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Abstract

An approach to semi-supervised learning is pro-

The semi-supervised learning problem has attracted an in-
creasing amount of interest recently, and several novel ap-

posed that is based on a Gaussian random field
model. Labeled and unlabeled data are rep-
resented as vertices in a weighted graph, with
edge weights encoding the similarity between in-
stances. The learning problem is then formulated
in terms of a Gaussian random field on this graph,
where the mean of the field is characterized in
terms of harmonic functions, and is efficiently
obtained using matrix methods or belief propa-
gation. The resulting learning algorithms have
intimate connections with random walks, elec-
tric networks, and spectral graph theory. We dis-
cuss methods to incorporate class priors and the
predictions of classifiers obtained by supervised
learning. We also propose a method of parameter
learning by entropy minimization, and show the
algorithm’s ability to perform feature selection.
Promising experimental results are presented for
synthetic data, digit classification, and text clas-
sification tasks.

proaches have been proposed; we refer to (Seeger, 2001)
for an overview. Among these methods is a promising fam-
ily of techniques that exploit the “manifold structure” bt

data; such methods are generally based upon an assumption
that similar unlabeled examples should be given the same
classification. In this paper we introduce a new approach
to semi-supervised learning that is based on a random field
model defined on a weighted graph over the unlabeled and
labeled data, where the weights are given in terms of a sim-
ilarity function between instances.

Unlike other recent work based on energy minimization
and random fields in machine learning (Blum & Chawla,
2001) and image processing (Boykov et al., 2001), we
adoptGaussiarfields over a continuous state space rather
than random fields over the discrete label set. This “re-
laxation” to a continuous rather than discrete sample space
results in many attractive properties. In particular, theessm
probable configuration of the field is unique, is character-
ized in terms of harmonic functions, and has a closed form
solution that can be computed using matrix methods or
loopy belief propagation (Weiss et al., 2001). In contrast,
for multi-label discrete random fields, computing the low-

est energy configuration is typically NP-hard, and approxi-
mation algorithms or other heuristics must be used (Boykov
In many traditional approaches to machine learning, a taret al., 2001). The resulting classification algorithms for
get function is estimated using labeled data, which can bgaussian fields can be viewed as a form of nearest neigh-
thought of as examples given by a “teacher” to a “student.hor approach, where the nearest labeled examples are com-
Labeled examples are often, however, very time consumpyted in terms of a random walk on the graph. The learning
ing and expensive to obtain, as they require the efforts ofethods introduced here have intimate connections with
human annotators, who must often be quite skilled. For inTandom Wa'kS, electric networkS, and Spectra| graph the-

Stance, Obtaining asingle labeled example for proteinshapory, in particu|ar heat kernels and normalized cuts.
classification, which is one of the grand challenges of bio-

logical and computational science, requires months of ex[n our basic approach the solution is solely based on the
pensive analysis by expert crystallographers. The promerﬁtructure of the dgta manifold, whlch is derived _from data

of effectively combiningunlabeleddata with labeled data features. In practice, however, this derived manifoldstru

is therefore of central importance in machine learning. ture may be insufficient for accurate classification. We

1. Introduction
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two eight weightings are possible, of course, and may be more appro-

S W priate when is discrete or symbolic. For our purposes the
\ /f / 4 / matrix W fully specifies the data manifold structure (see
Figure 1).
= & \
\/ \ /(fé\ nine Our strategy is to first compute @al-valued function
2—3 F—q f 'V — R on G with certain nice properties, and to
\ P then assign labels based ¢nWe constrainf to take val-
J—7 G/Q\ uesf(i) = fi(i) = y; on the labeled data = 1,... ,l.
one g~ \ 3 Intuitively, we want unlabeled points that are nearby in the
\/\ \0 graph to have similar labels. This motivates the choice of
7 g the quadratic energy function
Figure 1.The random fields used in this work are con_structt_ad on E(f) = % Z W (f(i) - f(j))Q )
labeled and unlabeled examples. We form a graph with weighte 3

edges between instances (in this case scanned digits)alvéled
data items appearing as special “boundary” points, ancbetdd  To assign a probability distribution on functiofiswe form
E(;Tr:'isszsr;;)nhtfsnor” points. We consider Gaussian randondsie e Gaussiar: fields(f) = e_ﬁzi(f_) . wheres is.an “inver.se
temperature” parameter, arith is the partition function
Zg = ff\L=fz exp (—BE(f)) df, which normalizes over
show how the extra evidence of class priors can help classgy| functions constrained tf on the labeled data.
fication in Section 4. Alternatively, we may combine exter- o o )
nal classifiers using vertex weights or “assignment costs } IS not difficult to show that the minimum energy function
as described in Section 5. Encouraging experimental refl = argmiry,—, E(f) is harmonic namely, it satisfies
sults for synthetic data, digit classification, and texsela &f = 0 on unlabeled data points, and is equal tof;
sification tasks are presented in Section 7. One difficulyP" the labeled data poinfs HereA is thecombinatorial
with the random field approach is that the right choice of-aPlacian given in matrixformas\ = D—W whereD =
graph is often not entirely clear, and it may be desirable tdfi2d(d:) is the diagonal matrix with entrieg = 5, w;;
learn it from data. In Section 6 we propose a method fo2NdW = [wi;] is the weight matrix.

learning these weights by entropy minimization, and showrhe harmonic property means that the valuef ait each

the algorithm’s ability to perform feature selection toteet  ynlabeled data point is the average pfat neighboring
characterize the data manifold. points:

2. Basic Framework f) = %Zwijf(z'), forj=1+1,...,1+u (3)

T imi
We suppose there at&beled point§z1, y1), - - . , (1, yi), !
andu unlabeled points:; .1, ... ,244; typically I < u.  which is consistent with our prior notion of smoothness of
Letn = | + u be the total number of data points. To be- f with respect to the graph. Expressed slightly differently,
gin, we assume the labels are binayyc {0,1}. Consider f = Pf, whereP = D~'W. Because of the maximum
a connected grapf = (V, E) with nodesV correspond-  principle of harmonic functions (Doyle & Snell, 1984)js
ing to then data points, with nodes = {1,...,l} corre-  unique and is either a constant or it satisfies f(j) < 1
sponding to the labeled points with labels ... ,y;, and forj e U.
nodesU = {l + 1,...,l + u} corresponding to the unla-
beled points. Our task is to assign labels to naddesNe
assume an x n symmetric weight matrixy” on the edges
of the graph is given. For example, whene R™, the
weight matrix can be

m o mp )2
wij = exp (—Z%) & ;

d=1 Lettingf = fl wheref, denotes the values on the un-
u

wherez;q is thed-th component of instance represented  |apeled data points, the harmonic solutitf = 0 subject
as a vectorr; € R™, andoy,... ,on are length scale 1o f|; = f; is given by

hyperparameters for each dimension. Thus, nearby points

in Euclidean space are assigned large edge weight. Othef, = (Dyy — Wuu) Wi fi = (I — Pu) 'Pufi (5)

To compute the harmonic solution explicitly in terms of
matrix operations, we split the weight matiiX (and sim-
ilarly D, P) into 4 blocks after théth row and column:

(4)

W:[Wll Wi }

Wu  Wayu



35 2001) the walk crucially depends on the time parameter
Ho © 000 © 85 82 We will return to this point when discussing heat kernels.

% g8® °o oooooo(ﬁ OoOO%
An electrical network interpretation is given in (Doyle &
Snell, 1984). Imagine the edges@fto be resistors with
conductancé?V. We connect nodes labelédo a positive
voltage source, and points labelédo ground. Thenf,

is the voltage in the resulting electric network on each of
the unlabeled nodes. Furthermgieminimizes the energy
Figure 2.Demonstration of harmonic energy minimization on two dissipation of the electric network for the givenf,. The
syr_lthetic datasets. Large symbols indicate labeled dat@ro p5rmonic property here follows from Kirchoff’s and Ohm'’s
points are unlabeled. laws, and the maximum principle then shows that this is
precisely the same solution obtained in (5).

In this paper we focus on the above harmonic function as a
basis for semi-supervised classification. However, we em3.2. Graph Kernels

phasize that t.he unssian “”?”dom field quel from whichy, o solutionf can be viewed from the viewpoint of spec-
th.|s funct|op Is derived proyldes the .Iearnmg frameworktral graph theory. The heat kernel with time parameter
with a consistent probabilistic semantics. on the grapt is defined ask; = e—*A. HereK, (i, j) is

In the following, we refer to the procedure described abovéhe solution to the heat equation on the graph with initial
as harmonic energy minimizatigrio underscore the har- conditions being a point sourceaat timetz = 0. Kondor
monic property (3) as well as the objective function beingand Lafferty (2002) propose this as an appropriate kernel
minimized. Figure 2 demonstrates the use of harmonic enfor machine learning with categorical data. When used in a
ergy minimization on two synthetic datasets. The left figurekernel method such as a support vector machine, the kernel
shows that the data has three bands, With 3, u = 178,  classifierf;(j) = >_,.; a;yiK:(i, j) can be viewed as a
ando = 0.22; the right figure shows two spirals, with solution to the heat equation with initial heat souragg;

| =2,u = 184, ande = 0.43. Here we see harmonic on the labeled data. The time parametenust, however,
energy minimization clearly follows the structure of data, be chosen using an auxiliary technique, for example cross-
while obviously methods such as kNN would fail to do so. validation.

) ) Our algorithm uses a different approach whiclnidepen-
3. Interpretation and Connections dentof ¢, the diffusion time. LetA,, be the lower right
u X u submatrix ofA. SinceA,, = Dy, — Wy, itis the

As outlined briefly in this section, the basic framework pre- Laplacian restricted to the unlabeled node&inConsider
sented in the previous section can be viewed in several fur}he heat kernel on this submatrisk’. = e—'2++  Then
. = .

damgntall)_/ different ways, and these differen.t viewpointsK; describes heat diffusion on the unlabeled subgraph with
provide a rich and complementary set of techniques for re

. : . X irichlet boundary conditions on the labeled nodes. The
soning about this approach to the semi-supervised Ieamm@reen’s functiorg is the inverse operator of the restricted
problem. LaplacianGA,, = I, which can be expressed in terms of

) the integral over time of the heat kerrfg]:
3.1. Random Walks and Electric Networks

Imagine a particle walking along the gragh Starting 9 = / K,dt = / et vudt = (Dyy — W) ™" (6)
from an unlabeled nodg it moves to a nodg with proba- 0 _ 0_ )

bility P;; after one step. The walk continues until the par- The harmonic solution (5) can then be written as

ticle hits a labeled node. Thef(i) is the probability that 1

the particle, starting from node hits a labeled node with — f, = gW,,f, or f(j) = Z Zyl wir, G(k,7)  (7)
label 1. Here the labeled data is viewed as an “absorbing i—1 K

boundary” for the random walk. Expression (7) shows that this approach can be viewed as

This view of the harmonic solution indicates that it is a kernel classifier with the kerngland a specific form of

closely related to the random walk approach of Szummekernel machine. (See also (Chung & Yau, 2000), where a

and Jaakkola (2001), however there are two major differnormalized Laplacian is used instead of the combinatorial

ences. First, we fix the value gfon the labeled points, Laplacian.) From (6) we also see that the spectruigi i

and second, our solution is an equilibrium state, expressef\; ' }, where{);} is the spectrum o\, This indicates

in terms of a hitting time, while in (Szummer & Jaakkola, a connection to the work of Chapelle et al. (2002), who ma-
nipulate the eigenvalues of the Laplacian to create various



kernels. A related approach is given by Belkin and Niyogi4. Incorporating Class Prior Knowledge
(2002), who propose to regularize functiong@hy select-
ing the topp normalized eigenvectors & corresponding
to the smallest eigenvalues, thus obtaining the best fit to
in the least squares sense. We remark thatfofits the
labeled data exactly, while the ordeapproximation may
not.

To go from f to labels, the obvious decision rule is to
assign label 1 to nodeif f(i) > 1, and label O other-
wise. We call this rule thbarmonic thresholdabbreviated
“thresh” below). In terms of the random walk interpreta-
tion, if f(i) > 3, then starting at, the random walk is
more likely to reach a positively labeled point before a neg-
atively labeled point. This decision rule works well when
the classes are well separated. However in real datasets,
The normalized cut approach of Shi and Malik (2000) hasclasses are often not ideally separated, and ugiag is

as its objective function the minimization of the Raleigh tends to produce severely unbalanced classification.
guotient

3.3. Spectral Clustering and Graph Mincuts

The problem stems from the fact thidt, which specifies

T Cwii () = F(G))2 the data manifold, is often poorly estimated in practice and
R(f) = fo)f = s ](];( ) ‘ Qf(‘])) (8)  does not reflect the classification goal. In other words, we
frof i dif (i) should not “fully trust” the graph structure. The class pio

subject to the constrait L 1. The solution is the second &r€ @ valuable piece of complementary information. Let's
smallest eigenvector of the generalized eigenvalue pnoble 3SSUme the desirable proportions for classes 1 and § are
Af = ADf. Yu and Shi (2001) add a grouping bias to and1l — ¢, respectively, where these values are either given
the normalized cut to specify which points should be inPYy an “oracle” or estimated from labeled data. We adopt a

the same group. Since labeled data can be encoded ingiTPle procedure calledass mass normalizatif€MN)
such pairwise grouping constraints, this technique can pip adjust the class dlstrlbut|0n§ to match the priors. Define
applied to semi-supervised learning as well. In generalth® mass of class 1 to B€, (i), and the mass of class 0
when W is close to block diagonal, it can be shown that 0 P€>_;(1— fu(i)). Class mass normalization scales these

data points are tightly clustered in the eigenspace spanndj2sses so that an unlabeled pairg classified as class 1

by the first few eigenvectors @i (Ng et al., 2001a; Meila iff
& Shi, 2001), leading to various spectral clustering algo- ¢ fu(i) > (1-gq) 1— fu(i) ©)
rithms. > fuli) >i(1= fu(@))

Perhaps the most interesting and substantial connection tPhis method extends natura”y to the genera| multi-label
the methods we propose here is the graph mincut approagise.

proposed by Blum and Chawla (2001). The starting point

for this work is also a weighted grapH, but the semi- . -
supervised learning problem is cast as one of finding a5' Incorporating External Classifiers

minimum s¢-cut, where negative labeled data is connectedbften we have an external classifier at hand, which is con-
(with large weight) to a special source nogeand positive  structed on labeled data alone. In this section we suggest
labeled data is connected to a special sink nodemini-  how this can be combined with harmonic energy minimiza-
mumst¢-cut, which is not necessarily unique, minimizes thetion. Assume the external classifier produces labglsn

L' objective function: (f) = 33, ;wi;|f(i) = f(7)]  the unlabeled datd;, can be 0/1 or soft labels {8, 1]. We

and corresponds to a functioh: V' — {-1,+1}; the  combineh, with harmonic energy minimization by a sim-
solutions can be obtained using linear programming. Theje modification of the graph. For each unlabeled noide
corresponding random field model is a “traditional” field the original graph, we attach a “dongle” node which is a la-
over the label spacé—1, +1}, but the field is pinned on  peled node with valug;, let the transition probability from
the labeled entries. Because of this constraint, approximg to its dongle bey, and discount all other transitions fram
tion methods based on rapldly miXing Markov chains thatby 1— 7. We then perform harmonic energy minimization
apply to the ferromagnetic Ising model unfortunately can-on this augmented graph. Thus, the external classifier in-
not be used. Moreover, multi-label extensions are gerneralltroduces “assignment costs” to the energy function, which
NP-hard in this framework. In contrast, the harmonic SO-p|ay the role of vertex potentia|s in the random field. It
lution can be computed efficiently using matrix methods,jis not difficult to show that the harmonic solution on the
even in the multi-label case, and inference for the Gaussiagugmented graph is, in the random walk view,

random field can be efficiently and accurately carried out .

using loopy belief propagation (Weiss et al., 2001). fu={UT = 1=n)Pu) (L =n)Pufi+nh,) (10)

We note that throughout the paper we have assumed the
labeled data to be noise free, and so clamping their values



makes sense. If there is reason to doubt this assumption, Tthis complication can be avoided by smoothing the tran-
would be reasonable to attach dongles to labeled nodes agion matrix. Inspired by analysis of the PageRank algo-

well, and to move the labels to these new nodes. rithmin (Ng et al., 2001b), we repladewith the smoothed
matrix P = e U4 + (1 — ) P, wherel{ is the uniform matrix
6. Learning the Weight Matrix W with entriestt;; = 1/(1 + u).

We use gradient descent to find the hyperparametaisat

Previously we assumed that the weight matfixis given minimize H. The gradientis computed as

and fixed. In this section, we investigdearning weight

functions of the form given by equation (1). We will learn o 1 L 1= () O£()
theo,’s from both labeled and unlabeled data; this will be — == log (4) ‘ (12)
shown to be useful as a feature selection mechanism which dog  u o= (@) do4

better aligns the graph structure with the data.
) o o where the value®f(i)/0o4 can be read off the vector
The usual parameter learning criterion is to maximize they ¢ /94,, which is given by

likelihood of labeled data. However, the likelihood crite-

rion is not appropriate in this case becauseftivalues for . P P
. . .. . . 0 u —1 aPuu aPul
labeled data are fixed during training, and moreover likeli- 7= = (I = Puu) oy fu+ 30,4 fi] (13)
hood doesn’t make sense for the unlabeled data because we
do not have a generative model. We propose instead to u?fsing the fact thalX~! = —X-1(dX)X-!. Both

average label entropgs a heuristic criterion for parameter ob. 19 5 : = _

) ' . oq anddPy,; /do, are sub-matrices ddP/do,; =

learning. The average label entrofly( f) of the field f is (1 i“é) op Sincg t/he original transition matri}/? is ob-
od

defined as tained by normalizing the weight matri¥’, we have that
l+u
1 .
H(f) =3 > H(f() (12) Opiy _ Tk~ Py Tt e
i=l4+1 0 - - I+u - (14)
Od Zn:l Win

whereH; (f(i)) = —£(i) log f (i)~ (1— £ (i)) log(1— £ (i))

is the entropy of the field at the individual unlabeled data,
pointi. Here we use the random walk interpretationfof
relying on the maximum principle of harmonic functions In the above derivation we ugf as label probabilities di-
which guarantees that< f(i) < 1fori > [+ 1. Small  rectly; that is,p(clasgz;) = 1) = f,(i). If we incorpo-
entropy implies thatf (i) is close to 0 or 1; this captures rate class prior information, or combine harmonic energy
the intuition that a good” (equivalently, a good set of hy- Mminimization with other classifiers, it makes sense to min-
perparameteréo, }) should result in aonfidentabeling. ~ imize entropy on the combined probabilities. For instance,
There are of course many arbitrary labelings of the data thaf we incorporate a class prior using CMN, the probability
have low entropy, which might suggest that this criterionis given by

will not work. However, it is important to point out that .

we are constraining on the labeled data—most of these  f(;) = q(u - 2 fu)fuli) _
arbitrary low entropy labelings are inconsistent with this q(u =22 fu) fu@) + (1 = q) 32 full = fu(4))
constraint. In fact, we find that the space of low entropy (15)
labelings achievable by harmonic energy minimization is
small and lends itself well to tuning the, parameters.

Owi;

Finally, 574 = 2wij(za; — 45)* /0.

and we use this probability in place ¢fi) in (11). The
derivation of the gradient descent rule is a straightfodwvar
There is a complication, however, which is thidthas a  extension of the above analysis.

minimum at 0 asr; — 0. As the length scale approaches

zero, the tail (_)f the weight function (1) is increas_inglysen 7. Experimental Results

sitive to the distance. In the end, the label predicted for an

unlabeled example is dominated by its nearest neighbor’8Ve first evaluate harmonic energy minimization on a hand-
label, which results in the following equivalent labeling written digits dataset, originally from the Cedar Buffalo
procedure: (1) starting from the labeled data set, find thdinary digits database (Hull, 1994). The digits were pre-
unlabeled point;,, that is closest to some labeled paint  processed to reduce the size of each image down to a
(2) labelz,, with z;'s label, putz,, in the labeled setandre- 16 x 16 grid by down-sampling and Gaussian smooth-
peat. Since these are hard labels, the entropy is zero. Thisg, with pixel values ranging from 0 to 255 (Le Cun
solution is desirable only when the classes are extremelgt al., 1990). Each image is thus represented by a 256-
well separated, and can be expected to be inferior othedimensional vector. We compute the weight matrix (1) with
wise. o4 = 380. For each labeled set sizaested, we perform
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Figure 3.Harmonic energy minimization on digits “1” vs. “2” (left) dron all 10 digits (middle) and combining voted-perceptrathw
harmonic energy minimization on odd vs. even digits (right)
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Figure 4. Harmonic energy minimization on PC vs. MAC (left), baseballhockey (middle), and MS-Windows vs. MAC (right)

10 trials. In each trial we randomly sample labeled dataWe also consider the 10-way problem of classifying digits
from the entire dataset, and use the rest of the images &8” through '9’. We report the results on a dataset with in-
unlabeled data. If any class is absent from the sampled laentionally unbalanced class sizes, with 455, 213, 129, 100
beled set, we redo the sampling. For methods that incorpof54, 970, 275, 585, 166, 353 examples per class, respec-
rate class priorg, we estimate; from the labeled set with tively (noting that the results on a balanced dataset are sim
Laplace (“add one”) smoothing. ilar). We reportthe average accuracy of thresh, CMN, RBF,
We consider the binary problem of classifying digits “1” ?”d 1.NN' These_met_hods caq _han_dle_multi-way cl_assifica-
vs. “2,” with 1100 images in each class. We report aver-Jon (_jlrectly, or with shgh.t qulﬂcatlon n aone—agam.ait-.
fashion. As the results in Figure 3 show, CMN again im-

age accuracy of the following methods on unlabeled data; roves performance by incoroorating class priors
thresh, CMN, 1NN, and a radial basis function cIassifierp P y P 9 P '
(RBF) which classifies to class 1 #,; fi > W (1 — fi). Next we report the results of document categorization ex-

RBF and 1NN are used simply as baselines. The results aggeriments using the 20 newsgroups dataset. We pick
shown in Figure 3. Clearly thresh performs poorly, becaus¢hree binary problems: PC (number of documents: 982)
the values off, (j) are generally close to 1, so the major- vs. MAC (961), MS-Windows (958) vs. MAC, and base-
ity of examples are classified as digit “1". This shows theball (994) vs. hockey (999). Each document is minimally
inadequacy of the weight function (1) based on pixel-wiseprocessed into a “tf.idf” vector, without applying header r
Euclidean distance. However the relative ranking$,4f) moval, frequency cutoff, stemming, or a stopword list. Two
are useful, and when coupled with class prior informationdocuments:, v are connected by an edgeiiis amonguv’s
significantly improved accuracy is obtained. The greatesiO nearest neighbors orifis amongu’s 10 nearest neigh-
improvement is achieved by the simple method CMN. Webors, as measured by cosine similarity. We use the follow-
could also have adjusted the decision threshold on threshiag weight function on the edges:

solutionf,, so that the class proportion fits the prgofThis

method is inferior to CMN due to the error in estimating Wyy = €Xp <_L <1 ))

and it is not shown in the plot. These same observations 0.03

are also true for the experiments we performed on severale use one-nearest neighbor and the voted perceptron al-
other binary digit classification problems. gorithm (Freund & Schapire, 1999) (10 epochs with a lin-

u'v (16)

jul[v]



ear kernel) as baselines—our results with support vecter ma
chines are comparable. The results are shown in Figure
4. As before, each point is the average of 10 random tri-
als. For this data, harmonic energy minimization performs
much better than the baselines. The improvement from the
class prior, however, is less significant. An explanatian fo
why this approach to semi-supervised learning is so effec-
tive on the newsgroups data may lie in the common use of
guotations within a topic thread: documentquotes part

of documentu;, u3 quotes part ofu, and so on. Thus,
although documents far apart in the thread may be quite
different, they are linked by edges in the graphical repre-
sentation of the data, and these links are exploited by the
learning algorithm.

7.1. Incorporating External Classifiers

++++++

£=0.1
£=0.01
£=0.001

- €=0.0001

— unsmoothed

02 04 06 08 1 12 14

We use the voted-perceptron as our external classifier. For ©
each random trial, we train a voted-perceptron on the la- _ .
beled set, and apply it to the unlabeled set. We then use thféigure 5.The effect of parametes on harmonic energy mini-

0/1 hard labels for dongle valugs, and perform harmonic ~Mization. (a) If unsmoothedy — 0 aso — 0, and the algorithm
energy minimization with (10). We usg= 0.1 performs poorly. (b) Result at optimal = 0.67, smoothed with
' o e = 0.01 (c) Smoothing helps to remove the entropy minimum.

We evaluate on the artificial but difficult binary problem

of classifying odd digits vs. even digits; that is, we group o ]
“1,3,5,7,9” and “2,4,6,8,0" into two classes. There are 400°(¢). When we set = 0.01, the minimum entropy is 0.898
images per digit. We use second order polynomial kernePits ato = 0.67. Harmonic energy minimization under this
in the voted-perceptron, and train for 10 epochs. Figure 3€N9th scale is shown in Figure 5(b), which is able to dis-
shows the results. The accuracy of the voted-perceptrofinguish the structure of the two grids.

on unlabeled data, aVeraged over tl’iaIS, is marked VP |r]|f we allow a Separate- for each dimension, parameter

the plot. Independently, we run thresh and CMN. Next Wejearning is more dramatic. With the same smoothing of
combine thresh with the voted-perceptron, and the result — (.01, o, keeps growing towards infinity (we use

is marked thresh+VP. Finally, we perform class mass nory, = 10'¢ for computation) whiles,, stabilizes at 0.65,
malization on the combined result and get CMN+VP. Theand we reach a minimum entropy of 0.619 bits. In this

combination results in higher accuracy than either metho@ases, — oo is legitimate; it means that the learning al-

alone, suggesting there is complementary information usegorithm has identified the-direction as irrelevant, based

by each. on both the labeled and unlabeled data. Harmonic energy
minimization under these parameters gives the same clas-

7.2. Learning the Weight Matrix W sification as shown in Figure 5(b).

To demonstrate the effects of estimatifg resultsonatoy Next we learry’s for all 256 dimensions on the “1” vs. “2”
dataset are shown in Figure 5. The upper grid is slightlydigits dataset. For this problem we minimize the entropy
tighter than the lower grid, and they are connected by a fewvith CMN probabilities (15). We randomly pick a split of
data points. There are two labeled examples, marked witB2 labeled and 2108 unlabeled examples, and start with all
large symbols. We learn the optimal length scales for thiglimensions sharing the same= 380 as in previous ex-
dataset by minimizing entropy on unlabeled data. periments. Then we compute the derivatives dbr each

To simplify the problem, we first tie the length scales in Q|men5|on separately, and perform gradient descentto Tsn

the two dimensions, so there is only a single parameter 'er:';g thz:;ggsgé -[E: ;isclljlrtalz ngoz:vlil/lll\:];sgﬁrtsh both
to learn. As noted earlier, without smoothing, the entropy. Py ' Y :
increase. The learnegdls shown in the rightmost plot of

approaches the minimum at O @s— 0. Under such con- Figure 6 range from 181 (black) to 465 (white). A small

ditions, the results of harmonic energy minimization are black) indicates that the weight is more sensitive to varia
usually undesirable, and for this dataset the tighter grid. ) . . €9 o
ions in that dimension, while the opposite is true for large

“invades” the sparser one as shown in Figure 5(a). With . : o
smoothing, the “huisance minimum?” at 0 gradually disap—gi (white). We can discern the shapes of a black *1" and

pears as the smoothing factogrows, as shown in Figure a white “2” in this figure; that is, the learned parameters



H (bits) CMN thresh imate energy minimization via graph cut€EE Trans.
start| 0.6931 | 97.25+ 0.73 % | 94.70+ 1.19 % on Pattern Analysis and Machine Intelligenés.

end | 0.6542 | 98.56+ 0.43 % | 98.02+ 0.39 % Chapelle, O., Weston, J., & Scholkopf, B. (2002). Cluster
kernels for semi-supervised learningdvances in Neu-
ral Information Processing Systems,.15

Chung, F., & Yau, S. (2000). Discrete Green's functions.

Table 1.Entropy of CMN and accuracies before and after learning
o’'s on the “1" vs. “2” dataset.

S e Journal of Combinatorial Theory (AXpp. 191-214).
_||'J Doyle, P., & Snell, J. (1984)Random walks and electric
. networks Mathematical Assoc. of America.
’ = Freund, Y., & Schapire, R. E. (1999). Large margin classi-
fication using the perceptron algorithidachine Learn-
Figure 6.Learneds’s for “1” vs. “2” dataset. From left to right: ing, 37(3), 277-296.
average “1”, average “2”, initia#’s, learned’s. Hull, J. J. (1994). A database for handwritten text recog-

nition researchlEEE Transactions on Pattern Analysis

o L . . . and Machine Intelligencel6.
exaggerate variations within class “1” while suppressing
variations within class “2”. We have observed that with Kondor, R. I, & Lafferty, J. (2002). Diffusion kernels on
the default parameters, class “1” has much less variation 9raphs and other discrete input spademc. 19th Inter-
than class “2”; thus, the learned parameters are, in effect, National Conf. on Machine Learning
compensating for the relative tightness of the two classesiLe Cun, Y., Boser, B., Denker, J. S., Henderson, D.,

feature space. Howard, R. E., Howard, W., & Jackel, L. D. (1990).
Handwritten digit recognition with a back-propagation

8. Conclusion network. Advances in Neural Information Processing
Systems,.2

We have introduced an approach to semi-supervised learfyegjla, M., & Shi, J. (2001). A random walks view of spec-
ing based on a Gaussian random field model defined with 5] segmentationAISTATS

respect to a weighted graph representing labeled and unla- .
belsd data Pror%]' in ge per'mrt)antal re glt have been rja{!g,A.,Jordan,M.,&We|ss, Y. (2001a). On spectral clus-
' ISIng exper sutts hav P tering: Analysis and an algorithmAdvances in Neural

sented for text and digit classification, demonstrating tha ) .

. . ; Information Processing Systems,. 14
the framework has the potential to effectively exploit the )
structure of unlabeled data to improve classification acculNg: A. Y., Zheng, A. X., & Jordan, M. I. (2001b). Link
racy. The underlying random field gives a coherent proba- analysis, eigenvectors and sFab|I|t}>r1ternat|onaI Joint
bilistic semantics to our approach, but this paper has con- Conference on Artificial Intelligence (IJCAI)
centrated on the use of only the mean of the field, which isSeeger, M. (2001) Learning with labeled and unlabeled
characterized in terms of harmonic functions and spectral data(Technical Report). University of Edinburgh.

graph theory. The fully probabilistic framework is closely seeger, M. (2002). PAC-Bayesian generalization error
related to Gaussian process classification, and this cennec phoyunds for Gaussian process classificatidournal of

tion suggests principled ways of incorporating class grior  \jachine Learning Researc, 233-2609.

and Iearning hyperpargm_ete_rs; in particular, it_is naturaghi J., & Malik, J. (2000). Normalized cuts and image
to apply evidence maximization or the generalization er- s,egrhentation’.lEEE Transactions on Pattern Analysis

ror bounds that have been studied for Gaussian processes

(Seeger, 2002). Our work in this direction will be reported and Machine Intelligence2, 888-905. )
in a future publication. Szummer, M., & Jaakkola, T. (2001). Partially labeled clas-
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