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Cluster Analysis Overview

* Introduction

* Foundations: Measuring Distance (Similarity)
e Partitioning Methods: K-Means

* Hierarchical Methods

* Density-Based Methods

* Clustering High-Dimensional Data

e Cluster Evaluation
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What is Cluster Analysis?

* Cluster: a collection of data objects

— Similar to one another within the same cluster

— Dissimilar to the objects in other clusters

* Unsupervised learning: usually no training set
with known “classes”

* Typical applications

— As a stand-alone tool to get insight into data
properties
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Rich Applications, Multidisciplinary

* Pattern Recognition
e Spatial Data Analysis
* Image Processing

* Data Reduction

* Economic Science Clustering precipitation in Australia
— Market research

c WWW

— Document classification
— Weblogs: discover groups of similar access patterns
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Examples of Clustering Applications

 Marketing: Help marketers discover distinct groups in
their customer bases, and then use this knowledge to

develop targeted marketing programs

 Land use: Identification of areas of similar land use in
an earth observation database

* Insurance: Identifying groups of motor insurance policy
holders with a high average claim cost

* City-planning: Identifying groups of houses according
to their house type, value, and geographical location

* Earth-quake studies: Observed earth quake epicenters
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Quality: What Is Good Clustering?

* Cluster membership = objects in same class

* High intra-class similarity, low inter-class
similarity

— Choice of similarity measure is important

 Ability to discover some or all of the hidden
patterns

— Difficult to measure without ground truth
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Notion of a Cluster can be Ambiguous

How many clusters?
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Notion of a Cluster can be Ambiguous
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Distinctions Between Sets of Clusters

 Exclusive versus non-exclusive

— Non-exclusive clustering: points may belong to
multiple clusters

e Fuzzy versus non-fuzzy

— Fuzzy clustering: a point belongs to every cluster with
some weight between 0 and 1
 Weights must sumto 1

e Partial versus complete
— Cluster some or all of the data

* Heterogeneous versus homogeneous
— Clusters of widely different sizes, shapes, densities
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Cluster Analysis Overview

* Introduction

* Foundations: Measuring Distance (Similarity)

e Partitioning Methods: K-Means

* Hierarchical Methods

* Density-Based Methods

* Clustering High-Dimensional Data

 Cluster Evaluation
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Distance

* Clustering is inherently connected to question
of (dis-)similarity of objects

* How can we define similarity between objects?
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Similarity Between Objects

e Usually measured by some notion of distance
* Popular choice: Minkowski distance

dist(x(1).X(1)= | 1, ) =x; (N T + 2y @) =0, DI+t x, @) =, ()T
— g is a positive integer
* g =1: Manhattan distance
diSt(X(i)aX(j)):| Xl(i) _xl(]) | + | xz(i) _xz(]) | Tt | xd (l) _xd (]) |

* g =2: Euclidean distance:
dist (). x()= 3y () =5, ) 2 4y ) =y )2 44 L () =, () P
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Metrics

* Properties of a metric

— d(i,j) =0

— d(i,j) = 0if and only if i5j

— d(i,j) = d(j,i)

— d(i,j) = dli,k) + d(k,j)
 Examples: Euclidean distance, Manhattan distance
 Many other non-metric similarity measures exist

» After selecting the distance function, is it now clear
how to compute similarity between objects?
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Challenges

* How to compute a distance for categorical
attributes

* An attribute with a large domain often
dominates the overall distance

— Weight and scale the attributes like for k-NN

* Curse of dimensionality
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Curse of Dimensionality

e Best solution: remove any attribute that is
known to be very noisy or not interesting

* Try different subsets of the attributes and
determine where good clusters are found
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Nominal Attributes

e Method 1: work with original values

— Difference = 0 if same value, difference = 1
otherwise

 Method 2: transform to binary attributes

— New binary attribute for each domain value

— Encode specific domain value by setting
corresponding binary attribute to 1 and all others
to0
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Ordinal Attributes

e Method 1: treat as nominal

— Problem: loses ordering information

e Method 2: map to [0,1]

— Problem: To which values should the original
values be mapped?

— Default: equi-distant mapping to [0,1]
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Scaling and Transforming Attributes

 Sometimes it might be necessary to transform
numerical attributes to [0,1] or use another
normalizing transformation, maybe even non-
linear (e.g., logarithm)

 Might need to weight attributes differently

* Often requires expert knowledge or trial-and-
error
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Other Similarity Measures

* Special distance or similarity measures for
many applications

— Might be a non-metric function
* |Information retrieval

— Document similarity based on keywords
* Bioinformatics

— Gene features in micro-arrays
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Calculating Cluster Distances

* Single link = smallest distance between an element in one
cluster and an element in the other: dist(K, KJ.) = min(xip, qu)

* Complete link = largest distance between an element in one
cluster and an element in the other: dist(K, KJ.) = max(xip, qu)

* Average distance between an element in one cluster and an
element in the other: dist(K, KJ.) = avg(xip, qu)

« Distance between cluster centroids: dist(K, KJ.) =d(m, mj)

« Distance between cluster medoids: dist(K, KJ.) = dist(x_, xmj)

— Medoid: one chosen, centrally located object in the cluster
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Cluster Centroid, Radius, and Diameter

1

* Centroid: the “middle” of a cluster C m=m X
xeC

* Radius: square root of average distance from any
point of the cluster to its centroid \/E (x —m)>
R — xeC

| C|
* Diameter: square root of average mean squared
distance between all pairs of points in the cluster

\/2 ® (x-y)’

xeCyeC,yTx

[CIHC-D)
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Cluster Analysis Overview

* Introduction

* Foundations: Measuring Distance (Similarity)
e Partitioning Methods: K-Means

* Hierarchical Methods

* Density-Based Methods

* Clustering High-Dimensional Data

e Cluster Evaluation
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Partitioning Algorithms: Basic Concept

e Construct a partition of a database D of n objects into a
set of K clusters, s.t. sum of squared distances to
cluster “representative” m is minimized

K 2
. ® . m )

e Given a K, find partition of K clusters that optimizes the
chosen partitioning criterion

— Globally optimal: enumerate all partitions

— Heuristic methods
* K-means ('67): each cluster represented by its centroid

* K-medoids (’87): each cluster represented by one of the objects in
the cluster
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K-means Clustering

e Each cluster is associated with a centroid

* Each object is assigned to the cluster with the
closest centroid

e Given K, select K random objects as initial
centroids
e Repeat until centroids do not change

— Form K clusters by assigning every object to its
nearest centroid

— Recompute centroid of each cluster
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K-Means Example
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K-Means Example
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K-Means Example
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K-Means Example
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K-Means Example
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Overview of
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K-means Questions

 What is it trying to optimize?

e Will it always terminate?

e Will it find an optimal clustering?
 How should we start it?

 How could we automatically choose the
number of centers?

....we’ll deal with these questions next
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K-means Clustering Details

 |nitial centroids often chosen randomly

— Clusters produced vary from one run to another

e Distance usually measured by Euclidean
distance, cosine similarity, correlation, etc.
 Comparably fast algorithm: O(n *K * | * d)

— n = number of objects
— | = number of iterations

— d = number of attributes
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Evaluating K-means Clusters

* Most common measure: Sum of Squared Error
(SSE)

— For each point, the error is the distance to the nearest

centroid SSE _EZdISt (m,,X)

i=1 xeC,

— m. = centroid of cluster C.

* Given two clusterings, choose the one with the
smallest error

 Easy way to reduce SSE: increase K
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K-means Convergence

e (1) Assign each x to its nearest center (minimizes SSE for fixed
centers)

* (2) Choose centroid of all points in the same cluster as cluster
center (minimizes SSE for fixed clusters)

e Cycle through steps (1) and (2) = K-means algorithm

e Algorithm terminates when neither (1) nor (2) results in change of
configuration

— Finite number of ways of partitioning n records into K groups
— If the configuration changes on an iteration, it must have improved SSE

— So each time the configuration changes it must go to a configuration it
has never been to before

— So if it tried to go on forever, it would eventually run out of
configurations
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Will it Find the O
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Will it Find the Optimal Clustering?
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Importance of Initial Centroids
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Will It Find The Optimal Clustering
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Will It Find The Optimal Clustering
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Will It Find The Optimal Clustering
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Will It Find The Optimal Clustering
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Will It Find The Optimal Clustering
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Importance of Initial Centroids
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Problems with Selecting Initial

* Probability of starting with exactly one initial
centroid per ‘real’ cluster is very low

— K selected for algorithm might be different from
inherent K of the data

— Might randomly select multiple initial objects from
same cluster

 Sometimes initial centroids will readjust
themselves in the ‘right’ way, and sometimes

they don’t
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10 Clusters Example
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example
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10 Clusters Example
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10 Clusters Example
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10 Clusters Example
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Solutions to Initial Centroids Problem

e Multiple runs
— Helps, but probability is not on your side

 Sample and use hierarchical clustering to determine
initial centroids

e Select more than k initial centroids and then select
among these the initial centroids
— Select those that are most widely separated

* Postprocessing
— Eliminate small clusters that may represent outliers
— Split clusters with high SSE
— Merge clusters that are ‘close’ and have low SSE
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Limitations of K-means

 K-means has problems when clusters are of
differing
— Sizes
— Densities

— Non-globular shapes

* K-means has problems when the data contains
outliers
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Limitations of K-means: Differing Sizes
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Limitations of K-means: Differing
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Non-globular

tations of K-means:
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Overcoming K-means Limitations
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Overcoming K-means Limitations
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Overcoming K-means Limitations
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K-Means and Outliers

 K-means algorithm is sensitive to outliers
— Centroid is average of cluster members
— QOutlier can dominate average computation

e Solution: K-medoids
— Medoid = most centrally located real object in a cluster

— Algorithm similar to K-means, but finding medoid is
much more expensive

* Try all objects in cluster to find the one that minimizes SSE,
or just try a few randomly to reduce cost
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Cluster Analysis Overview

* Introduction

* Foundations: Measuring Distance (Similarity)
e Partitioning Methods: K-Means

e Hierarchical Methods

* Density-Based Methods

* Clustering High-Dimensional Data

e Cluster Evaluation
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Hierarchical Clustering

* Produces a set of nested clusters organized as
a hierarchical tree

e Visualized as a dendrogram

— Tree-like diagram that records the sequences of
merges or splits
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Strengths of Hierarchical Clustering

* Do not have to assume any particular number
of clusters

— Any number of clusters can be obtained by
‘cutting’ the dendogram at the proper level

 May correspond to meaningful taxonomies

— Example in biological sciences (e.g., animal
kingdom, phylogeny reconstruction, ...)
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Hierarchical Clustering

 Two main types of hierarchical clustering

— Agglomerative:
 Start with the given objects as individual clusters

e At each step, merge the closest pair of clusters until only
one cluster (or K clusters) left

— Divisive:
e Start with one, all-inclusive cluster

e At each step, split a cluster until each cluster contains a
single object (or there are K clusters)
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Agglomerative Clustering Algorithm

 More popular hierarchical clustering technique

e Basic algorithm is straightforward
— Compute the proximity matrix
— Let each data object be a cluster

— Repeat until only a single cluster remains
e Merge the two closest clusters
e Update the proximity matrix

* Key operation: computation of the proximity of
two clusters

— Different approaches to defining the distance between
clusters distinguish the different algorithms
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Starting Situation

e Clusters of individual
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 Some clusters are merged

Intermediate Situation
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« Merge closest clusters (C, and
C.) and update proximity matrix c;

Intermediate Situation
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After Merging
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e Min

e Dist

Defining Cluster Distance

. clusters near each other

. low diameter

: more robust against outliers
ance between centroids
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Original Points

Strength of MIN
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Strength of MIN
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Strength of MIN
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e Can handle non-elliptical shapes
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Limitations of MIN

Original Points
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Original Points

Limitations of MIN
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Limitations of MIN
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e Sensitive to noise and outliers
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Strength of MAX

Original Points
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Strength of MAX

o.‘.é. "
a. a & a LY
e =, St o
° e N e ® '.
06. o 00 -
® Coe
.
T ot
> :’ -
o‘o
& . i
€
e

Original Points

Two Clusters

*
L .’.‘O 3
e e ° O >
ee L e ¢ o
LA I )
L] e ©
.“e * e .Q,
) oo
s oot Q“ 8
.:l e - v '..‘o -
e -
e 8
€
e

61

Wednesday, April 10, 13




Strength of MAX
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* Less susceptible to noise and outliers
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Limitations of MAX
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Limitations of MAX
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Limitations of MAX
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Hierarchical Clustering: Average

 Compromise between Single and Complete
Link

e Strengths

— Less susceptible to noise and outliers

e Limitations

— Biased towards globular clusters
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Cluster Similarity: Ward’s Method

* Distance of two clusters is based on the
increase in squared error when two clusters
are merged

— Similar to group average if distance between
objects is distance squared

* Less susceptible to noise and outliers
* Biased towards globular clusters

* Hierarchical analogue of K-means
— Can be used to initialize K-means
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison

°]

2
@ MIN MAX @

1

o1

(Y o4

o] o1

2
@ Ward’s Method @
Group Average @

1 1
o4 o4

Wednesday, April 10, 13




Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison

Ward’s Method

Group Average

65

Wednesday, April 10, 13




Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison
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Hierarchical Clustering: Comparison

Ward’s Method

Group Average
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Hierarchical Clustering: Comparison

Ward’s Method

Group Average
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Time and Space Requirements

* O(n?) space for proximity matrix

— n = number of objects

e O(n3) time in many cases

— There are n steps and at each step the proximity
matrix must be updated and searched

— Complexity can be reduced to O(n? log(n) ) time for
some approaches
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Hierarchical Clustering: Problems and

* Once a decision is made to combine two
clusters, it cannot be undone

* No objective function is directly minimized

* Different schemes have problems with one or
more of the following:
— Sensitivity to noise and outliers

— Difficulty handling different sized clusters and
convex shapes

— Breaking large clusters
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Cluster Analysis Overview

* Introduction

* Foundations: Measuring Distance (Similarity)
e Partitioning Methods: K-Means

* Hierarchical Methods

* Density-Based Methods

* Clustering High-Dimensional Data

 Cluster Evaluation
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Density-Based Clustering Methods

* Clustering based on density of data objects in a
neighborhood

— Local clustering criterion

 Major features:
— Discover clusters of arbitrary shape
— Handle noise

— Need density parameters as termination condition
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DBSCAN: Basic Concepts

* Two parameters:
— Eps: Maximum radius of the neighborhood
* Ng(a): {p €D | dist(q,p) = Eps}

— MinPts: Minimum number of points in an Eps-
neighborhood of that point

 Apointpisdirectly density-reachable from a point
g w.r.t. Eps and MinPts if

— p belongs to N (q) o MinPts = 5

— Core point condition: . 5
|NEpS(q)| > MinPts . )
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Density-Reachable, Density-Connected

* Apoint pis density-reachable from a
point q w.r.t. Eps, MinPts if there is a
chain of points
qQ=pP,Py- P, =P
such that p+1 is directly density-
reachable from p.

* Apoint pis density-connected to a
point q w.r.t. Eps, MinPts if there is a
point o such that both p and g are
density-reachable from o w.r.t. Eps
and MinPts

* Cluster = set of density-connected
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DBSCAN: Classes of Points

 Apointisacore pointif it has more than a
specified number of points (MinPts) within Eps
— At the interior of a cluster

 Aborder point has fewer than MinPts within Eps,
but is in the neighborhood of a core point

— At the outer surface of a cluster

 Anoise pointis any point that is not a core point
or a border point

— Not part of any cluster
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DBSCAN: Core, Border, and Noise
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DBSCAN Algorithm

* Repeat until all points have been processed
— Select a point p

— If pis core point then

* Retrieve and remove all points density-reachable from p w.r.t. Eps
and MinPts; output them as a cluster

e “Discards” all noise points (how?)
* Discovers clusters of arbitrary shape
e Fairly robust against noise
e Runtime: O(n?), space: O(n)
— O(n * timeToFindPointsInNeighborhood)
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DBSCAN: Core, Border and Noise Points
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When DBSCAN Works Well

Clusters

Original Points

76
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When DBSCAN Does NOT Work Well

(MinPts=4, large Eps)

Original Points

e Varying densities

* High-dimensional data

(MinPts=4, small Eps)

77
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DBSCAN: Determining Eps and MinPts

* |dea: for points in a cluster, their k-th nearest neighbors are at roughly the
same distance
— Noise points have the k-th nearest neighbor at farther distance

* Plot the sorted distance of every point to its k-th nearest neighbor
— Choose Eps where sharp change occurs
— MinPts =k

 ktoo large: small clusters labeled as noise

50

B
o o o o

o

4th Nearest Neighbor Distance
2 a8 B 8 e s

o

5
0 1 1 1 1 1
0 500 1000 1500 2000 2500 3000
Points Sorted According to Distance of 4th Nearest Neighbor 78
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Sensitive to Parameters

DBSCAN

Figure 8. DBScan
results for DS1 with
MinPts at 4 and Eps at
(a)0.5and (b) 0.4.

MinPts at 4 and Eps at

(a)5.0, (b) 3.5, and

results for DS2 with
(c) 3.0.

Figure 9. DBScan

(c)

(b)

(a)
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Cluster Analysis Overview

* Introduction

* Foundations: Measuring Distance (Similarity)
e Partitioning Methods: K-Means

* Hierarchical Methods

* Density-Based Methods

e Clustering High-Dimensional Data

 Cluster Evaluation
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Clustering High-Dimensional Data

 Many applications: text documents, DNA micro-array
data
 Major challenges:
— Irrelevant dimensions may mask clusters
— Curse of dimensionality for distance computation
— Clusters may exist only in some subspaces

e Methods

— Feature transformation, e.g., PCA and SVD
* Some useful only when features are highly correlated/redundant

— Feature selection: wrapper or filter approaches

— Subspace-clustering: find clusters in all subspaces
 CLIQUE
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Curse of Dimensionality

* Graphs on the right adapted from
Parsons et al. KDD Explorations ‘04

* Datain only one dimension is
relatively packed

* Adding a dimension “stretches” the
objects across that dimension, moving
them further apart

— High-dimensional data is very sparse
* Distance measure becomes
meaningless

— For many distributions, distances
between objects become more similar in
high dimensions

Dimension b

Dmensionc

R e 15

Dimension a

| 1
90 0s 1.0 15 29
Dimension a

(b) 6 Objects in One Unit Bin

Dimension b

Dimension a

(c) 4 Objects in One Unit Bin
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CLIQUE (Clustering In QUEst)

* Automatically identifies clusters in sub-spaces

* Exploits monotonicity property

— If a set of points forms a dense cluster in d dimensions, they also
form a cluster in any subset of these dimensions

* Aregion is dense if the fraction of data points in the region exceeds the
input model parameter g

* Sound familiar? Apriori algorithm...
* Algorithm is both density-based and grid-based

— Partitions each dimension into the same number of equal-length
intervals

— Partitions an m-dimensional data space into non-overlapping
rectangular units

— Cluster = maximal set of connected dense units within a subspace
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CLIQUE Algorithm

Find all dense regions in 1-dim space for each attribute.
This is the set of dense 1-dim cells. Let k=1.

Repeat until there are no dense k-dim cells

— k=k+1

— Generate all candidate k-dim cells from dense (k-1)-dim
cells

— Eliminate cells with fewer than € points

Find clusters by taking union of all adjacent, high-
density cells of same dimensionality

Summarize each cluster using a small set of inequalities
that describe the attribute ranges of the cells in the
cluster
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Strengths and Weaknesses of CLIQUE

* Strengths

— Automatically finds subspaces of the highest dimensionality that
contain high-density clusters

— Insensitive to the order of objects in input and does not presume
some canonical data distribution

— Scales linearly with input size and has good scalability with
number of dimensions

* Weaknesses
— Need to tune grid size and density threshold
— Each point can be a member of many clusters

— Can still have high mining cost (inherent problem for subspace
clustering)

— Same density threshold for low and high dimensionality
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Cluster Analysis Overview

* Introduction

* Foundations: Measuring Distance (Similarity)
e Partitioning Methods: K-Means

* Hierarchical Methods

* Density-Based Methods

* Clustering High-Dimensional Data

* Cluster Evaluation

Wednesday, April 10, 13



Cluster Validity on Test Data

Table 5.9. K-means Clustering Results for LA Document Data Set

Cluster | Entertainment | Financial | Foreign | Metro | National | Sports | Entropy | Purity
1 3 5 40 506 96 27 1.2270 | 0.7474

2 4 7 280 29 39 2 1.1472 | 0.7756

3 1 1 1 7 4 671 0.1813 | 0.9796

4 10 162 3 119 73 2 1.7487 | 0.4390

5 331 22 5 70 13 23 1.3976 | 0.7134

6 5 358 12 212 48 13 1.5523 | 0.5525
Total 354 555 341 943 P 738 1.1450 | 0.7203

entropy For each cluster, the class distribution of the data is calculated first, i.e., for cluster j

purit

we compute p;;, the ‘probability’ that a member of cluster 7 belongs to class ¢ as follows:
pij = My;/m;, where m; is the number of values in cluster j and m,; is the number of values
of class ¢ in cluster 3. Then using this class distribution, the entropy of each cluster 7 is
calculated using the standard formula e; = Zle pij logs pij, where the L is the number of
classes. The total entropy for a set of clusters is calculated as the sum of the entropies of each
cluster weighted by the size of each cluster, i.e., e = Zfil Tie;, where my; is the size of cluster

1, K is the number of clusters, and m is the total number of data points.

y Using the terminology derived for entropy, the purity of cluster 3, is given by purity; =
max p;; and the overall purity of a clustering by purity = Zfil U purity;.
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Cluster Validity

e Clustering: usually no ground truth available

* Problem: “clusters are in the eye of the
beholder...”

 Then why do we want to evaluate them?
— To avoid finding patterns in noise
— To compare clustering algorithms

— To compare two sets of clusters

— To compare two clusters
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Clusters found in Random Data
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Clusters found in Random Data
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Clusters found in Random Data
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Measuring Cluster Validity Via
Correlation

* Two matrices
— Similarity Matrix
— “Incidence” Matrix

* One row and one column for each object

* Entryis 1if the associated pair of objects belongs to the same cluster,
otherwise O

* Compute correlation between the two matrices

— Since the matrices are symmetric, only the correlation between
n(n-1) / 2 entries needs to be calculated.

* High correlation: objects close to each other tend to be in
same cluster

* Not a good measure when clusters can be non-globular and
intertwined
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Measuring Cluster Validity Via
Correlation
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Similarity Matrix for Cluster Validation

* Order the similarity matrix with respect to cluster labels and
inspect visually
— Block-diagonal matrix for well-senarated clusters
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Similarity Matrix for Cluster Validation

e Clusters in random data are not so crisp
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Similarity Matrix for Cluster Validation

e Clusters in random data are not so crisp

K-means
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Similarity Matrix for Cluster Validation

e Clusters in random data are not so crisp

1
0.9t ..

o8t LV
0.7
06| "
0.5
04} |
03l, +
0.2}~

o1l

.. ‘
oL’ °
0 0.2 0.4 0.6 0.8 1

Complete Link

Wednesday, April 10, 13




Similarity Matrix for Cluster Validation
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Sum of Squared Error

e For fixed number of clusters, lower SSE indicates better
clustering

— Not necessarily true for non-globular, intertwined clusters

e Can also be used to estimate the number of clusters
— Run K-means for different K, compare SSE
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When SSE

s Not So Great
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Comparison to Random Data or
Clustering

 Need a framework to interpret any measure
— E.g., if measure = 10, is that good or bad?

e Statistical framework for cluster validity

— Compare cluster quality measure on random data or
random clustering to those on real data

 If value for random setting is unlikely, then cluster results are
valid (cluster = non-random structure)

* For comparing the results of two different sets of
cluster analyses, a framework is less necessary

— But: need to know whether the difference between
two index values is significant
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Statistical Framework for SSE

 Example: found 3 clusters, got SSE = 0.005 for given data set

 Compare to SSE of 3 clusters in random data

— Histogram: SSE of 3 clusters in 500 sets of random data points (100 points from
range 0.2...0.8 for x and y)

— Estimate mean, stdev for SSE on random data
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Statistical Framework for Correlation

 Compare correlation of incidence and
proximity matrices for well-separated data

versus random data
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Cluster Cohesion and Separation

* Cohesion: how closely related are objects in a cluster
— Can be measured by SSE (m. = centroid of cluster i):

SSE =3 ® (x—m,)’ E(x—y)

i xeC xyeC

* Separation: how well-separated are clusters
— Can be measuregﬁy:%twﬂag-g&%gr sum of squares (m =

. separation
cohesion
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Cohesion and Separation Example

e Note: BSS + SSE = constant
— Minimize SSE = get max. BSS

m
& X ! b 6— X ¢
1 m, 2 3 4 m, 5

K=1 cluster: SSE=(1 _3)2 +(2 _3)2 +(4 _3)2 +(5 —3)2 =10

BSS=4 X3 —3)2 =0
Total =10+0=10

K=2 cl :
clusters SSE=(1-1.5)* +(2 —1.5)* + (4 —4.5)* + (5 —4.5)* =1

BSS=2 X3 —1.5)> +2%4.5-3)’ =9
Total =1+9=10
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Silhouette Coefficient

 Combines ideas of both cohesion and separation

* For an individual object i
— Calculate a, = average distance of i to the objects in its
cluster
— Calculate b, = average distance of i to objects in
another cluster C, choosing the C that minimizes b.

— Silhouette coefficient of i = (b.-a;) / max{a,b.}

e Range: [-1,1], but typically between 0 and 1
 The closer to 1, the better

e Can calculate the Average
objects

over all
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Final Comment on Cluster Validity

“The validation of clustering structures is the
most difficult and frustrating part of cluster
analysis.

Without a strong effort in this direction, cluster
analysis will remain a black art accessible only
to those true believers who have experience
and great courage.”

Algorithms for Clustering Data, Jain and Dubes
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Summary

* Cluster analysis groups objects based on their
similarity (or distance) and has wide
applications

 Measure of similarity (or distance) can be
computed for all types of data

 Many different types of clustering algorithms
— Discover different types of clusters

 Many measures of clustering quality, but
absence of ground truth always a challenge
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Chapter 6. Cluster Analysis

e What is Cluster Analysis?
e Types of Data in Cluster Analysis
e A Categorization of Major Clustering Methods
e Partitioning Methods
e Hierarchical Methods
e Density-Based Methods
e Grid-Based Methods
e Model-Based Methods
e Clustering High-Dimensional Data
e Constraint-Based Clustering
y

e Outlier Analysis

e Summary
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Constraint-Based Cluster Analysis

* Need user feedback: Users know their applications best

* Less parameters but more user-desired constraints, e.g., an ATM allocation
problem: obstacles and desired clusters
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Classification of Cluster Constraints

e Constraints on individual objects (do selection first)
— Cluster only houses worth over $300K

e Constraints on distance or similarity functions
— Weighted functions, obstacles (e.g., rivers, lakes)

e Constraints on clustering parameters
— # of clusters, MinPts, etc.

e Constraints on properties of individual clusters

— Contain at least 500 valued customers and 5000 ordinary
ones (to place service station)

* Semi-supervised: giving small training sets as
“constraints” or hints
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 K-medoids preferable to k-means
— Avoids ATM in the middle of a lake...

* Visibility graph and shortest path

— pvisible from q, if straight line does not intersect
obstacle

— Visibility graph connects only visible points

* Triangulation and micro-clustering
— Partition region into triangles
— Micro-clusters = clusters inside triangle

— Work with micro-clusters instead of individual
objects

* Indices for faster shortest-path computation
— VVindex: indices for any pair of obstacle vertices

— MV index: indices for any pair of micro-cluster and
obstacle vertex
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Chapter 7. Cluster Analysis

e What is Cluster Analysis?

e Types of Data in Cluster Analysis

e A Categorization of Major Clustering Methods
e Partitioning Methods

e Hierarchical Methods

e Density-Based Methods

e Grid-Based Methods

e Model-Based Methods

e Clustering High-Dimensional Data

e Constraint-Based Clustering

e Outlier Analysis

T

e Summary
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What Is Outlier Discovery?

* What are outliers?

— The set of objects are considerably dissimilar from the
remainder of the data

— Examples in sports: Michael Jordan, Wayne Gretzky
* Problem: Define and find outliers in large data sets

e Applications:
— Credit card fraud detection
— Telecom fraud detection
— Customer segmentation
— Medical analysis
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Challenges

* How many outliers are there in the data?

 Method is unsupervised

— Validation can be quite challenging (just like for
clustering)

* Finding needle in a haystack

 Working assumption:

— Number of “normal” observations >> number of
“abnormal” observations in the data
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Outlier Detection Schemes

* General Steps

— Build a profile of the “normal”
behavior

* E.g., patterns or summary statistics
for the overall population

— Use the “normal” profile to detect
outliers

e Qutlier = observations whose ©
characteristics differ significantly
from the normal profile O i ,\-}i,’\

 Types of anomaly detection schemes ‘
— Graphical & Statistical-based
— Distance-based
— Model-based O

III
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Graphical Approaches

* Boxplot (1-D), Scatter plot (2-D), Spin plot (3-D)
* Limitations

— Time consuming

— Subjective

Q}T T

)
: T €1
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Statistical Approaches

 Based on parametric model describing the distribution of the
data (e.g., normal distribution)

— Outlier has low probability with respect to a probability
distribution model of the data

* Apply a statistical test that depends on
— Data distribution
— Parameter of distribution (e.g., mean, stdev)
— Number of expected outliers (confidence limit)

Probability
>

0

Data Values
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Grubbs’ Test for Univariate Data

 Assumption: data comes from normal distribution
 Detects one outlier at a time, remove the outlier, and repeat
— H,: There is no outlier in data

— H,: There is at least one outlier

* Grubbs’ test statistic for two-sided test: s: sample stdev

_ o significance level

« Reject H, if: (t-distribution with N-2 degrees of freedom)

2

G > (N _1) t(O(/N,N—2)

JN N =2+7

(/N ,N-2)
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Limitations of Statistical Approaches

 Most of the tests are for a single attribute

* |[n many cases, the data distribution may not
be known

* For high-dimensional data, it may be difficult
to estimate the true distribution
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Distance-Based Approaches

* Data is represented as a vector of features

 Three major approaches

— Nearest-neighbor based

— Density based

— Clustering based
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Nearest-Neighbor Based Approach

 Compute the distance between every pair of data
points

 There are various ways to define outliers:

— Data points for which there are fewer than p
neighboring points within a distance D

— The top n data points whose distance to the k-th
nearest neighbor is greatest

— The top n data points whose average distance to the k
nearest neighbors is greatest
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Distance to K-NN Example
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Figure 10.4. Outlier score based on the
distance to fifth nearest neighbor.
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Choosing K for K-NN
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Figure 10.5. Outlier score based on the dis-
tance to the first nearest neighbor. Nearby out-
liers have low outlier scores.
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Figure 10.6. Outlier score based on distance
to the fifth nearest neighbor. A small cluster
becomes an outlier.
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K-NN And Differing Density
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Figure 10.7. Outlier score based on the dis-

tance to the fifth nearest neighbor. Clusters of
differing density.
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Density-Based: LOF approach

* For each point, compute the density of its local neighborhood

 Compute local outlier factor (LOF) of a point p as the average of
the ratios of the density of sample p and the density of its
nearest neighbors

e Qutliers are points with largest LOF value

Cy. - -
In the NN approach, p, is

not considered as outlier,
while LOF approach find
both p, and p, as outliers

.. pl
.
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LOF Example
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Figure 10.8. Relative density (LOF) outlier scores for two-dimensional points of Figure 10.7.
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Clustering-Based

e Qutlier = point that does not strongly
belong to any cluster

 Example

— Points in small cluster are
candidate outliers

— Compute distance between
candidate points and non-
candidate clusters

— If candidate points are far from
all non-candidate clusters, they
are outliers
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