19

algorithms that we’ll see later in this class will also be amenable to this
method, which has come to be known as the “kernel trick.”

8 Regularization and the non-separable case

The derivation of the SVM as presented so far assumed that the data is
linearly separable. While mapping data to a high dimensional feature space
via ¢ does generally increase the likelihood that the data is separable. we
can’t guarantee that it always will be so. Also. in some cases it is not clear
that finding a separating hyperplane is exactly what we'd want to do, since
that might be susceptible to ontliers. For instance, the left figure below
shows an optimal margin classifier, and when a single outlier is added in the
upper-left region (right figure), it causes the decision boundary to make a
dramatic swing, and the resulting classifier has a much smaller margin.

. x
% x x
‘\\- %
. _\\x x 3 =
» x
0 N x
0 o \
o .
o o
[+]
(8] (4] \ G
- -

To make the algorithm work for non-linearly separable datasets as well
as be less sensitive to outliers, we reformulate our optimization (using £,
regularization) as follows:

m

1
min, b 5““’“2 +C Z S
i=1

st y(')('u,',rx(') + b) 2 1-—- 6“ g = l1 veny B
20, i=1,...,m.

Thus, examples are now permitted to have (functional) margin less than 1,
and if an example whose functional margin is 1 — &, we would pay a cost of
the objective function being increased by C'§;. The parameter ¢ controls the
relative weighting between the twin goals of making the [lw||? large (which
we saw earlier makes the margin small) and of ensuring that most examples
have functional margin at least 1.

20

As before, we can form the Lagrangian:

m m m

L(w,b,§ ;1) = .l,"'T"" +CY &= a [w+b) -14&] - ri&.

i=1 i=1 =1

Here, the o;’s and r;’s are our Lagrange multipliers (constrained to be >).
We won't go through the derivation of the dual again in detail, but after
setting the derivatives with respect to w and b to zero as before, substituting
them back in, and simplifying, we obtain the following dual form of the
problem:

m m
: 1 ; ;

max, W(a)= E e E vy aa(zV, z)
T | i,)=1

st. 0<o<C, i=1,...,m
m
> ay =0,
=]

As before, we also have that w can be expressed in terms of the a,'s
as given in Equation (9), so that after solving the dual problem. we can
continue to use Equation (13) to make our predictions. Note that, somewhat
surprisingly, in adding ¢, regularization, the only change to the dual problem
is that what was originally a constraint that 0 < a; has now become 0 <
a;, < C'. The caleulation for b* also has to be modified (Equation 11 is no
longer valid): see the comments in the next section/Platt’s paper.

Also, the KKT dual-complementarity conditions (which in the next sec-
tion will be useful for testing for the convergence of the SMO algorithm)
are;

ai=0 = yOw'z" +b)>1 (14)
a=C = ywzW+b) <1 (15)
0<a; <C = yNw'z®+b)=1. (16)

Now, all that remains is to give an algorithm for actually solving the dual
problem, which we will do in the next section.

9 The SMO algorithm

The SMO (sequential minimal optimization) algorithm, due to John Platt,
gives an efficient way of solving the dual problem arising from the derivation

of the SVM. Partly to motivate the SMO algorithm, and partly because it’s
interesting in its own right, lets first take another digression to talk about
the coordinate ascent algorithm.

9.1 Coordinate ascent

Consider trying to solve the unconstrained optimization problem

max W(ay, as, ..., a,,).
O

Here, we think of W as just some function of the parameters o;'s, and for now
ignore any relationship between this problem and SVMs. We've already seen
two optimization algorithms, gradient ascent and Newton's method. The
new algorithm we're going to consider here is called coordinate ascent:

Loop until convergence: {
Fori=1,... m, {

a; = argmaxg, W(ay,..., a; 1y Oy Qip1y - - -).

}

Thus, in the innermost loop of this algorithm, we will hold all the vari-
ables except for some o, fixed, and reoptimize W with respect to just the
parameter a,. In the version of this method presented here, the inner-loop
reoptimizes the variables in order 1,02, .., Oy, (0, O3, ... (A more sophis-
ticated version might choose other orderings; for instance, we may choose
the next variable to update according to which one we expect to allow us to
make the largest increase in Wia).)

When the function W happens to be of such a form that the “arg max”
in the inner loop can be performed efficiently, then coordinate ascent can be
a fairly efficient algorithm. Here's a picture of coordinate ascent in action:

22

25 r ' -
2
16
1 - =
| N
o8 v - J |
b Rrer oy /
& / /
o / e / /
{ ARV
o8 | - /
\
- ~
5 ’
2 4
A
\ . . \ ‘ ¢
-2 . 1 -0 0 0% 1 15 2 28

The ellipses in the figure are the contours of a quadratic function that
we want to optimize. Coordinate ascent was initialized at (2, —2), and also
plotted in the figure is the path that it took on its way to the global maximum.
Notice that on each step, coordinate ascent takes a step that'’s parallel to one
of the axes, since only one variable is being optimized at a time.

9.2 SMO

We close off the discussion of SVMs by sketching the derivation of the SMO
algorithm. Some details will be left to the homework. and for others you
may refer to the paper excerpt handed out in class.

Here's the (dual) optimization problem that we want to solve:

m "

1 g ’
max, W(a) = Zn, 20 E vy asa; (=0, 200, (17)
i=1 ig=1

8t. VS oy<C, i=1...m (18)
Y a0 (19)

i=1
Lets say we have set of o;'s that satisfy the constraints (18-19). Now,
suppose we want to hold a,, a,, fixed, and take a coordinate ascent step

and reoptimize the objective with respect to ;. Can we make any progress’
The answer is no, because the constraint (19) ensures that

m
('Iy“) g Za.y(i)'
i=2

23

Or, by multiplying both sides by y'"), we equivalently have

m
a =~y Y "ay®.
=2

(This step used the fact that ¥y € {-1,1), and hence (¥™)2 = 1.) Hence.
oy is exactly determined by the other a,’s, and if we were to hold as. . . . Qyn
fixed, then we can’t make any change to a, without violating the con-
straint (19) in the optimization problem.

Thus, if we want to update some subject of the a;’s, we must update at
least two of them simultancously in order to keep satisfying the constraints.
This motivates the SMO algorithm, which simply does the following:

Repeat till convergence {

L. Select some pair a; and @; to update next (using a heuristic that
tries to pick the two that will allow us to make the biggest progress
towards the global maximum),

2. Reoptimize W(a) with respect to a; and a;, while holding all the
other ap’s (k # 1, j) fixed.

}

To test for convergence of this algorithm, we can check whether the KKT
conditions (Equations 14-16) are satisfied to within some tol. Here, tol is
the convergence tolerance parameter, and is typically set to around 0.01 to
0.001. (See the paper and pseudocode for details.)

The key reason that SMO is an efficient algorithm is that the update to
@, a; can be computed very efficiently. Lets now briefly sketch the main
ideas for deriving the efficient update,

Lets say we currently have some setting of the a,’s that satisfv the con-
straints (18-19), and suppose we've decided to hold ag,...,q,, fixed, and
want to reoptimize W(ay, ay, .. <30) with respect to a; and ay (subject to
the constraints). From (19), we require that

m
oy + ay® = — Z"‘ym.
i=3

Since the right hand side is fixed (as we've fixed ay, .. -y,), we can just let
it be denoted by some constant &

any™ + ay® = ¢. (20)

We can thus picture the constraints on a,; and ay as follows:

24

4
C . i
e =N R s 45@)"2{
\\& "
5\ ' .)'- L
LUW = o fe ’

From the constraints (18), we know that a, and a, must lie within the box
0, C]x [0, C] shown. Also plotted is the line ayy™" + ay® = ¢, on which we
know a; and a, must lie. Note also that, from these constraints, we know
L < a; < H; otherwise, (a;,as) can’t simultaneously satisfy both the box
and the straight line constraint. In this example, L = 0. But depending on
what the line a,y'" + ay™® = ¢ looks like, this won't always necessarily be
the case; but more generally, there will be some lower-bound L and some
upper-bound H on the permissable values for a; that will ensure that a,, s
lie within the box [0.C] x [0,C).
Using Equation (20), we can also write a; as a function of a,:

ay = (¢ — agy®)y".

(Check this derivation yourself; we again used the fact that 3" ¢ {-1,1} so
that (y'")* = 1.) Hence, the objective W(a) can be written

W(ay, az,...,an) = W((¢ - ngy‘z))y“).ng,....a,,,).

Treating ag, ..., oy, as constants, you should be able to verify that this is
Just some quadratic function in as. Le., this can also be expressed in the
form aa3 + bay + ¢ for some appropriate a, b, and ¢. If we ignore the “box”
constraints (18) (or, equivalently, that L < a, < H), then we can easily
maximize this quadratic function by setting its derivative to zero and solving.
We'll let aj " jonote the resulting value of az. You should also be
able to convince yourself that if we had instead wanted to maximize W with
respect to az but subject to the box constraint, then we can find the resulting
value optimal simply by taking a3“““"“" and “clipping” it to lie in the

[L, H] interval, to get

H if a.;rw.uudlpprd > H
u;rw St a;rm.uudnpprd if L S a;vu:.um‘hm:rd < H
L | et

Finally, having found the o™, we can use Equation (20) to go back and find
the optimal value of o,

There're a couple more details that are quite easy but that we'll leave you
to read about yourself in Platt’s paper: One is the choice of the heuristics
used to select the next a,, a; to update; the other is how to update b as the
SMO algorithm is run.

3 The need for kernels example

polynomial kernel : toy example
'S ' ‘ <
}9 x

| axZy L'\{Z £
t | .' o \ ! _e“{.P“ a)fz._l (0124(_' =0

use the map x=(zy,x2) — ®(x) = (23,23, V2x,2,)
ellipse from 2D-input space becomes hyperplane into 3D-feature space

note Cy(x) = (27,3, 2122, T2x,) maps data in a 4D-feature space but it generates the same kernel
k(x,y) = (®(x), B(y)) = (Ca(x), Ca(y)) = 23y} + x3y3 + 20 22y

feature space : example

input space : x = (ry,.02) (2 attributes)

feature space : ®(x) = (2}, 23, V22, V222, V32,12, 1) (6 attributes) 0
V=X
£ o5 1 . - / -
\\ ' . &] + -
| ' ”~
\ ’] + S = -
\\ + |] | -7
/ |
\ / o ~ —
\
T + /, o
N | 7 P ” -
\+ - >) % >
1 S | —-_ 2
- | ~&

data similarities & dot, product
¢ measurement of data similarities : a fundamental problem in ML (\J S '\.‘(\f o © Q
e reflects a priori knowledge of the problem /data

e dot product : a natural measure for similarity GO‘VY, 4{"- Th ('u ™\
x-y)=3zi-w

e dot product amounts to being able to carry all geometric constructions formulated in terms of angles,
lengths and distances

cos(x,y) = y&it Ixll = /&%)

4 Data similarity
feature space

e peneral measure for similarity
k: X x X — R, symetric k(x,y) = k(y,x)

® symmetry is too general, we want something that feels like dot product
3P : X — H mapping function
kx,y) = ®(x) - d(y)
where H=feature space (Hilbert space, supports dot product)

sion using the features r, 2% and z* (say) to obtain a cubic function. To
distingnish between these two sets of variables, we'll call the “original™ input
value the input attributes of a problem (in this case, z. the living area).
When that is mapped to some new set of quantities that are then passed to
the learning algorithm, we'll call those new quantities the input features.
(Unfortunately, different authors use different terms to describe these two
things. but we'll try to use this terminology consistently in these notes.) We
will also let ¢ denote the feature mapping, which maps from the attributes
to the features. For instance, in our example, we had

T
#(x) = | «*
o3

Rather than applying SVMs using the original input attributes z, we may
instead want to learn using some features ¢(x). To do so, we simply need to
go over our previous algorithm, and replace r everywhere in it with o(r).

Since the algorithm can be written entirely in terms of the inner prod-
ucts (r, z), this means that we would replace all those inner products with
(olx).d(2)). Specificically, given a feature mapping ¢, we define the corre-
sponding Kernel to be

K(x,z) = ¢(z)"¢(z).

Then, everywhere we previously had (z, z) in our algorithm, we could simply
replace it with K(x, 2), and our algorithim would now be learning using the
features o.

Now, given ¢, we could easily compute K (x, z) by finding ¢(x) and o(z)
and taking their inner product. But what's more interesting is that often,
K(x,z) may be very inexpensive to calculate, even though o(r) itself may
be very expensive to caleulate (perhaps because it is an extremely high di-
mensional vector). In such settings. by using in our algorithm an efficient
way to calculate K(x. z), we can get SVMs to learn in the high dimensional
feature space space given by ¢, but without ever having to explicitly find or
represent vectors o(x).

Lets see an example. Suppose x, z € RB”, and consider

We can also write this as

K(z,z) = (ix.-z,—) (ir,«z,)
=1 J)=1

n n

E E Trizizy

i=1 j=1

Z (III))(zn:J)

ii=1

Thus, we see that K(x, 2) = @(x)T¢(z), where the feature mapping ¢ is given
(shown here for the case of n = 3) by

I ary
I\Ta
I Ty
Loy
O(x) = | x22
IaTy
T3,
L3Iz
L3y

Note that whereas calculating the high-dimensional o(x) requires O(n?) time,
finding K'(z, z) takes only O(n) time linear in the dimension of the input
attributes.

For a related kernel, also consider

K(z,z) = (z"z+¢)?
= Y (@) + 3 (V2er)(Vaez) + .
tg=1 i=]

(Check this yourself.) This corresponds to the feature mapping (again shown

16

for n = 3)

xIrr,
ITa
I Ty
L2y
I2X2
TaTy
@) = I3y s
L3T2

I3y

\/2_(‘11
\/2'_01‘2
V2cr;

¢

and the parameter ¢ controls the relative weighting between the x; (first
order) and the z,x; (second order) terms.

More broadly, the kernel K(r, z) = (zTz2 4+ c)¢ corresponds to a feature
mapping to an (") feature space, corresponding of all monomials of the
form x, x,;, <. &y, that are up to order d. However, despite working in this
O(n")-dimensional space, computing K(x, z) still takes only O(n) time, and
hence we never need to explicitly represent feature vectors in this very high
dimensional feature space.

Now, lets talk about a slightly different view of kernels. Intuitively, (and
there are things wrong with this intuition, but nevermind), if o(z) and ¢(z)
are close together, then we might expect K(r, z) = #(z)Té(2) to be large.
Conversely, if ¢(x) and @(z) are far apart—say nearly orthogonal to each
other—then K (z,2) = &(x)"¢(z) will be small. So, we can think of K(zr, z)
as some measurement of how similar are ¢(x) and &(z), or of how similar are
r and z.

Given this intuition, suppose that for some learning problem that you're
working on, you've come up with some function K(z,z) that you think might
be a reasonable measure of how similar x and z are. For instance, perhaps

vou chose
; llz — 2|)?
K(z,2) = e —t— L}
(z, 2) (xp(552

This is a resonable measure of z and z's similarity, and is close to 1 when
x and z are close, and near 0 when z and > are far apart. Can we use this
definition of K as the kernel in an SVM? In this particular example. the
answer is yes. (This kernel is called the Gaussian kernel, and corresponds

5 Kernels. Properties. Mercer Theorem

kernels
P:X-H Lk:XxX—-R

kix.y) = k(y.x)
k(x.y) = ®(x) - ®(y)

H= feature space. = map(feature) function

e for which & there exits ¢ ?

e given £, if @ exists, it may be not unique

kernel characterization (waeccec 1)

data dependent - X finite

theorem if the Gram matrix Ky = k(x;.x;) is positive definite then
k is a dot product : 3® such that k(x,y) = P(x)-Py)

proof K positive definite = K = SDS” (diagonalization)
where S is orthogonal and D is diagonal with non-negative entries
then k(x;,x;) = (SDST),; = (S; - DS,;) = (VDS - VDS;)
take ®(x,) = /DS,

kernel characterization romers) [W &< coc 2)

data dependent - X finite

theorem if the kernel & is a dot product I, k(x,y) = ®(x) - P(y)
then the Gram matrix K;; = k(xi.x;) is positive definite
proof for any a ¢ R™

Y oKy = > ai®(x,), Y a;8(x;)) = | > ad(x)|? > 0
1g=1 i=1 J=1 f=1
so K is positive definite . 7 ‘\
mercer theorem (lweveer 2

theorem/Mercer] Let X be a compact subset of R”. Suppose X is a continnous symmetric function such
that

{{K(xvz)f(x)f(z)dxdz =0

for all f € £5(X). Then, K(x,2z) can be expanded in a uniformly convergent series

Af(x,z) = Z;‘l /\)‘9) (x)th(Z)

17

to an infinite dimensional feature mapping ¢.) But more broadly, given some
function K, how can we tell if it’s a valid kernel; i.e., can we tell if there is
some feature mapping ¢ so that K (x, z) = @(z)"¢(z) for all z, 27

Suppose for now that K is indeed a valid kernel corresponding to some
feature mapping ¢. Now, consider some finite set of m points (not necessarily
the training set) {z®,...,z™} and let a square, m-by-m matrix K be
defined so that its (i, J)-entry is given by Ki; = K(z™,29)). This matrix
is called the Kernel matrix. Note that we've overloaded the notation and
used A to denote both the kernel function K(x, z) and the kernel matrix K,
due to their obvious close relationship.

Now, if K is a valid Kernel. then Kij = K(z", z0)) = H(x)T (V) =
o(z)To(zW) = K(zY,z0) = K;;, and hence K must be symmetric. More-
over, letting ¢y (z) denote the k-th coordinate of the vector o(x), we find that
for any vector 2, we have

Z.: i zi9(z") oz D)z

iize2¢k(1“’)¢k(r<:>);,

= ‘ii‘;:.mx“’m(rﬁ’)sj
oo

Z (Z :.o;,(r“)))
- e

The second-to-last step above used the same trick as you saw in Problem
set 1 Q1. Since 2 was arbitrary. this shows that A is positive semi-definite
(K >0).

Hence, we've shown that if K is a valid kernel (i.e., if it corresponds to
some feature mapping ¢). then the corresponding Kernel matrix K ¢ gmxm
Is symmetric positive semidefinite. More generally, this turns ont to be not
only a necessary, but also a sufficient, condition for K to be a valid kernel
(also called a Mercer kernel). The following result is due to Mercer.®

SMany texts present Mercer's theorem in a slightly more complicated form involving
L? functions, but when the input attributes take values in R", the version given here is
equivalent,

I8

Theorem (Mercer). Let & : B" « 8% .. = be given. Then for K
to be a valid (Mercer) kernel, it is necessary and sufficient that for any
{zM,..., 2™} (m < o0), the corresponding kernel matrix is symmetric
positive semi-definite.

Given a function K, apart from trving to find a feature mapping ¢ that
corresponds to it, this theorem therefore gives another way of testing if it is
a valid kernel. You'll also have a chance to play with these ideas more in
problem set 2, 3 |

In class, we also briefly talked about a couple of other examples of ker- ,\(' "1” e wf
nels. For instance, consider the digit recognition problem, in which given < ‘j AJJ
an image (16x16 pixels) of a handwritten digit (0-9), we have to figure out Yocne \
which digit it was. Using either a simple polynomial kernel K(x,z) = (z72)¢
or the Gaussian kernel, SVMs were able to obtain extremely good perfor-
mance on this problem. This was particularly surprising since the mput.
attributes r were just a 256-dimensional vector of the image pixel intensity
alues, and the system had no prior knowledge about vision, or even about
which pixels are adjacent to which other ones. Another example that we |
briefly talked about in lecture was that if the objects r that we are trving
to classify are strings (say, r is a list of amino acids, which strung together
form a protein), then it seems hard to construct a reasonable, “small” set of
features for most learning algorithms, especially if different strings have dif-
ferent lengths. However, consider letting ¢(x) be a feature vector that connts
the number of oceurrences of each length-k substring in z. If we're consider-
ing strings of english alphabets, then there're 265 such strings. Hence, ¢(x)
is a 26% dimensional vector: even for moderate values of k. this is probably
too big for us to efficiently work with. (e.g.. 26* 2~ 160000.) However, using
(dynamic programming-ish) string matching algorithms, it is possible to ef-
ficiently compute K(z,z) - é(x)"(z), so that we can now mmplicitly work
in this 26*-dimensional feature space, but without ever explicitly computing
feature vectors in this space. T

The application of kernels to support vector machines should already
be clear and so we won't dwell too much longer on it here. Keep in mind
however that the idea of kernels has significantly broader applicability than
SVMs. Specifically, if vou have any learning algorithm that you can write
in terms of only inner products (z,z) between input attribute vectors. then
by replacing this with K(r,z) where K is a kernel, vou can “magically”
allow your algorithm to work efficiently in the high dimensional feature space i
corresponding to K. For instance, this kernel trick can be applied with
the perceptron to to derive a kernel perceptron algorithm. Many of the

Aoul

and positive associated eigenvalues Aj =2 0.

valid kernels

* K(x,z) = Ky (x,2z) + Kaix,z)
* K(x,2) = ak(x,z)
* K(x.2) = Ky(x,2)Ka(x, z)
* K(x.z) = f(x)f(2)
 K(x,2) = Ka(#(x),6(z))

plx) a polynomial with positive coefficients
* K(x.z) = p(Ky(x,z))
* K(x.2) = exp(Ky(x,2))
* K(x.2) = eap(~|Ix - 2/[*/o?)

dot product kernels

kix,¥) = k((x,y))

theorem '—M A

sthe function & of the dot product kernel must satisly
k(t) > 0,k'(t) > 0 and K(t) +th™(t) > 0 vt >0

in terms of the cigenfunctions 95 € L2(X) of (T f)(-) =

JK(-,x) f(x)dx normalized so that [l@lle, =1
X

in order to be a positive definite kernel. that may still be insufficient

e if k s a power series expansion

oo
k(t) = 3" ant
n=0

then & is a positive definite kernel iff ¥n, a,, >0

Q(X): 3(:))((?) L\)fz) /c‘/a‘

£
0

—————————

d? (K) i ¢W\7 £ v41\/1.l i y;z\/>7+ W [\V2 55 Y = (4 4 “1Y2

/Q LE- d\)()(); (/P(,L»(’ ﬁL ol Thsc.:‘n(os d&f\u Je“.;

Laats (d: YA owaC»\

d

Hon R (X)) =) Qxy = <x 95

|

2

&

6 Use of kernels with SVM
plug a kernel into SVM

after a long discussion on optimization theory...

the primal problem
minimize (w-w)
subject to y,({w-x;) +b) > 1,Vi

the dual problem
marimize Pla) = 3" a; - % ‘:’:j:l Yoo (X, - X;)
subject to T"’l iy = 0,00y > 0, Vi

-t

kernel trick replace the dot product (x; - x;) with a kernel k(x;,x;):

marimize i £
: 1 «
Pla) = Zn, e Z wiyjonok(x,, x;)
i=1 1,7=1

subject to 3" yia; = 0,0 > 0, Vi

SVM with kernels

output & (X v,k (x,x)

weights
D » .- 207 i dot product <D(x),D(x = k(X.x,)
X, (x,) Dix)) X mapped vectors d(x), d(x)

7 4 s /‘ SUppOort vectors X, ... x,,

1 test vector x

the kernel trick

marimize

m l "m
P(a) = Zn, o Z yinyonoskixg x;)
=1 19=1

subject to 3" | yioy = 0,05 > 0,Vi

e we need only the kernel & not @ - thats good. ..
e any algorithm that only depends on dot products (rotationally invariant) can be kernelized

-1

® any algorithm that is formulated in terms
® math was around for long time
was underestimated

of positive definite kernel(s) supports a kernel-replace

(19405 Kolgomorov, Aronszajn, Schoenberg) but the practical importance

7 Kernel construction. Popular kernels
polynomial kernel

theorem define the map x — Cy(x) where Cy(x) the vector consisting in all possible 4" degree ordered

|ll-u||l(|\ of the entries of x ()1, L2,...,rxn) then (’,f!iX'.(',;':yl =X,y “
IS X,y) X,y¥) +c)?

polynomial kernel

© b, .'; (40’ Lﬂtb- ¥

® invariant to group of all orthogonal

S transformations(rotations. mirroring

(T'(l”ﬁﬁ'l(l“ l{;uliull 3;-sis}:unn-rinn l\’(‘]“(\l

k(x,y) = expl x,”’;)

more general k(x,y) = f(d(x,y))

where d is a metric on X and fis a function on R, usually d arises from dot product d(x,y) = ||x -y
e invariant on translations k(x,y) = k(x4 Z.N + 2
® cos(L(P(x), D(y))) = (P(x), B(y) k(x,¥) >0

» enclosed angle between any 2 mapped points is smaller
than /2

theorem if X {.\';.X-. ...\.,_} all distinet and ¢ > 0 then the matrix & ; et) has full

exp
rank = @(x,), ®(xz). ..., ¥(x,,) are linear independent

Fisher kernel

® knowledge about objects in form of a generative probability model
o deals with mising/incomplete data, uncertainty, variable length

family of generative models (density functions)

- ?
plx(0). smoothly parametrized by 0= (0',....07) ; I(x, #) = Inp(z|6) {0'\ (‘VQ\Q\\OQ&

score Vy(r) := (8g:l(x.,0), vy Ope U2, 0)) = Vol (2,0) = V, In p(x|0)
Fisher information matrix J -— E,[Va(x)Va(x)T)
Iy = Ey|dp Inp(]8) - 54 In p(x|0)], E, is called Fisher information metric

Fisher kernel &

Ki(x,y) = Vo(z)TT-Wy(y)

natural kernel \/ _positive definite matrix
Kii'(x,y) = Ve(x)" M "Waly)

[information] diffusion kernel

- local relationships

the exponential of a suared matrix / is
2 q3
M = limp oo (14 E2)n = 1 4 BH + GH*+ & Hd 4 .

exponential kernel K, - 10 0K H K 5(heat eq)
35

diffusion kernel on graph : consider

H;‘, = 1ili j; —d; (degree) if i = 71 0 otherwise
w

Hw= - Z,Jr g (w; = 1::,-)2 negative semidefinite
—H=Laplacian of the graph

convolution kernel

kernel between composite objects building on similarities of resp. parts
ke Xy x Xg—~ R, R-relation. define the R-convolution kernel

D
(kl * Ic'-) W san'R kp)(x.y) = Z n kd(fdv lld)

R d=1

where the sum runs over all |-)ossible decompositions of x — (1,22,7p) and of Y = (n,y2,...,up) s.t.
R(x,xy,x3,...,xp) and Ry, ur,¥2,....,up)
® proved valid if R is finite

AN OVA kel’ne] (analysis of variance)

| if X =S¥ and k9 kernel on § x S for i = 1,2..., N .the ANOVA kernel of order D is

D
kp(x,y) := Z H k“(Iia'yid)

1SH<...<ip <N d=1

string kernel

- similarities between two documents

3 =alphabet, $"=set of all strings of length n

for a given index sequence i = (I<i<izg<..<i, < |s])

define s(i) := 8(i1)s(iz)....s(i,) and 0,(i) = i, - Hh+1>r

example s = fast food i= (2,3, 9) = s(i) =asd,l(i)=9-2+1=8

U< A < 1 parameter, define [,,(s)| a map with | 32" | components

[q’n(”)]u = Z z\"“)

is(i)=u
example [b;(Nasdaq)ug = * |, [y 1288 das)],.q = 2\°
the kernel induced

kn@0= 3 @a()luf@a®= Y T Oy
ueE”" uEX" (1J):s()=t0)=u

k=3 euky linear combination of kernels on different substring-lengths

tree kernel

e encode a tree as a string by traversing
in preorder and parenthesing

® substrings correspond to subset trees

¢ tag can be computed in loglinear time

e then use a string kernel

