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Abstract

Large-scale logistic regression arises in many applications such as document classification
and natural language processing. In this paper, we apply a trust region Newton method
to maximize the log-likelihood of the logistic regression model. The proposed method uses
only approximate Newton steps in the beginning, but achieves fast convergence in the
end. Experiments show that it is faster than the commonly used quasi Newton approach
for logistic regression. We also extend the proposed method to large-scale L2-loss linear
support vector machines (SVM).

Keywords: logistic regression, newton method, trust region, conjugate gradient, support
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1. Introduction

The logistic regression model is useful for two-class classification. Given data x and weights
(w, b), it assumes the following probability model

P (y = ±1|x,w) =
1

1 + exp(−y(wTx + b))
,

where y is the class label. If training instances are xi, i = 1, . . . , l and labels are yi ∈ {1,−1},
one estimates (w, b) by minimizing the negative log-likelihood:

min
w,b

l∑
i=1

log(1 + e−yi(w
Txi+b)).

There are numerous applications of logistic regression. It can be extended to a multi-class
classification model, which is a special case of conditional random fields, and is also called
the maximum entropy model in the natural language processing community.
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To have a simpler derivation without considering the bias term b, one often augments
each instance with an additional dimension:

xTi ← [xTi , 1] wT ← [wT , b]. (1)

Moreover, to obtain good generalization abilities, one adds a regularization term wTw/2,
so in this paper we consider the following form of regularized logistic regression:

min
w

f(w) ≡ 1

2
wTw + C

l∑
i=1

log(1 + e−yiw
Txi), (2)

where C > 0 is a parameter decided by users so that the two terms in (2) are balanced.
One can easily check that (2) is twice continuously differentiable.

There are many methods for training logistic regression models. In fact, most uncon-
strained optimization techniques can be considered. Those which have been used in large-
scale scenarios are, for example, iterative scaling (Darroch and Ratcliff, 1972; Della Pietra
et al., 1997; Goodman, 2002; Jin et al., 2003), nonlinear conjugate gradient, quasi Newton
(in particular, limited memory BFGS) (Liu and Nocedal, 1989; Benson and Moré, 2001),
and truncated Newton (Komarek and Moore, 2005). All these optimization methods are
iterative procedures, which generate a sequence {wk}∞k=1 converging to the optimal solu-
tion of (2). One can distinguish them according to the following two extreme situations of
optimization methods:

Low cost per iteration; ←→ High cost per iteration;
slow convergence. fast convergence.

For instance, iterative scaling updates one component of w at a time, so the cost per
iteration is low but the number of iterations is high. In contrast, Newton method, which
is expensive at each iteration, has very fast convergence rates. Many have attempted to
compare these methods for logistic regression. Minka (2003) experiments with small data
sets, and Malouf (2002) has done an extensive comparison for large-scale sets. Currently,
most argue that the limited memory BFGS method is the most efficient and effective (e.g.,
Malouf, 2002; Sutton and McCallum, 2006) and references therein). In this article, we aim
at situations for which both l (number of instances) and n (number of features) are very
large. In addition, the data instances x1, . . . ,xl are sparse (i.e., many feature values are
zero). Many recent applications from document classification and computational linguistics
are of this type.

Truncated Newton methods have been an effective approach for large-scale uncon-
strained optimization, but their use for logistic regression has not been fully exploited.
Though Komarek and Moore (2005) have considered this type of methods, their implemen-
tation does not follow rigorous optimization derivations, and hence may not be guaranteed
to obtain the minimum of the negative log-likelihood. In Section 2, we discuss an efficient
and robust truncated Newton method for logistic regression. This approach, called trust
region Newton method, uses only approximate Newton steps in the beginning, but takes
full Newton directions in the end for fast convergence.

In Sections 3 and 4, we discuss some existing optimization methods for logistic regression
and conduct comparisons. As Newton method uses the exact Hessian (second derivative),
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it has quadratic convergence near the optimum. Results indicate that our proposed method
converges much faster than quasi-Newton methods, which use only an approximate Hessian.
Section 5 investigates a variant of our proposed method by using preconditioned conjugate
gradients in the trust region framework. In Section 6, we extend the proposed trust region
method to solve L2-loss support vector machines. Finally, Section 7 gives conclusions.

All sources used in this paper are available at

http://www.csie.ntu.edu.tw/~cjlin/liblinear.

A preliminary version of this work appears in a conference paper (Lin et al., 2007).

2. Trust Region Newton Methods

In this section, we briefly discuss Newton and truncated Newton methods. For large-scale
logistic regression, we then propose a trust region Newton method, which is a type of
truncated Newton approach.

2.1 Newton and Truncated Newton Methods

To discuss Newton methods, we need the gradient and Hessian of f(w):

∇f(w) = w + C
l∑

i=1

(σ(yiw
Txi)− 1)yixi, (3)

∇2f(w) = I + CXTDX, (4)

where I is the identity matrix,

σ(yiw
Txi) = (1 + e−yiw

Txi)−1.

D is a diagonal matrix with

Dii = σ(yiw
Txi)(1− σ(yiw

Txi)), and X =

xT1
...

xTl


is an l×n matrix. The Hessian matrix ∇2f(w) is positive definite, so (2) is strictly convex.
We can further prove the following theorem.

Theorem 1 (2) attains a unique global optimal solution.

The proof is in Appendix A.
Since ∇2f(wk) is invertible, the simplest Newton method updates w by the following

way
wk+1 = wk + sk, (5)

where k is the iteration index and sk, the Newton direction, is the solution of the following
linear system:

∇2f(wk)sk = −∇f(wk). (6)

However, there are two issues in using this update rule:
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1. The sequence {wk}may not converge to an optimal solution. In fact, even the function
value may not be guaranteed to decrease.

2. While we assume that the data matrix X is sparse, XTDX is much denser. The
Hessian matrix is then too large to be stored. Thus, solving the linear system (6) is
an issue that needs careful consideration.

Optimization researchers address the first issue by adjusting the length of the Newton
direction. Two techniques are often used: line search and trust region.

For the second issue, there are two major types of methods for solving linear systems:
direct methods (e.g., Gaussian elimination), and iterative methods (e.g., Jacobi and conju-
gate gradient). The main operation of certain iterative methods is the product between the
Hessian matrix and a vector s:

∇2f(w)s = (I + CXTDX)s

= s + C ·XT (D(Xs)). (7)

As we assume sparse X, (7) can be efficiently calculated without storing the Hessian ma-
trix ∇2f(wk). Therefore, for large logistic regression, iterative methods are more suitable
than direct methods, which require the whole Hessian matrix. Among iterative methods,
currently conjugate gradients are the most used ones in Newton methods. The optimiza-
tion procedure then has two layers of iterations: at each outer iteration an inner conjugate
gradient procedure finds the Newton direction. Unfortunately, conjugate gradient methods
may suffer from lengthy iterations in certain situations. To save time, one may use only an
“approximate” Newton direction in the early stages of the outer iterations. Such a technique
is called truncated Newton method (or inexact Newton method).

Komarek and Moore (2005) are among the first to apply truncated Newton methods for
logistic regression.1 They approximately solve (6) by conjugate gradient procedures and use
(5) to update wk. They terminate the conjugate gradient procedure if the relative difference
of log likelihoods between two consecutive conjugate gradient iterations is smaller than a
threshold. However, they do not provide a convergence proof. In fact, when we tried their
code, we found that ‖∇f(wk)‖ may not approach zero and hence {wk} may not converge
to an optimum.

Optimization researchers have well addressed the above two issues together. They devise
the procedure of outer iterations, and specify stopping conditions for the inner iterations.
The overall framework guarantees the convergence to the global minimum. The truncation
rule of the inner algorithm is important as one should stop after a sufficiently good direc-
tion has been found. A survey of truncated Newton methods is by Nash (2000). Some
comparisons between limited memory quasi Newton and truncated Newton are by Nocedal
and Nash (1991) and Zou et al. (1993).

2.2 A Trust Region Newton Method

We consider the trust region method (Lin and Moré, 1999), which is a truncated Newton
method to deal with general bound-constrained optimization problems (i.e., variables are

1. They minimize only the negative log likelihood without the regularization term wTw/2.
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in certain intervals). We simplify the setting to unconstrained situations, so the algorithm
is close to earlier work such as Bouaricha et al. (1997) and Steihaug (1983).

At each iteration of a trust region Newton method for minimizing f(w), we have an
iterate wk, a size ∆k of the trust region, and a quadratic model

qk(s) = ∇f(wk)T s +
1

2
sT∇2f(wk)s

as the approximation of the value f(wk+s)−f(wk). Next, we find a step sk to approximately
minimize qk(s) subject to the constraint ‖s‖ ≤ ∆k. We then update wk and ∆k by checking
the ratio

ρk =
f(wk + sk)− f(wk)

qk(sk)
(8)

of the actual reduction in the function to the predicted reduction in the quadratic model.
The direction is accepted if ρk is large enough:

wk+1 =

{
wk + sk if ρk > η0,

wk if ρk ≤ η0,
(9)

where η0 > 0 is a pre-specified value.
From Lin and Moré (1999), updating rules for ∆k depend on positive constants η1 and

η2 such that η1 < η2 < 1, while the rate at which ∆k is updated relies on positive constants
σ1, σ2, and σ3 such that σ1 < σ2 < 1 < σ3. The trust region bound ∆k is updated by the
rules

∆k+1 ∈ [σ1 min{‖sk‖,∆k}, σ2∆k] if ρk ≤ η1,
∆k+1 ∈ [σ1∆k, σ3∆k] if ρk ∈ (η1, η2),
∆k+1 ∈ [∆k, σ3∆k] if ρk ≥ η2.

(10)

Similar rules are used in most modern trust region methods. A description of our trust
region algorithm is given in Algorithm 1. The main difference between our algorithm and
those by Steihaug (1983) and Bouaricha et al. (1997) is on the rule (10) for updating ∆k.

The conjugate gradient method to approximately solve the trust region sub-problem
(11) is given in Algorithm 2. The main operation is the Hessian-vector product ∇2f(wk)di,
which is implemented using the idea in Eq. (7). Note that only one Hessian-vector product
is needed at each conjugate gradient iteration. Since

ri = −∇f(wk)−∇2f(wk)s̄i,

the stopping condition (12) is the same as

‖ − ∇f(wk)−∇2f(wk)s̄i‖ ≤ ξk‖∇f(wk)‖,

which implies that s̄i is an approximate solution of the linear system (6). However, Al-
gorithm 2 is different from standard conjugate gradient methods for linear systems as the
constraint ‖s‖ ≤ ∆ must be taken care of. It is known that (Steihaug, 1983, Theorem 2.1)
with s̄0 = 0, we have

‖s̄i‖ < ‖s̄i+1‖,∀i,
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Algorithm 1 A trust region algorithm for logistic regression

1. Given w0.

2. For k = 0, 1, . . . (outer iterations)

• If ∇f(wk) = 0, stop.

• Find an approximate solution sk of the trust region sub-problem

min
s

qk(s) subject to ‖s‖ ≤ ∆k. (11)

• Compute ρk via (8).

• Update wk to wk+1 according to (9).

• Obtain ∆k+1 according to (10).

Algorithm 2 Conjugate gradient procedure for approximately solving the trust region
sub-problem (11)

1. Given ξk < 1,∆k > 0. Let s̄0 = 0, r0 = −∇f(wk), and d0 = r0.

2. For i = 0, 1, . . . (inner iterations)

• If
‖ri‖ ≤ ξk‖∇f(wk)‖, (12)

then output sk = s̄i and stop.

• αi = ‖ri‖2/((di)T∇2f(wk)di).

• s̄i+1 = s̄i + αid
i.

• If ‖s̄i+1‖ ≥ ∆k, compute τ such that

‖s̄i + τdi‖ = ∆k, (13)

then output sk = s̄i + τdi and stop.

• ri+1 = ri − αi∇2f(wk)di.

• βi = ‖ri+1‖2/‖ri‖2.
• di+1 = ri+1 + βid

i.

so in a finite number of conjugate gradient iterations, either (12) is satisfied or s̄i+1 violates
the trust region constraint. In the latter situation, (13) finds a point on the trust region
boundary as

qk(s̄
i + τdi) < qk(s̄

i).

The whole procedure is a careful design to make sure that the approximate Newton direction
is good enough and the trust region method converges.
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Next, we discuss convergence properties of the trust region Newton method. Most results
can be traced back to Steihaug (1983). However, here we follow Lin and Moré (1999) as our
algorithmic settings are closer to it. For the sequence {wk} to have at least one limit point,2

since f(wk) is decreasing, it suffices to show that the level set {w | f(w) ≤ f(w0)} is closed
and bounded. This result has been explained in the proof of Theorem 1. To have this limit
point to be the minimum, Theorem 2.1 of Lin and Moré (1999) requires that ∇2f(wk) is
uniformly bounded. We have this property as ∇2f(w) is continuous in this bounded level
set.

Eq. (12) is a relative stopping condition in solving a linear system. The parameter ξk
effectively controls the efforts associated with the inner iterations. The following theorem
summarizes the convergence of Algorithm 1.

Theorem 2 The sequence {wk} generated by Algorithm 1 globally converges to the unique
minimum of (2). If ξk < 1, then the trust region method Q-linearly converges:

lim
k→∞

‖wk+1 −w∗‖
‖wk −w∗‖

< 1, (14)

where w∗ is the unique optimal solution of (2). If

ξk → 0 as k →∞,

then the limit in (14) becomes zero, so we have Q-superlinear convergence.

We do not provide a proof here as it follows from Theorem 5.4 of Lin and Moré (1999).
Since the Hessian matrix ∇2f(w) is continuously differentiable, ∇2f(w) is Lipschitz con-
tinuous around the optimal solution. Hence, as explained by Lin and Moré (1999),3 if
ξk ≤ κ0‖∇f(wk)‖ for a positive constant κ0, then at final iterations, our algorithm has
quadratic convergence:

lim
k→∞

‖wk+1 −w∗‖
‖wk −w∗‖2

< 1.

Regarding the computational complexity, the cost per iteration is

O(nnz) for 1 function and 0/1 gradient evaluations

+ O(nnz)× number of conjugate gradient iterations, (15)

where nnz is the number of nonzero elements in the sparse matrix X. Note that if wk is
not updated in (9), then the gradient is the same for the next iteration.

3. Related Methods and Implementation Issues

In this section, we discuss a general limited memory quasi Newton implementation (Liu and
Nocedal, 1989). Many consider it to be very efficient for training logistic regression. We
also discuss implementation issues of the proposed trust region Newton method.

2. That is, the sequence {wk} has at least one convergent sub-sequence.
3. See the explanation given in that paper after the proof of Theorem 5.4.
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Algorithm 3 Limited memory BFGS

1. Given w0, H0 and a small integer m.

2. For k = 0, 1, . . .

• If ∇f(wk) = 0, stop.

• Using m vectors from previous iterations to calculate Hk∇f(wk), where Hk is
an approximate inverse Hessian.

• Search αk so that
f(wk − αHk∇f(wk))

satisfies certain sufficient decrease conditions.

• Update Hk to Hk+1.

3.1 Limited Memory Quasi Newton Method

We briefly introduce the approach by Liu and Nocedal (1989). Quasi Newton methods use
certain techniques to obtain an approximate inverse Hessian Hk and can easily update it
to Hk+1. One of the most popular updates is BFGS. The approach by Liu and Nocedal
(1989) is almost the same as BFGS, but restricts the update to use only m vectors from the
previous iterations. The matrix Hk is not formed explicitly and there is an efficient way
to compute Hk∇f(wk). This property is useful for large logistic regression as we cannot
afford to store Hk. The procedure is sketched in Algorithm 3.

Regarding the convergence rate, Assumption 7.1 of Liu and Nocedal (1989) requires:

1. f(w) is twice continuously differentiable.

2. The level set {w | f(w) ≤ f(w0)} is bounded.

3. There are positive constants M1 and M2 such that

M1‖s‖2 ≤ sT∇2f(w)s ≤M2‖s‖2, ∀s.

The function we are minimizing satisfies the first condition. The second condition follows
from our proof of Theorem 1 (see Eq. 29). The third condition follows from choosing

M1 = 1 and M2 = 1 + C‖XT ‖‖X‖.

Then Algorithm 3 is R-linearly convergent. That is, there is a constant c < 1 such that

f(wk)− f(w∗) ≤ ck(f(w0)− f(w∗)), (16)

where w∗ is the unique optimal solution of (2). Note that (14) implies (16), so Algorithm 1
has a stronger convergence property than Algorithm 3. While truncated Newton methods
find an approximate direction, they still use the exact Hessian matrix. In contrast, limited
memory quasi Newton methods consider only approximate Hessian matrices, so we can
expect that it has slower convergence.
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Problem l # Positive # Negative n # nonzeros

a9a 32,561 7,841 24,720 123 451,592
real-sim 72,309 22,238 50,071 20,958 3,709,083
news20 19,996 9,999 9,997 1,355,191 9,097,916
yahoo-japan 176,203 15,937 160,266 832,026 23,506,415
rcv1 677,399 355,460 321,939 47,236 49,556,258
yahoo-korea 460,554 145,831 314,723 3,052,939 156,436,656

Table 1: Data statistics: l is the number of instances and n is the number of features. #
nonzeros indicates the number of nonzeros among l × n values.

The cost per iteration is

O(nnz) for function/gradient evaluations in line search

+ O(nm) for Hk∇f(wk) and updating Hk to Hk+1. (17)

As generally nm < nnz, function/gradient evaluations take most computational time. More-
over, compared to (15), the cost per iteration is less than that for our trust region method.
However, as we will show in experiments, LBFGS’ total training time is longer due to its
lengthy iterations.

In this paper, we use m = 5, which is the default choice in the LBFGS software (Liu and
Nocedal, 1989).

3.2 Implementation Issues of Trust Region Newton Method

We give details of parameters in the proposed Algorithms 1 and 2. All settings are almost
the same as the TRON software (Lin and Moré, 1999).

We set the initial ∆0 = ‖∇f(w0)‖ and take η0 = 10−4 in (9) to update wk. For changing
∆k to ∆k+1, we use

η1 = 0.25, η2 = 0.75,

σ1 = 0.25, σ2 = 0.5, σ3 = 4.0.

As (10) specifies only the interval in which ∆k+1 should lie, there are many possible choices
of the update rules. We use the same rules as given by Lin and Moré (1999). In the conjugate
gradient procedure, we use ξk = 0.1 in the stopping condition (12). One may wonder how
the above numbers are chosen. These choices are considered appropriate following the
research on trust region methods in the past several decades. It is unclear yet if they are
the best for logistic regression problems, but certainly we would like to try custom settings
first.

4. Experiments

In this section, we compare our approach with a quasi Newton implementation for logistic
regression. After describing data sets for experiments, we conduct detailed comparisons
and discuss results.
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4.1 Data Sets

We consider six data sets from various sources. Table 1 lists the numbers of instances
(# positive, # negative), features, and nonzero feature values. Details of data sets are
described below.

a9a: This set is compiled by Platt (1998) from the UCI “adult” data set (?). It is
available at http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a9a.

real-sim: This set is from the web site
http://people.cs.uchicago.edu/~vikass/datasets/lskm/svml/. It, originally com-
piled by Andrew McCallum, includes Usenet articles from four discussion groups, for sim-
ulated auto racing, simulated aviation, real autos, and real aviation.

news20: This is a collection of news documents. We use the data processed by Keerthi
and DeCoste (2005). They consider binary term frequencies and normalize each instance
to unit length. This set is available at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/news20.binary.bz2.

yahoo-japan: This set, obtained from Yahoo!, includes documents in hundreds of classes.
We consider the class with the largest number of instances as positive and all remaining
instances as negative. We use binary term frequencies and normalize each instance to unit
length.

rcv1: This set (Lewis et al., 2004) is an archive of manually categorized newswire stories
from Reuters Ltd. Each vector is a cosine normalization of a log transformed TF-IDF
(term frequency, inverse document frequency) feature vector. The news documents are in
a hierarchical structure of classes. We split the data to positive/negative by using the two
branches in the first layer of the hierarchy. Data which are multi-labeled (i.e., in both
branches) are not considered. The set used here can be found at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/rcv1_test.binary.bz2.

yahoo-korea: This set, from Yahoo!, includes documents in a hierarchy of classes. We
consider the largest branch from the root node (i.e., the branch including the largest number
of classes) as positive, and all others as negative.

Clearly, except a9a, all other sets are from document classification. We find that normal-
izations are usually needed so that the length of each instance is not too large. Otherwise,
when the number of features is large, wTxi may be huge and cause difficulties in solv-
ing optimization problems (For good performance also, past experiences show that such
normalizations are usually needed). After normalization, we include the bias term using
(1).

All data sets are quite balanced. It is known that unbalanced sets usually lead to
shorter training time. Therefore, problems used in this article are more challenging in
terms of training time.

4.2 Comparisons

We compare two logistic regression implementations:

• TRON: the trust region Newton method discussed in Section 2.2.

• LBFGS: the limited memory quasi Newton implementation (Liu and Nocedal, 1989).
See the discussion in Section 3.1. The source code is available online at

636

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/a9a
http://people.cs.uchicago.edu/~vikass/datasets/lskm/svml/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/news20.binary.bz2
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary/rcv1_test.binary.bz2


Trust Region Newton Method for Logistic Regression

(a) a9a (b) real-sim

(c) news20 (d) yahoo-japan

(e) rcv1 (f) yahoo-korea

Figure 1: A comparison between TRON (blue solid line) and LBFGS (red dotted line). The
y-axis shows the difference to the optimal function value. The x-axis (training time) is in
seconds. We use the training set from the first training/validation split of the CV procedure
and set C = 4.
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(a) a9a (b) real-sim

(c) news20 (d) yahoo-japan

(e) rcv1 (f) yahoo-korea

Figure 2: A comparison between TRON (blue solid line) and LBFGS (red dotted line). The
y-axis shows ‖∇f(w)‖∞ = maxj |∇f(w)j |. The x-axis (training time) is in seconds. We
use the training set from the first training/validation split of the CV procedure and set
C = 4.
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TRON LBFGS
C CV Time Time

0.25 84.69% 1 12
1 84.71% 2 24
4 84.72% 4 47

16 84.71% 7 92

(a) a9a

TRON LBFGS
CV Time Time

95.85% 4 17
96.97% 6 34
97.41% 10 52
97.51% 14 126

(b) real-sim

TRON LBFGS
CV Time Time

89.74% 24 78
93.36% 38 181
95.49% 59 331
96.30% 82 614

(c) news20

TRON LBFGS
C CV Time Time

0.25 91.91% 28 94
1 92.50% 42 185
4 92.81% 64 326

16 92.86% 113 534

(d) yahoo-japan

TRON LBFGS
CV Time Time

97.18% 39 106
97.56% 62 427
97.72% 94 615
97.69% 118 821

(e) rcv1

TRON LBFGS
CV Time Time

81.34% 221 1066
84.03% 385 2165
85.75% 773 3480
86.40% 1888 6329

(f) yahoo-korea

Table 2: The comparison between TRON and LBFGS. Here time (in seconds) is the total
training time in the CV procedure. As TRON and LBFGS minimize the same formulation
and their CV accuracy values are almost the same, we present only the result of TRON.
The number of CV folds is five for small problems, and is two for larger ones (yahoo-japan,
rcv1, yahoo-korea). Note that the CV values do not increase using C > 16.

http://www.ece.northwestern.edu/~nocedal/lbfgs.html.

We do not consider the code by Komarek and Moore (2005) because of two reasons. First, we
have mentioned its convergence problems in Section 2.1. Second, for sparse data, it handles
only problems with 0/1 feature values, but most our data have real-numbered features.

These methods are implemented in high-level languages such as C/C++ or FORTRAN.
For easier experiments, we use their Matlab interfaces. Experiments are conducted on an
Intel Core2 Quad (2.66GHz) computer with 8 GB RAM. All sources used for this comparison
can be found at

http://www.csie.ntu.edu.tw/~cjlin/liblinear.

We set the initial w0 = 0.
We conduct two types of experiments. For the first one, we simulate the practical use of

logistic regression by setting a stopping condition and checking the prediction ability. Most
unconstrained optimization software use gradient information to terminate the iterative
procedure, so we use

‖∇f(wk)‖∞ ≤ 10−3 (18)

as the stopping condition. We then report cross-validation (CV) accuracy. For the larger
sets (yahoo-japan, rcv1, and yahoo-korea), we use two-fold CV. For others, five-fold CV is
conducted. We do not consider other measurements such as AUC (Area Under Curve) or
F-measure as all problems are rather balanced, and CV accuracy is suitable. Moreover,
different values of the regularization parameter C may affect the performance as well as
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(a) a9a (b) real-sim

(c) news20 (d) yahoo-japan

(e) rcv1 (f) yahoo-korea

Figure 3: A comparison between TRON (blue solid line) and SVMlin (red dotted line) for
L2-SVM. The y-axis shows the difference to the optimal function value. The x-axis (training
time) is in seconds. We use the same training set as in Figure 1 and set C = 4.
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training time. So we try four different C values: 0.25, 1, 4, and 16. Table 2 presents
the result of comparisons. We show CV accuracy and the total training time in the CV
procedure.

On training time, TRON is better than LBFGS, so truncated Newton methods are effec-
tive for training logistic regression. One may wonder if any implementation-specific details
cause unfair timing comparisons. Indeed we have made the experimental environments as
close as possible. For the methods compared here, we store the sparse matrix X by the
same compressed row format. Section 4.3 discusses that different sparse formats may lead
to dissimilar computational time. For LBFGS, one main cost is on function/gradient eval-
uations, which are provided by users. We implement the same code in TRON and LBFGS
for function/gradient evaluations. Thus, our timing comparison is quite fair.

For C ≥ 16, the CV accuracy does not improve. One can clearly see that the training
time is higher as C increases. One reason is that the second term of (4) plays a more
important role and hence the Hessian matrix is more ill-conditioned. Another reason is
that (18) becomes a stricter condition. In (3), the second term of f(w) is proportional to
C. Hence, practically one may use a stopping condition relative to C.

For the second experiment, we check the convergence speed of both methods. Figure 1
presents the results of time versus the difference to the optimal function value. We use the
training set from the first training/validation split of the CV procedure and set C = 4. In
Figure 2, we check time against ‖∇f(w)‖∞. Both figures indicate that TRON more quickly
decreases the function as well as the gradient values than LBFGS. This result is consistent
with the faster theoretical convergence rate of TRON.

4.3 Row and Column Formats in Storing X

A sparse matrix can be represented by many ways. Two commonly used ones are “com-
pressed column” and “compressed row” formats (Duff et al., 1989). For example, if

X =

[
−10 0 −20 0
30 0 0 10

]
,

then its compressed column format is by three arrays:

X val = [−10, 30,−20, 10], X rowind = [1, 2, 1, 2], X colptr = [1, 3, 3, 4, 5],

where rowind means row indices and colptr means column pointers.4 Alternatively, com-
press row format has

X val = [−10,−20, 30, 10], X colind = [1, 3, 1, 4], X rowptr = [1, 3, 5].

There are two important properties: First, X’s column (row) format is XT ’s row (column)
format. Second, using the column (row) format for X leads to easy accesses of all values
of one column (row). For data classification, the column (row) format thus lets us easily
access any particular feature (any particular instance).

4. This way of using three arrays is common in FORTRAN programs, which did not support pointers. One
can implement this format using pointers, where each pointer associates with values and indices of a
row.
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Problem Row Column

a9a 7 7
real-sim 14 22
news20 82 55
yahoo-japan 113 127
rcv1 118 226
yahoo-korea 1888 2060

Table 3: Total training time (in seconds) in the CV procedure by storing X in compress
row and column formats. We use C = 16 and ε = 0.001.

The main conjugate gradient operation (7) involves two matrix-vector products—one
is with XT , and the other is with X. In using the column format, there are ways so that
for both operations, sequentially X’s columns are accessed. Similarly, if using the row
format, we only need to access X’s rows. Thus, one may think that using the two (row and
column) sparse formats does not cause many differences. Table 3 presents a comparison.
Surprisingly, for some problems the difference is huge. One possible reason is the different
number of nonzero entries per column and per row in X. During the matrix-vector product,
as a column (or a row) is used at a time, its elements should be put in the higher level of the
computer memory hierarchy. If the number of nonzeros in a column is significantly larger
than those in a row, very likely a column cannot be fit into the same memory level as that
for a row. We think that this situation occurs for rcv1, for which the number of instances
is significantly larger than the number of features.

Of course the practical behavior depends on the computer architectures as well as how
nonzero elements are distributed across rows and columns. We do not intend to fully
address this issue here, but would like to point out the importance of implementation
details in comparing learning algorithms. In Table 2, both methods are implemented using
the row format. Without being careful on such details, very easily we may get misleading
conclusions.

5. Preconditioned Conjugate Gradient Methods

To reduce the number of conjugate gradient iterations, in the truncated Newton method
one often uses preconditioned conjugate gradient procedures. Instead of solving the Newton
linear system (6), we consider a preconditioner which approximately factorizes the Hessian
matrix

∇2f(wk) ≈ PP T (19)

and then solve a new linear system

(P−1∇2f(wk)P−T )ŝ = −P−1∇f(wk),

where ŝ = P T s. If the approximate factorization (19) is good enough, P−1∇2f(wk)P−T is
close to the identity and less conjugate gradient iterations are needed. However, as we need
extra efforts to find P and the cost per conjugate iteration is higher, a smaller number of
conjugate gradient iterations may not lead to shorter training time. Thus, finding suitable
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Algorithm 4 Preconditioned conjugate gradient procedure for approximately solving the
trust region sub-problem (21)

1. Given ξk < 1,∆k > 0. Let ŝ0 = 0, r0 = −ĝ, and d0 = r0.

2. For i = 0, 1, . . . (inner iterations)

• If
‖ri‖ ≤ ξk‖ĝ‖,

then output sk = P−T ŝi and stop.

• αi = ‖ri‖2/((di)T Ĥdi).

• ŝi+1 = ŝi + αid
i.

• If ‖ŝi+1‖ ≥ ∆k, compute τ such that

‖ŝi + τdi‖ = ∆k,

then output sk = P−T (ŝi + τdi) and stop.

• ri+1 = ri − αiĤdi.

• βi = ‖ri+1‖2/‖ri‖2.
• di+1 = ri+1 + βid

i.

preconditioners is usually difficult. Popular preconditioners include, for example, diagonal
matrix of the Hessian and incomplete Cholesky factorization.

Our situation differs from other unconstrained optimization applications in two aspects.
First, lengthy conjugate gradient iterations often occur at final outer steps, but for machine
learning applications the algorithm may stop before reaching such a stage. Thus we may
not benefit from using preconditioners. Second, preconditioners are more easily obtained by
assuming that the whole Hessian matrix∇2f(wk) is available. As we never multiply XTDX
out, ∇2f(wk) is not stored and the selection of preconditioners may be more restricted. In
this section, we conduct experiments by using the simple diagonal preconditioner

P = P T =
√

Diag(∇2f(wk)).

Since

∇2f(wk)ii = 1 + C

l∑
j=1

X2
jiDjj ,

one goes through all X’s nonzero elements once for finding diagonal elements. The cost of
obtaining the preconditioner is thus no more than that of one conjugate gradient iteration.

The trust region sub-problem needs to be adjusted. Here we follow the derivation of Lin
and Moré (1999) by considering a scaled version

min
s

qk(s) subject to ‖P T s‖ ≤ ∆k. (20)
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Problem CG PCG

a9a 567 263
real-sim 104 160
news20 71 155
citeseer 113 115
yahoo-japan 278 326
rcv1 225 280
yahoo-korea 779 736

Table 4: Average number of conjugate gradient iterations per fold in the CV procedure.
CG: without preconditioning. PCG: using diagonal preconditioning. We use C = 16 and
the stopping condition ‖∇f(wk)‖∞ ≤ 0.001.

With ŝ = P T s, we transform (20) to

min
ŝ

q̂k(ŝ) subject to ‖ŝ‖ ≤ ∆k, (21)

where

q̂k(ŝ) = ĝT ŝ +
1

2
ŝT Ĥ ŝ,

and
ĝ = P−1∇f(wk), Ĥ = P−1∇2f(wk)P−T .

Eq. (21) is in the same form as (11), the sub-problem without using preconditioners, so the
procedure to approximately solve (21) is almost the same as Algorithm 2. We give details
in Algorithm 4. Note that in practical implementations we calculate Ĥdi by a way similar
to (7)

P−1(P−Tdi + C(XT (D(X(P−Tdi))))).

In Table 4, we present the average number of conjugate gradient iterations per fold in the CV
procedure. The approach of using diagonal preconditioning reduces the number of iterations
for only two problems. The number is increased for all other data sets. This experiment
indicates the difficulty of doing preconditioning. Identifying effective preconditioners is thus
a challenging future research issue.

6. Trust Region Method for L2-SVM

The second term in (2) can be considered as a loss function, so regularized logistic regression
is related to other learning approaches such as Support Vector Machines (SVM) (Boser et al.,
1992). L1-SVM solves the following optimization problem:

min
w

f1(w) ≡ 1

2
wTw + C

l∑
i=1

max
(
0, 1− yiwTxi

)
,

while L2-SVM solves

min
w

f2(w) ≡ 1

2
wTw + C

l∑
i=1

(
max(0, 1− yiwTxi)

)2
. (22)
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SVM is often used with a nonlinear kernel, where data xi are mapped to a high dimensional
space. However, for document classification, past experiments show that with/without
nonlinear mapping gives similar performances. For the case of no nonlinear mapping, we
have the possibility of directly solving bigger optimization problems. We refer to such cases
as linear SVM, and considerable efforts have been made on its fast training (e.g., Kao et al.,
2004; Keerthi and DeCoste, 2005; Joachims, 2006; Shalev-Shwartz et al., 2007; Smola et al.,
2008). L1-SVM is not differentiable, so our method cannot be applied. For L2-SVM, the
training objection function (22) is differentiable but not twice differentiable (Mangasarian,
2002). In this section, we extend our trust region method for L2-SVM. We then compare
it with an earlier Newton method for L2-SVM (Keerthi and DeCoste, 2005).

6.1 Trust Region Method

Let f2(w) be the L2-SVM function. It is strictly convex, so a proof similar to Theorem 1
shows that a unique global minimum exists. From Mangasarian (2002), f2(w) is continu-
ously differentiable with the gradient

∇f2(w) = (I + 2CXT
I,:XI,:)w − 2CXT

I,:yI ,

where
I = {i | 1− yiwTxi > 0} (23)

is an index set depending on w and XI,: includes X’s rows corresponding to the set I.
Unfortunately, L2-SVM is not twice differentiable, so one cannot use Newton directions.
However, as shown by Mangasarian (2002), this function is almost twice differentiable. The
gradient ∇f2(w) is Lipschitz continuous, so one can define the generalized Hessian matrix

B(w) = I + 2CXTDX,

where

Dii =


1 if 1− yiwTxi > 0,

any element in [0, 1] if 1− yiwTxi = 0,

0 if 1− yiwTxi < 0.

Then the trust region method (Lin and Moré, 1999) can be applied by replacing ∇2f(w)
in Section 2.2 with B(w). In other words, we use the generalized Hessian matrix B(w) to
obtain Newton-like directions. As B(w) is uniformly bounded:

1 ≤ ‖B(w)‖ ≤ 1 + 2C‖XT ‖‖X‖, ∀w,

Theorem 2.1 of Lin and Moré (1999) implies the global convergence. However, we cannot
apply Theorem 5.4 of Lin and Moré (1999) to have quadratic convergence. This result
requires the twice continuous differentiability.

For experiments here, we set Dii = 0 if 1− yiwTxi = 0. The Hessian-vector product in
the conjugate gradient procedure is then

B(w)s = s + 2C ·XT
I,:(DI,I(XI,:s)). (24)
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Algorithm 5 Modified Newton Method for L2-SVM

1. Given w0.

2. For k = 0, 1, . . .

• If ∇f(wk) = 0, stop.

• Set up (26) using
Ik = {i | 1− yi(wk)Txi > 0}.

Solve (26) by the conjugate gradient procedure and obtain w̄k.

• Let sk = w̄k −wk.

Find
αk = arg min

α≥0
f(wk + αsk),

and set wk+1 = wk + αks
k.

6.2 Modified Newton Method for L2-SVM

The method by Keerthi and DeCoste (2005) is currently one of the most efficient methods
to train large-scale linear L2-SVM. Its key idea is that for any given index set I ⊂ {1, . . . , l},
if the optimal solution w∗ of the following problem

min
w

1

2
wTw + C

∑
i∈I

(1− yiwTxi)
2 (25)

satisfies

1− yi(w∗)Txi

{
> 0 if i ∈ I,
≤ 0 if i /∈ I,

then w∗ is an optimal solution of the L2-SVM problem (22). Once I is fixed, (25) is a
simple regularized least square problem and can be solved by the following linear system:

(I + 2CXT
I,:XI,:)w = 2CXT

I,:yI . (26)

One then guesses this set I by (23) and solves (26). The matrix in (26) is a generalized
Hessian at w, so (26) intends to obtain a Newton-like direction. Keerthi and DeCoste
(2005) use conjugate gradient methods to solve (26), and the procedure is described in
Algorithm 5. They prove that Algorithm 5 converges to the optimal solution of (22) in a
finite number of iterations. This convergence result assumes that at each iteration, (26) is
exactly solved. However, they use a relative stopping condition in practical implementations,
so the convergence remains an issue. In contrast, the convergence of our trust region method
holds when the conjugate gradient procedure only approximately minimizes the trust-region
sub-problem.

6.3 Comparisons

We compare our proposed trust region implementation (TRON) in Section 6.1 with SVMlin
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http://people.cs.uchicago.edu/~vikass/svmlin.html,

an implementation of the method by Keerthi and DeCoste (2005). To solve (26), SVMlin
considers a relative stopping condition for the conjugate gradient procedure. Following
their convergence result, we modify SVMlin to quite accurately solve the linear system (26):
Recall in Algorithm 5 that we sequentially obtain the following items:

wk → Ik → w̄k.

We then use
‖(I + 2CXT

Ik,:
XIk,:)w̄

k − 2CXT
Ik,:

yIk‖∞ ≤ 10−3

as the stopping condition of the conjugate gradient procedure in SVMlin.
Figure 3 presents the result of time versus the difference to the optimal function value.

Both approaches spend most of their time on the operation (24) in the conjugate gradient
procedure. Clearly, TRON more quickly reduces the function value. SVMlin is slower because
it accurately solves (26) at early iterations. Hence, many conjugate gradient iterations are
wasted. In contrast, trust region methods are effective on using only approximate directions
in the early stage of the procedure.

7. Discussion and Conclusions

As logistic regression is a special case of maximum entropy models and conditional random
fields, it is possible to extend the proposed approach for them. The main challenge is to
derive the Hessian matrix and efficiently calculate the Hessian-vector product. This topic
deserves a thorough investigation in the future.

One may use a different regularized term for logistic regression. For example, the two-
norm ‖w‖2/2 could be replaced by a one-norm term ‖w‖1. Then (2) becomes

min
w

‖w‖1 + C

l∑
i=1

log(1 + e−yiw
Txi). (27)

This formula has been used for some applications. See (Balakrishnan and Madigan, 2005)
and Koh et al. (2007) and references therein. Unfortunately, (27) is not differentiable
on w. We can transform it to a twice-differentiable bound-constrained problem by using
w ≡ w+ −w−:

min
w+,w−

n∑
j=1

w+
j +

n∑
j=1

w−j + C

l∑
i=1

log(1 + e−yi(w
+−w−)Txi)

subject to w+
j ≥ 0, w−j ≥ 0, j = 1, . . . , n. (28)

As the truncated Newton method by Lin and Moré (1999) exactly targets at such bound-
constrained problems, we can thus extend the proposed approach for (28). A comparison to
investigate if our method is better than existing ones is an interesting direction for future
work.
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In summary, we have shown that a trust region Newton method is effective for training
large-scale logistic regression problems as well as L2-SVM. The method has nice optimiza-
tion properties following past developments for large-scale unconstrained optimization. It is
interesting that we do not need many special settings for logistic regression; a rather direct
use of modern trust region techniques already yields excellent performances. From this
situation, we feel that many useful optimization techniques have not been fully exploited
for machine learning applications.
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Appendix A. Proof of Theorem 1

Since f(w) is strictly convex, a minimum attained is unique and global. The remaining
issue is to check if a minimum exists (as strictly convex functions like ex do not attain a
minimum). It suffices to prove that the level set is bounded:

{w | f(w) ≤ f(w0)}, (29)

where w0 is any vector. If this property is wrong, there is a sequence {wk} in the set (29)
satisfying ‖wk‖ → ∞. However,

f(wk) ≥ 1

2
‖wk‖2 →∞

contradicts the fact that f(wk) ≤ f(w0), ∀k.
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