w_{1}+(1-\lambda) w_{2}\right) \leq(\geq) \lambda f\left(w_{1}\right)+(1-\lambda) f\left(w_{2}\right)$
if f is strict convex and twice differentiable on $X$ then :

$$
\begin{aligned}
& \diamond f^{\prime}=\delta_{w} f(w) \text { strict increasing } \\
& \diamond f^{\prime \prime} \geq 0
\end{aligned}
$$

$$
\diamond f \prime\left(x_{0}\right)=0 \Leftrightarrow x_{0} \text { is a global minimum }
$$



## convex and differentiable

if $f$ is convex and differentiable then for any $w_{1}, w_{2}$ we have

$$
\begin{aligned}
& \text { 1. } f \prime\left(w_{2}\right)\left(w_{2}-w_{1}\right) \geq \\
& f\left(w_{2}\right)-f\left(w_{1}\right) \geq \\
& f \prime\left(w_{1}\right)\left(w_{2}-w_{1}\right)
\end{aligned}
$$

$$
\text { 2. } \exists w=\lambda w_{1}+(1-\lambda) w_{2}, \lambda \in[0,1]
$$

such that

$$
f\left(w_{2}\right)-f\left(w_{1}\right)=f^{\prime}(w)\left(w_{2}-w_{1}\right)
$$



# unconstrained optimization 

one variable<br>interval cutting<br>Newton's Method

several variables
gradient descent
conjugate gradient descent

## constrained optimization

given convex functions $f, g_{1}, g_{2}, \ldots ., g_{k}, h_{1}, h_{2}, \ldots ., h_{m}$ on convex set $X$, the problem
minimize $f(\mathrm{w})$
subject to $g_{i}(\mathrm{w}) \leq 0$,for all $i$
$h_{j}(\mathrm{w})=0$, for all $j$
has as its solution a convex set. If $f$ is strict convex the solution is unique (if exists)
we will assume all the good things one can imagine about functions $f, g_{1}, g_{2}, \ldots ., g_{k}, h_{1}, h_{2}, \ldots ., h_{m}$ like convexity, differentiability etc. That will still not be enough though....

## equality constraints only

minimize $f(\mathrm{w})$
subject to $h_{j}(w)=0$, for all $j$
define the lagrangian function

$$
L(\mathbf{w}, \beta)=f(\mathbf{w})+\sum_{j} \beta_{j} h_{j}(\mathrm{w})
$$

Lagrange theorem nec[essary] and suff[icient] conditions for a point $\widetilde{\mathbf{w}}$ to be an optimum (ie a solution for the problem above) are the existence of $\widetilde{\beta}$ such that

$$
\delta_{\mathrm{w}} L(\widetilde{\mathbf{w}}, \widetilde{\beta})=0 ; \delta_{\beta_{j}} L(\widetilde{\mathrm{w}}, \widetilde{\beta})=0
$$


alpha

## inequality constraints

minimize $f(\mathrm{w})$
subject to $g_{i}(\mathrm{w}) \leq 0$,for all $i$
$h_{j}(\mathrm{w})=0$, for all $j$
we can rewrite every inequality constraint $h_{j}(\mathrm{x})=0$ as two inequalities $h_{j}(\mathrm{w}) \leq 0$ and $h_{j}(\mathrm{w}) \geq 0$. so the problem becomes
minimize $f(\mathrm{w})$
subject to $g_{i}(\mathbf{w}) \leq 0$,for all $i$

## Karush Kuhn Tucker theorem

minimize $f(\mathrm{w})$
subject to $g_{i}(\mathrm{w}) \leq 0$, for all $i$
were $g_{i}$ are qualified constraints
define the lagrangian function

$$
L(\mathbf{w}, \alpha)=f(\mathbf{w})+\sum_{i} \alpha_{i} g_{i}(\mathbf{w})
$$

KKT theorem nec and suff conditions for a point $\widetilde{\mathbf{w}}$ to be a solution for the optimization problem are the existence of $\widetilde{\alpha}$ such that

$$
\begin{gathered}
\delta_{\mathrm{w}} L(\widetilde{\mathbf{w}}, \widetilde{\alpha})=0 ; \widetilde{\alpha_{i}} g_{i}(\widetilde{\mathbf{w}})=0 \\
g_{i}(\widetilde{\mathbf{w}}) \leq 0 ; \widetilde{\alpha_{i}} \geq 0
\end{gathered}
$$

## KKT - sufficiency

Assume ( $\widetilde{\mathbf{w}}, \widetilde{\alpha}$ ) satisfies KKT conditions
$\delta_{\mathbf{w}} L(\widetilde{\mathbf{w}}, \widetilde{\alpha})=\delta_{\mathbf{w}} f(\widetilde{\mathbf{w}})+\sum_{i=1}^{k} \widetilde{\alpha_{i}} \delta_{\mathbf{w}} g_{i}(\widetilde{\mathbf{w}})=0$
$\delta_{\alpha_{i}} L(\widetilde{\mathbf{w}}, \widetilde{\alpha})=g_{i}(\widetilde{\mathbf{w}}) \leq 0$
$\widetilde{\alpha_{i}} g_{i}(\widetilde{\mathbf{w}})=0 ; \widetilde{\alpha_{i}} \geq 0$
Then
$f(\mathrm{w})-f(\widetilde{\mathrm{w}}) \geq\left(\delta_{\mathbf{w}} f(\widetilde{\mathrm{w}})\right)^{T}(\mathrm{w}-\widetilde{\mathbf{w}})=$
$-\sum_{i=1}^{k} \widetilde{\alpha_{i}}\left(\delta_{\mathbf{w}} g_{i}(\widetilde{\mathbf{w}})\right)^{T}(\mathbf{w}-\widetilde{\mathbf{w}}) \geq-\sum_{i=1}^{k} \widetilde{\alpha_{i}}\left(g_{i}(\mathbf{w})-g_{i}(\widetilde{\mathbf{w}})\right)=$
$-\sum_{i=1}^{k} \widetilde{\alpha_{i}} g_{i}(\mathrm{w}) \geq 0$
so $\tilde{\mathbf{w}}$ is solution

## saddle point

minimize $f(\mathrm{w})$
subject to $g_{i}(\mathbf{w}) \leq 0$,for all $i$
and the lagrangian function

$$
L(\mathbf{w}, \alpha)=f(\mathbf{w})+\sum_{i} \alpha_{i} g_{i}(\mathbf{w})
$$

( $\widetilde{\mathbf{w}}, \widetilde{\alpha}$ ) with $\widetilde{\alpha_{i}} \geq 0$ is saddle point if $\forall(\mathbf{w}, \alpha), \alpha_{i} \geq 0$

$$
L(\widetilde{\mathbf{w}}, \alpha) \leq L(\widetilde{\mathbf{w}}, \widetilde{\alpha}) \leq L(\mathbf{w}, \widetilde{\alpha})
$$


alpha

## saddle point - sufficiency

minimize $f(\mathrm{w})$
subject to $g_{i}(\mathrm{w}) \leq 0$, for all $i$
lagrangian function $L(\mathrm{w}, \alpha)=f(\mathrm{w})+\sum_{i} \alpha_{i} g_{i}(\mathrm{w})$
( $\widetilde{\mathbf{w}}, \widetilde{\alpha}$ ) is saddle point
$\forall(\mathbf{w}, \alpha), \alpha_{i} \geq 0: L(\widetilde{\mathbf{w}}, \alpha) \leq L(\widetilde{\mathbf{w}}, \widetilde{\alpha}) \leq L(\mathbf{w}, \widetilde{\alpha})$
then

1. $\widetilde{\mathrm{w}}$ is solution to optimization problem
2. $\widetilde{\alpha_{i}} g_{i}(\widetilde{\mathbf{w}})=0$ for all $i$

## saddle point - necessity

minimize $f(\mathrm{w})$
subject to $g_{i}(\mathrm{w}) \leq 0$,for all $i$
were $g_{i}$ are qualified constraints
lagrangian function $L(\mathrm{w}, \alpha)=f(\mathrm{w})+\sum_{i} \alpha_{i} g_{i}(\mathrm{w})$ $\widetilde{\mathbf{w}}$ is solution to optimization problem
then
$\exists \widetilde{\alpha} \geq 0$ such that ( $\widetilde{\mathbf{w}}, \widetilde{\alpha}$ ) is saddle point
$\forall(\mathrm{w}, \alpha), \alpha_{i} \geq 0: L(\widetilde{\mathrm{w}}, \alpha) \leq L(\widetilde{\mathrm{w}}, \widetilde{\alpha}) \leq L(\mathrm{w}, \widetilde{\alpha})$

## constraint qualifications

minimize $f(\mathrm{w})$
subject to $g_{i}($ w $) \leq 0$, for all $i$
let $\Upsilon$ be the feasible region $\Upsilon=\left\{\mathrm{w} \mid g_{i}(\mathrm{w}) \leq 0 \forall i\right\}$
then the following additional conditions for functions $g_{i}$
are connected $(i) \Leftrightarrow(i i)$ and $(i i i) \Rightarrow(i)$ :
(i) there exists $w \in \Upsilon$ such that $g_{i}($ w $) \leq 0 \forall i$
(ii) for all nonzero $\alpha \in[0,1)^{k} \exists w \in \Upsilon$ such that $\alpha_{i} g_{i}(\mathrm{w})=0 \forall i$
(iii) the feasible region $\Upsilon$ contains at least two distinct elements, and $\exists w \in \Upsilon$ such that all $g_{i}$ are are strictly convex at $w$ w.r.t. $\Upsilon$

## KKT-gap

Assume $\tilde{\mathbf{w}}$ is the solution for optimization problem. Then for any ( $\mathbf{w}, \alpha$ ) with $\alpha \geq 0$ and satisfying

$$
\delta_{\mathrm{w}} L(\mathrm{w}, \alpha)=0 ; \delta_{\alpha_{i}} L(\mathbf{w}, \alpha) \geq 0
$$

we have

$$
f(\mathrm{w}) \geq f(\widetilde{\mathrm{w}}) \geq f(\mathrm{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathrm{w})
$$

## duality

$$
f(\mathrm{w}) \geq f(\widetilde{\mathrm{w}}) \geq f(\mathrm{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathrm{w})
$$

## dual maximization problem :

maximize $L(\mathrm{w}, \alpha)=f(\mathrm{w})+\sum_{i=1}^{k} \alpha_{i} g_{i}(\mathrm{w})$
subject to $\alpha \geq 0 ; \delta_{\mathrm{w}} L(\mathrm{w}, \alpha)=0$

## OR

set $\theta(\alpha)=\inf _{\mathrm{w}} L(\mathrm{w}, \alpha)$
maximize $\theta(\alpha)$
subject to $\alpha \geq 0$
the primal and dual problems have the same objective value iff the gap can be vanished

