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72076 Tübingen, Germany

bernhard.schoelkopf@tuebingen.mpg.de

B. Schölkopf, Erice, 31 October 2005



Roadmap

1. Kernels

2. Support Vector classification

3. Further kernel algorithms: kernel PCA, kernel dependency es-
timation, implicit surface approximation, morphing
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Learning and Similarity: some Informal Thoughts

• input/output sets X ,Y
• training set (x1, y1), . . . , (xm, ym) ∈ X × Y
• “generalization”: given a previously unseen x ∈ X , find a suit-

able y ∈ Y
• (x, y) should be “similar” to (x1, y1), . . . , (xm, ym)

• how to measure similarity?

– for outputs: loss function (e.g., for Y = {±1}, zero-one loss)

– for inputs: kernel
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Similarity of Inputs

• symmetric function

k : X × X → R

(x, x′) �→ k(x, x′)
• for example, if X = R

N : canonical dot product

k(x, x′) =
∑N

i=1
[x]i[x

′]i
• if X is not a dot product space: assume that k has a represen-

tation as a dot product in a linear space H, i.e., there exists a
map Φ : X → H such that

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
.

• in that case, we can think of the patterns as Φ(x),Φ(x′), and
carry out geometric algorithms in the dot product space (“fea-
ture space”) H.



An Example of a Kernel Algorithm

Idea: classify points x := Φ(x) in feature space according to which
of the two class means is closer.

c+ :=
1

m+

∑
yi=1

Φ(xi), c− :=
1

m−
∑
yi=−1

Φ(xi)

o
+

+

+

+

o
o

c+

c-

x-c

w

x

c

.

Compute the sign of the dot product between w := c+ − c− and
x − c.



An Example of a Kernel Algorithm, ctd. [44]

f (x) = sgn

⎛
⎝ 1

m+

∑
{i:yi=+1}

〈Φ(x),Φ(xi)〉−
1

m−
∑

{i:yi=−1}
〈Φ(x),Φ(xi)〉+b

⎞
⎠

= sgn

⎛
⎝ 1

m+

∑
{i:yi=+1}

k(x, xi) −
1

m−
∑

{i:yi=−1}
k(x, xi) + b

⎞
⎠

where

b =
1

2

⎛
⎝ 1

m2−

∑
{(i,j):yi=yj=−1}

k(xi, xj) − 1

m2
+

∑
{(i,j):yi=yj=+1}

k(xi, xj)

⎞
⎠ .

• provides a geometric interpretation of Parzen windows

• the decision function is a hyperplane
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An Example of a Kernel Algorithm, ctd.

• Demo

• Exercise: derive the Parzen windows classifier by computing the
distance criterion directly
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Example: All Degree 2 Monomials

Φ : R
2 → R

3

(x1, x2) �→ (z1, z2, z3) := (x2
1,
√

2x1x2, x
2
2)
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General Product Feature Space

How about patterns x ∈ R
N and product features of order d?

Here, dim(H) grows like Nd.

E.g. N = 16 × 16, and d = 5 −→ dimension 1010
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The Kernel Trick, N = d = 2

〈
Φ(x),Φ(x′)

〉
= (x2

1,
√

2 x1x2, x
2
2)(x

′2
1,
√

2 x′1x′2, x′22 )�

=
〈
x, x′

〉2
= : k(x, x′)

−→ the dot product in H can be computed in R
2
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The Kernel Trick, II

More generally: x, x′ ∈ R
N , d ∈ N:

〈
x, x′

〉d
=

⎛
⎝ N∑
j=1

xj · x′j

⎞
⎠
d

=

N∑
j1,...,jd=1

xj1 · · · · · xjd · x′j1 · · · · · x′jd =
〈
Φ(x),Φ(x′)

〉
,

where Φ maps into the space spanned by all ordered products of
d input directions
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Mercer’s Theorem

If k is a continuous kernel of a positive definite integral oper-
ator on L2(X ) (where X is some compact space),∫

X
k(x, x′)f (x)f (x′) dx dx′ ≥ 0,

it can be expanded as

k(x, x′) =

∞∑
i=1

λiψi(x)ψi(x
′)

using eigenfunctions ψi and eigenvalues λi ≥ 0 [36].
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The Mercer Feature Map

In that case

Φ(x) :=

⎛
⎝

√
λ1ψ1(x)√
λ2ψ2(x)

...

⎞
⎠

satisfies
〈
Φ(x),Φ(x′)

〉
= k(x, x′).

Proof:

〈
Φ(x),Φ(x′)

〉
=

〈⎛⎝
√
λ1ψ1(x)√
λ2ψ2(x)

...

⎞
⎠ ,

⎛
⎝

√
λ1ψ1(x

′)√
λ2ψ2(x

′)
...

⎞
⎠〉

=

∞∑
i=1

λiψi(x)ψi(x
′) = k(x, x′)
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The Kernel Trick — Summary

• any algorithm that only depends on dot products can benefit
from the kernel trick

• this way, we can apply linear methods to vectorial as well as
non-vectorial data

• think of the kernel as a nonlinear similarity measure

• examples of common kernels:

Polynomial k(x, x′) = (
〈
x, x′

〉
+ c)d

Gaussian k(x, x′) = exp(−‖x− x′‖2/(2σ2))

• Kernels are studied also in the Gaussian Process prediction com-
munity (covariance functions) [61, 58, 63, 35]
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Positive Definite Kernels

We will show that the admissible class of kernels coincides with the
one of positive definite (pd) kernels: kernels which are symmetric
(i.e., k(x, x′) = k(x′, x)), and for

• any set of training points x1, . . . , xm ∈ X and

• any a1, . . . , am ∈ R

satisfy ∑
i,j

aiajKij ≥ 0, where Kij := k(xi, xj).

K is called the Gram matrix or kernel matrix.

B. Schölkopf, Erice, 31 October 2005



Elementary Properties of PD Kernels

Kernels from Feature Maps.
If Φ maps X into a dot product space H, then

〈
Φ(x),Φ(x′)

〉
is a

pd kernel on X × X .

Positivity on the Diagonal.
k(x, x) ≥ 0 for all x ∈ X
Cauchy-Schwarz Inequality.
k(x, x′)2 ≤ k(x, x)k(x′, x′) (Hint: compute the determinant of
the Gram matrix)

Vanishing Diagonals.
k(x, x) = 0 for all x ∈ X =⇒ k(x, x′) = 0 for all x, x′ ∈ X
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The Feature Space for PD Kernels [1, 4, 42]

• define a feature map

Φ : X → R
X

x �→ k(., x).

E.g., for the Gaussian kernel: Φ

. .
Φ(x) Φ(x')x x'

Next steps:

• turn Φ(X ) into a linear space

• endow it with a dot product satisfying〈
k(., xi), k(., xj)

〉
= k(xi, xj)

• complete the space to get a reproducing kernel Hilbert space
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Turn it Into a Linear Space

Form linear combinations

f (.) =

m∑
i=1

αik(., xi),

g(.) =

m′∑
j=1

βjk(., x′j)

(m,m′ ∈ N, αi, βj ∈ R, xi, x
′
j ∈ X ).
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Endow it With a Dot Product

〈f, g〉 :=

m∑
i=1

m′∑
j=1

αiβjk(xi, x
′
j)

=

m∑
i=1

αig(xi) =

m′∑
j=1

βjf (x′j)

• This is well-defined, symmetric, and bilinear (more later).
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The Reproducing Kernel Property

Two special cases:

• Assume
f (.) = k(., x).

In this case, we have

〈k(., x), g〉 = g(x).

• If moreover
g(.) = k(., x′),

we have
〈k(., x), k(., x′)〉 = k(x, x′).

k is called a reproducing kernel
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Endow it With a Dot Product, II

• It can be shown that 〈., .〉 is a p.d. kernel on the set of functions
{f (.) =

∑m
i=1αik(., xi)|αi ∈ R, xi ∈ X} :

∑
ij

γiγj
〈
fi, fj

〉
=

〈∑
i

γifi,
∑
j

γjfj

〉
=: 〈f, f〉

=

〈∑
i

αik(., xi),
∑
j

αjk(., xj)

〉
=
∑
ij

αiαjk(xi, xj) ≥ 0

• furthermore, it is strictly positive definite:

f (x)2 = 〈f, k(., x)〉2 ≤ 〈f, f〉 〈k(., x), k(., x)〉 = 〈f, f〉 k(x, x)

hence 〈f, f〉 = 0 implies f = 0.

• Complete the space in the corresponding norm to get a Hilbert
space Hk.
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Deriving the Kernel from the RKHS

An RKHS is a Hilbert space H of functions f where all point
evaluation functionals

px : H → R

f �→ px(f ) = f (x)

exist and are continuous.
Continuity means that whenever f and f ′ are close in H, then
f (x) and f ′(x) are close in R. This can be thought of as a topo-
logical prerequisite for generalization ability (Canu & Mary, 2002).
By Riesz’ representation theorem, there exists an element of H,
call it rx, such that 〈rx, f〉 = f (x),

in particular,
〈rx, rx′〉 = rx′(x).

Define k(x, x′) := rx(x
′) = rx′(x).
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The Empirical Kernel Map

Recall the feature map

Φ : X → R
X

x �→ k(., x).

• each point is represented by its similarity to all other points

• how about representing it by its similarity to a sample of points?

Consider

Φm : X → R
m

x �→ k(., x)|(x1,...,xm) = (k(x1, x), . . . , k(xm, x))�
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ctd.

• Φm(x1), . . . ,Φm(xm) contain all necessary information about
Φ(x1), . . . ,Φ(xm)

• the Gram matrix Gij :=
〈
Φm(xi),Φm(xj)

〉
satisfies G = K2

where Kij = k(xi, xj)

• modify Φm to

Φwm : X → R
m

x �→ K−1
2(k(x1, x), . . . , k(xm, x))�

• this whitened map (“kernel PCA map”) satifies〈
Φwm(xi),Φ

w
m(xj)

〉
= k(xi, xj)

for all i, j = 1, . . . ,m.
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Some Properties of Kernels [44]

If k1, k2, . . . are pd kernels, then so are

• αk1, provided α ≥ 0

• k1 + k2

• k1 · k2

• k(x, x′) := limn→∞ kn(x, x
′), provided it exists

• k(A,B) :=
∑
x∈A,x′∈B k1(x, x

′), where A,B are finite subsets
of X
(using the feature map Φ̃(A) :=

∑
x∈AΦ(x))

Further operations to construct kernels from kernels: tensor prod-
ucts, direct sums, convolutions [24].
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Properties of Kernel Matrices, I [43]

Suppose we are given distinct training patterns x1, . . . , xm (which
need not live in a vector space), and a positive definite m × m
matrix K.

K can be diagonalized as K = SDS�, with an orthogonal matrix
S and a diagonal matrix D with nonnegative entries. Then

Kij = (SDS�)ij =
〈
Si,DSj

〉
=
〈√

DSi,
√
DSj

〉
,

where the Si are the rows of S.

We have thus constructed a map Φ into an m-dimensional feature
space H such that

Kij =
〈
Φ(xi),Φ(xj)

〉
.
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Properties, II: Functional Calculus [47]

•K symmetric m×m matrix with spectrum σ(K)

• f a continuous function on σ(K)

• Then there is a symmetric matrix f (K) with eigenvalues in
f (σ(K)).

• compute f (K) via Taylor series, or eigenvalue decomposition of
K: If K = S�DS (D diagonal and S unitary), then f (K) =
S�f (D)S, where f (D) is defined elementwise on the diagonal

• can treat functions of symmetric matrices like functions on R

(αf + g)(K) = αf (K) + g(K)

(fg)(K) = f (K)g(K) = g(K)f (K)

‖f‖∞,σ(K) = ‖f (K)‖
σ(f (K)) = f (σ(K))

(the C∗-algebra generated by K is isomorphic to the set of
continuous functions on σ(K))



Support Vector Classifiers

feature spaceinput space

Φ

◆

◆
◆

◆
●

●
●

●
●

●

[6]
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Separating Hyperplane

w

◆

◆

◆

◆

●
●

●

●
● {x | <w  x> + b = 0},

<w  x> + b > 0,

<w  x> + b < 0,
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Optimal Separating Hyperplane [54]

.
w

◆

◆

◆

◆

●
●

●

●
● {x | <w  x> + b = 0},
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Eliminating the Scaling Freedom [55]

Note: if c �= 0, then

{x| 〈w,x〉 + b = 0} = {x| 〈cw,x〉 + cb = 0}.
Hence (cw, cb) describes the same hyperplane as (w, b).

Definition: The hyperplane is in canonical form w.r.t. X∗ =
{x1, . . . ,xr} if minxi∈X | 〈w,xi〉 + b| = 1.
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Canonical Optimal Hyperplane

,
w

{x | <w  x> + b = 0},

{x | <w  x> + b = −1},
{x | <w  x> + b = +1},

x2
x1

Note:

<w  x1> + b = +1
<w  x2> + b = −1

=>       <w  (x1−x2)> =   2

=> (x1−x2)   =
w

||w||< >

,
,

,

, 2
||w||

yi = −1

yi = +1❍
❍

❍

❍
❍

◆

◆

◆

◆
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Pattern Noise as Maximum Margin Regularization

o

o

o

+

+

+

o

+

r

ρ



Maximum Margin vs. MDL — 2D Case

o

o

o

+

+

+

o

+
γ+∆γ

γ

Rρ

Can perturb γ by ∆γ with |∆γ| < arcsin ρ
R and still correctly

separate the data.
Hence only need to store γ with accuracy ∆γ [44, 57].
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Experiments
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Datasets:
USPS (m = 500)
Wisconsin breast cancer (m = 200)
Abalone(m = 500)
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Formulation as an Optimization Problem

Hyperplane with maximum margin: minimize

‖w‖2

(recall: margin ∼ 1/‖w‖) subject to

yi · [〈w,xi〉 + b] ≥ 1 for i = 1 . . . m

(i.e. the training data are separated correctly).
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Lagrange Function (e.g., [5])

Introduce Lagrange multipliers αi ≥ 0 and a Lagrangian

L(w, b,α) =
1

2
‖w‖2 −

m∑
i=1

αi (yi · [〈w,xi〉 + b] − 1) .

L has to minimized w.r.t. the primal variables w and b and
maximized with respect to the dual variables αi

• if a constraint is violated, then yi · (〈w,xi〉 + b) − 1 < 0 −→
· αi will grow to increase L — how far?

·w, b want to decrease L; i.e. they have to change such that
the constraint is satisfied. If the problem is separable, this
ensures that αi <∞.

• similarly: if yi · (〈w,xi〉 + b) − 1 > 0, then αi = 0: otherwise,
L could be increased by decreasing αi (KKT conditions)
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Derivation of the Dual Problem

At the extremum, we have

∂

∂b
L(w, b,α) = 0,

∂

∂w
L(w, b,α) = 0,

i.e.
m∑
i=1

αiyi = 0

and

w =

m∑
i=1

αiyixi.

Substitute both into L to get the dual problem
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The Support Vector Expansion

w =

m∑
i=1

αiyixi

where for all i = 1, . . . ,m either

yi · [〈w,xi〉 + b] > 1 =⇒ αi = 0 −→ xi irrelevant
or
yi · [〈w,xi〉 + b] = 1 (on the margin) −→ xi “Support Vector”

The solution is determined by the examples on the margin.

Thus

f (x) = sgn (〈x,w〉 + b)

= sgn
(∑m

i=1
αiyi〈x,xi〉 + b

)
.
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A Mechanical Interpretation [10]

Assume that each SV xi exerts a perpendicular force of size αi
and sign yi on a solid plane sheet lying along the hyperplane.

Then the solution is mechanically stable:

m∑
i=1

αiyi = 0 implies that the forces sum to zero

w =

m∑
i=1

αiyixi implies that the torques sum to zero,

via ∑
i

xi × yiαi · w/‖w‖ = w × w/‖w‖ = 0.
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Dual Problem

Dual: maximize

W (α) =

m∑
i=1

αi −
1

2

m∑
i,j=1

αiαjyiyj
〈
xi,xj

〉
subject to

αi ≥ 0, i = 1, . . . ,m, and

m∑
i=1

αiyi = 0.

Both the final decision function and the function to be maximized
are expressed in dot products −→ can use a kernel to compute〈

xi,xj
〉

=
〈
Φ(xi),Φ(xj)

〉
= k(xi, xj).

B. Schölkopf, Erice, 31 October 2005



The SVM Architecture

Σ  f(x)= sgn  ( + b)

input vector x

support vectors
       x 1 

... x 4

comparison: k(x,x i), e.g.

classification

weights

k(x,x i)=exp(−||x−x i||
2 / c)

k(x,x i)=tanh(κ(x.x i)+θ)

k(x,x i)=(x.x i)
d

f(x)= sgn  ( Σ λi
.k(x,x i) + b)

λ1 λ2  λ3  λ4

k k k k
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Toy Example with Gaussian Kernel

k(x, x′) = exp
(
−‖x− x′‖2

)
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Nonseparable Problems [3, 14]

If yi · (〈w,xi〉 + b) ≥ 1 cannot be satisfied, then αi → ∞.

Modify the constraint to

yi · (〈w,xi〉 + b) ≥ 1 − ξi

with
ξi ≥ 0

(“soft margin”) and add

C ·
m∑
i=1

ξi

in the objective function.
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Soft Margin SVMs

C-SVM [14]: for C > 0, minimize

τ (w, ξ) =
1

2
‖w‖2 + C

m∑
i=1

ξi

subject to yi · (〈w,xi〉 + b) ≥ 1 − ξi, ξi ≥ 0 (margin 2/‖w‖)

ν-SVM [46]: for 0 ≤ ν < 1, minimize

τ (w, ξ, ρ) =
1

2
‖w‖2 − νρ +

1

m

∑
i

ξi

subject to yi · (〈w,xi〉 + b) ≥ ρ− ξi, ξi ≥ 0 (margin 2ρ/‖w‖)
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The ν-Property

SVs: αi > 0
“margin errors:” ξi > 0

KKT-Conditions =⇒
• All margin errors are SVs.

• Not all SVs need to be margin errors.

Those which are not lie exactly on the edge of the margin.

Proposition:
1. fraction of Margin Errors ≤ ν ≤ fraction of SVs.
2. asymptotically: ... = ν = ...
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Duals, Using Kernels

C-SVM dual: maximize

W (α) =
∑

i
αi −

1

2

∑
i,j
αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ C,
∑
i αiyi = 0.

ν-SVM dual: maximize

W (α) = −1

2

∑
ij
αiαjyiyjk(xi,xj)

subject to 0 ≤ αi ≤ 1
m,

∑
i αiyi = 0,

∑
i αi ≥ ν

In both cases: decision function :

f (x) = sgn
(∑m

i=1
αiyik(x,xi) + b

)
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The Representer Theorem

Theorem 1 Given: a p.d. kernel k on X × X , a training set
(x1, y1), . . . , (xm, ym) ∈ X×R, a strictly monotonic increasing
real-valued function Ω on [0,∞[, and an arbitrary cost function
c : (X × R

2)m → R ∪ {∞}
Any f ∈ H minimizing the regularized risk functional

c ((x1, y1, f (x1)), . . . , (xm, ym, f (xm))) + Ω (‖f‖) (1)

admits a representation of the form

f (.) =
∑m

i=1
αik(xi, .).
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Remarks

• significance: many learning algorithms have solutions that can
be expressed as expansions in terms of the training examples

• original form, with mean squared loss

c((x1, y1, f (x1)), . . . , (xm, ym, f (xm))) =
1

m

m∑
i=1

(yi − f (xi))
2,

and Ω(‖f‖) = λ‖f‖2 (λ > 0): [31]

• generalization to non-quadratic cost functions: [15]

• present form: [44]
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Proof

Decompose f ∈ H into a part in the span of the k(xi, .) and an
orthogonal one:

f =
∑
i

αik(xi, .) + f⊥,
where for all j

〈f⊥, k(xj, .)〉 = 0.

Application of f to an arbitrary training point xj yields

f (xj) =
〈
f, k(xj, .)

〉
=

〈∑
i

αik(xi, .) + f⊥, k(xj, .)

〉

=
∑
i

αi〈k(xi, .), k(xj, .)〉,

independent of f⊥.
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Proof: second part of (1)

Since f⊥ is orthogonal to
∑
i αik(xi, .), and Ω is strictly mono-

tonic, we get

Ω(‖f‖) = Ω
(
‖
∑

i
αik(xi, .) + f⊥‖

)
= Ω

(√
‖
∑

i
αik(xi, .)‖2 + ‖f⊥‖2

)

≥ Ω
(
‖
∑

i
αik(xi, .)‖

)
,

with equality occuring if and only if f⊥ = 0.
Hence, any minimizer must have f⊥ = 0. Consequently, any
solution takes the form

f =
∑

i
αik(xi, .).
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Application: Support Vector Classification

Here, yi ∈ {±1}. Use

c ((xi, yi, f (xi))i) =
1

λ

∑
i

max (0, 1 − yif (xi)) ,

and the regularizer Ω (‖f‖) = ‖f‖2.
λ→ 0 leads to the hard margin SVM
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Further Applications

Bayesian MAP Estimates. Identify (1) with the negative log
posterior (cf. Kimeldorf & Wahba, 1970, Poggio & Girosi, 1990),
i.e.

• exp(−c((xi, yi, f (xi))i)) — likelihood of the data

• exp(−Ω(‖f‖)) — prior over the set of functions; e.g., Ω(‖f‖) =
λ‖f‖2 — Gaussian process prior [63] with covariance function
k

• minimizer of (1) = MAP estimate

Kernel PCA (see below) can be shown to correspond to the case
of

c((xi, yi, f (xi))i=1,...,m) =

⎧⎨
⎩ 0 if 1

m

∑
i

(
f (xi) − 1

m

∑
j f (xj)

)2
= 1

∞ otherwise

with g an arbitrary strictly monotonically increasing function.



SVM Training

• naive approach: the complexity of maximizing

W (α) =
∑m

i=1
αi −

1

2

∑m

i,j=1
αiαjyiyjk(xi,xj)

scales with the third power of the training set size m

• only SVs are relevant −→ only compute (k(xi,xj))ij for SVs.
Extract them iteratively by cycling through the training set in
chunks [53].

• in fact, one can use chunks which do not even contain all SVs
[37]. Maximize over these sub-problems, using your favorite
optimizer.

• the extreme case: by making the sub-problems very small (just
two points), one can solve them analytically [39].

• http://www.kernel-machines.org/software.html
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MNIST Benchmark

handwritten character benchmark (60000 training & 10000 test
examples, 28 × 28)

5 0 4 1 9 2 1 3 1 4

3 5 3 6 1 7 2 8 6 9

4 0 9 1 1 2 4 3 2 7

3 8 6 9 0 5 6 0 7 6

1 8 7 9 3 9 8 5 9 3

3 0 7 4 9 8 0 9 4 1

4 4 6 0 4 5 6 1 0 0

1 7 1 6 3 0 2 1 1 7

9 0 2 6 7 8 3 9 0 4

6 7 4 6 8 0 7 8 3 1
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MNIST Error Rates

Classifier test error reference
linear classifier 8.4% [7]
3-nearest-neighbour 2.4% [7]
SVM 1.4% [10]
Tangent distance 1.1% [50]
LeNet4 1.1% [33]
Boosted LeNet4 0.7% [33]
Translation invariant SVM 0.56% [18]

Note: the SVM used a polynomial kernel of degree 9, corresponding to a feature
space of dimension ≈ 3.2 · 1020.

Other successful applications: e.g., [29, 27, 25, 11, 51, 8, 65, 21, 20, 13, 19, 38,
59, 64]
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Further Kernel Algorithms — Design Principles

1. “Kernel module”

• similarity measure k(x, x′), where x, x′ ∈ X
• data representation

(in associated feature space where k(x, x′) =
〈
Φ(x),Φ(x′)

〉
)

— thus can construct geometric algorithms

• function class (“representer theorem,” f (x) =
∑
i αik(x, xi))

2. “Learning module”

• classification

• quantile estimation / novelty detection

• feature extraction

• ...
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Kernel PCA [45]

R2

linear PCA

R2

H

Φ

kernel PCA

k

k(x,y) = (x.y)

k(x,y) = (x.y)d
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x xx
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Kernel PCA, II

x1, . . . , xm ∈ X , Φ : X → H, C =
1

m

m∑
j=1

Φ(xj)Φ(xj)
�

Eigenvalue problem

λV = CV =
1

m

m∑
j=1

〈
Φ(xj),V

〉
Φ(xj).

For λ �= 0, V ∈ span{Φ(x1), . . . ,Φ(xm)}, thus

V =

m∑
i=1

αiΦ(xi),

and the eigenvalue problem can be written as

λ 〈Φ(xn),V〉 = 〈Φ(xn), CV〉 for all n = 1, . . . ,m
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Kernel PCA in Dual Variables

In term of the m×m Gram matrix

Kij :=
〈
Φ(xi),Φ(xj)

〉
= k(xi, xj),

this leads to
mλKα = K2α

where α = (α1, . . . , αm)�.

Solve
mλα = Kα

−→ (λn,α
n)

〈Vn,Vn〉 = 1 ⇐⇒ λn 〈αn,αn〉 = 1

thus divide αn by
√
λn
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Feature extraction

Compute projections on the Eigenvectors

Vn =

m∑
i=1

αni Φ(xi)

in H:

for a test point x with image Φ(x) in H we get the features

〈Vn,Φ(x)〉 =

m∑
i=1

αni 〈Φ(xi),Φ(x)〉

=

m∑
i=1

αni k(xi, x)
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Toy Example with Gaussian Kernel

k(x, x′) = exp
(−‖x− x′‖2

)
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Denoising of USPS Digits

Gaussian noise ‘speckle’ noise
orig.

noisy
n = 1

P 4
C 16
A 64

256
n = 1

K 4
P 16
C 64
A 256

linear PCA
reconstruction

kernel PCA
reconstruction

Another application: face modeling [41].
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Natural Image KPCA Model

Training images of size 396×528. The 12×12 training patterns are
obtained by sampling 2,500 patches at random from each image.
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Super-Resolution (Kim, Franz, & Schölkopf, 2004)

a. original image of resolution
528 × 396

b. low resolution image (264 ×
198) stretched to the original
scale

c. bicubic interpolation d. supervised example-based
learning based on nearest neigh-
bor classifier

f. unsupervised KHA recon-
struction

g. enlarged portions of a-d, and f (from left to right)

Comparison between different super-resolution methods.

B. Schölkopf, Erice, 31 October 2005



Kernel Dependency Estimation [62]

Given two sets X and Y with kernels k and k′, and training data
(xi, yi).

Estimate a dependency w : H → H′

w(·) =
∑
ij

αijΦ
′(yj) 〈Φ(xi), ·〉 .

This can be evaluated in various ways, e.g., given an x, we can
compute the pre-image

y = argminY‖w(Φ(x)) − Φ′(y)‖.
A convenient way of learning the αij is to work in the kernel PCA
basis.
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Application to Image Completion

ORIG:

KDE:

k−NN:

Shown are all digits where at least one of the two algorithms makes
a mistake (73 mistakes for k-NN, 23 for KDE).

(from [62])
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Implicit Surface Modelling

using a modified one-class SVM (Schölkopf, Giesen, & Spalinger, 2005):

{x : f (x) = 0}

Next: powerpoint excursion
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Kernel Machines Research

• algorithms/tasks: KDE, feature selection (Weston et al., 2002), multi-label-problems

(Elisseeff & Weston, 2001), unlabelled data (Szummer & Jaakkola, 2002, Zhou et al.,

2004), ICA [23], canonical correlations (Bach & Jordan, 2002; Kuss, 2002)

• optimization and implementation: QP, SDP (Lanckriet et al., 2002), online ver-

sions, ...

• theory of empirical inference: sharper capacity measures and bounds (Bartlett, Bous-

quet, & Mendelson, 2002), generalized evaluation spaces (Mary & Canu, 2002), ...

• kernel design

– transformation invariances [12]

– kernels for discrete objects [24, 60, 34, 17, 56]

– kernels based on generative models [28, 48, 52]

– local kernels [e.g., 65]

– complex kernels from simple ones [24, 2], global kernels from local ones [32]

– functional calculus for kernel matrices [47]

– model selection, e.g., via alignment [16]

– kernels for dimensionality reduction [22]
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Conclusion

• crucial ingredients of SV algorithms: kernels that can be repre-
sented as dot products, and large margin regularizers

• kernels allow the formulation of a multitude of geometrical al-
gorithms (Parzen windows, SVMs, kernel PCA,...)

• the choice of a kernel corresponds to

– choosing a similarity measure for the data, or

– choosing a (linear) representation of the data, or

– choosing a hypothesis space for learning,

and should reflect prior knowledge about the problem at hand.

For further information, cf.
http://www.kernel-machines.org,
http://www.learning-with-kernels.org,
[9, 17, 49, 26, 44].
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