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An Idiot’s guide to Support vector 
machines (SVMs)

R. Berwick, Village Idiot

SVMs:  A New 
Generation of Learning Algorithms

• Pre 1980:  
– Almost all learning methods learned linear decision surfaces.  
– Linear learning methods have nice theoretical properties

• 1980’s 
– Decision trees and NNs allowed efficient learning of non-

linear decision surfaces
– Little theoretical basis and all suffer from local minima

• 1990’s 
– Efficient learning algorithms for non-linear functions based 

on computational learning theory developed
– Nice theoretical properties.
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Key Ideas

• Two independent developments within last 
decade
– Computational learning theory
– New efficient separability of non-linear 

functions that use “kernel functions”
• The resulting learning algorithm is an 

optimization algorithm rather than a greedy 
search.

Statistical Learning Theory

• Systems can be mathematically described as 
a system that 
– Receives data (observations) as input and 
– Outputs a function that can be used to predict 

some features of future data.
• Statistical learning theory models this as a 

function estimation problem
• Generalization Performance (accuracy in 

labeling test data) is measured
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Organization

• Basic idea of support vector machines
– Optimal hyperplane for linearly separable 

patterns
– Extend to patterns that are not linearly 

separable by transformations of original data to 
map into new space – Kernel function

• SVM algorithm for pattern recognition

Unique Features of SVM’s and 
Kernel Methods

• Are explicitly based on a theoretical model of 
learning 

• Come with theoretical guarantees about their 
performance 

• Have a modular design that allows one to 
separately implement and design their 
components

• Are not affected by local minima
• Do not suffer from the curse of dimensionality
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Support Vectors

• Support vectors are the data points that lie 
closest to the decision surface

• They are the most difficult to classify
• They have direct bearing on the optimum 

location of the decision surface
• We can show that the optimal hyperplane

stems from the function class with the lowest 
“capacity” (VC dimension).

Recall: Which Hyperplane?

• In general, lots of possible 
solutions for a,b,c.

• Support Vector Machine 
(SVM) finds an optimal 
solution. (wrt what cost?)
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Support Vector Machine (SVM)
Support vectors

Maximize
margin

• SVMs maximize the margin
around the separating 
hyperplane.

• The decision function is 
fully specified by a subset 
of training samples, the 
support vectors.

• Quadratic programming
problem

• Text classification method 
du jour

Separation by Hyperplanes

• Assume linear separability for now:
– in 2 dimensions, can separate by a line
– in higher dimensions, need hyperplanes

• Can find separating hyperplane by linear 
programming (e.g. perceptron):
– separator can be expressed as ax + by = c
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Linear Programming / Perceptron

Find a,b,c, such that
ax + by ≥ c for red points
ax + by ≤ c for green points.

Which Hyperplane?

In general, lots of possible
solutions for a,b,c.
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Which Hyperplane?

• Lots of possible solutions for a,b,c.
• Some methods find a separating hyperplane, 

but not the optimal one (e.g., perceptron)
• Most methods find an optimal separating 

hyperplane
• Which points should influence optimality?

– All points
• Linear regression
• Naïve Bayes

– Only “difficult points” close to decision 
boundary

• Support vector machines
• Logistic regression (kind of)

Support Vectors again for linearly 
separable case

• Support vectors are the elements of the 
training set that would change the position of 
the dividing hyper plane if removed.

• Support vectors are the critical elements of 
the training set

• The problem of finding the optimal hyper 
plane is an optimization problem and can be 
solved by optimization techniques (use 
Lagrange multipliers to get into a form that 
can be solved analytically).
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Support Vectors: Input vectors for which

w0
Tx + b0 = 1     or      w0

Tx + b0 = -1 

ρ0

d+

d-

Definitions
Define the hyperplane H such that:
xi•w+b ≥ +1 when yi =+1 
xi•w+b ≤ -1 when yi =-1

d+ = the shortest distance to the closest positive point

d- = the shortest distance to the closest negative point

The margin of a separating hyperplane is d+ + d-.

H

H1 and H2 are the planes:
H1: xi•w+b = +1 
H2: xi•w+b = -1
The points on the planes 
H1 and H2 are the 
Support Vectors

H1

H2
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Moving a support vector 
moves the decision 
boundary

Moving the other vectors 
has no effect

The algorithm to generate the weights proceeds in such a way that 
only the support vectors determine the weights and thus the boundary

Maximizing the margin

d+

d-

We want a classifier with as big margin as possible. 

Recall the distance from a point(x0,y0) to a line:
Ax+By+c = 0 is|A x0 +B y0 +c|/sqrt(A2+B2)

The distance between H and H1 is:
|w•x+b|/||w||=1/||w||

The distance between H1 and H2 is: 2/||w||

In order to maximize the margin, we need to minimize ||w||. With the 
condition that there are no datapoints between H1 and H2:
xi•w+b ≥ +1 when yi =+1 
xi•w+b ≤ -1 when yi =-1        Can be combined into yi(xi•w) ≥ 1 

H1

H2
H
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We now must solve a quadratic 
programming problem

• Problem is: minimize ||w||, s.t. discrimination 
boundary is obeyed, i.e., min f(x) s.t. g(x)=0, 
where
f: ½ ||w||2 and
g: yi(xi•w)-b  = 1 or [yi(xi•w)-b] - 1 =0

This is a constrained optimization problem
Solved by Lagrangian multipler method

paraboloid 2-x2-2y2

flatten

Intuition: intersection of two functions at a
tangent point.
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flattened paraboloid 2-x2-2y2 with superimposed constraint
x2 +y2 = 1

flattened paraboloid f: 2-x2-2y2=0 with superimposed 
constraint   g: x +y = 1

Maximize when the constraint line g is tangent to the inner ellipse
contour line of f
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flattened paraboloid f: 2-x2-2y2=0 with superimposed constraint  g: 
x +y = 1;  at tangent solution p, gradient vectors of  f,g are parallel 
(no possible move to incr f that also keeps you in region g)

Maximize when the constraint line g is tangent to the inner ellipse
contour line of f

Two constraints

1. Parallel normal constraint (= gradient constraint 
on f, g solution is a max)

2. G(x)=0 (solution is on the constraint line)

We now recast these by combining f, g as the 
Lagrangian
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Redescribing these conditions

• Want to look for solution point p where

• Or, combining these two as the Langrangian L & 
requiring derivative of L be zero: 

( ) ( )
( ) 0

f p g p
g x

λ∇ = ∇
=

( , ) ( ) ( )
( , ) 0

L x f x g x
x
λ λ
λ

= −
∇ =

How Langrangian solves constrained 
optimization

( , ) ( ) ( ) where
( , ) 0

L x f x g x
x
λ λ
λ

= −
∇ =

Partial derivatives wrt x recover the parallel normal
constraint
Partial derivatives wrt λ recover the g(x,y)=0

In general, ( , ) ( ) ( )i ii
L x f x g xλ λ= +∑
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In general

( , ) ( ) ( ) a function of  variables

 for the ' ,   for the . Differentiating gives  equations, each
 set to 0. The  eqns differentiated wrt each  give the gradient conditions; 
the

i ii

i

L x f x g x n m

n x s m n m
n x

α α

α

= + +

+
∑

  eqns differentiated wrt each  recover the constraints i im gα

Gradient max of f
constraint condition g

In our case, f(x): ½|| w||2 ; g(x): yi(w.xi +b)-1=0 so Lagrangian is

L= ½|| w||2 - Σαi[yi(w.xi +b)-1]

Lagrangian Formulation 

• In the SVM problem the Lagrangian is

• From the derivatives = 0 we get

( )21
2

1 1

0,

l l

P i i i i
i i

i

L y b

i

α α

α
= =

≡ − ⋅ + +

≥ ∀

∑ ∑w x w

1 1
, 0

l l

i i i i i
i i

y yα α
= =

= =∑ ∑w x
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The Lagrangian trick
Reformulate the optimization problem:
A ”trick” often used in optimization is to do an Lagrangian 
formulation of the problem.The constraints will be replaced 
by constraints on the Lagrangian multipliers and the training 
data will occur only as dot products.

Gives us the task:
Max L = ∑αi – ½∑αiαjxi•xj,
Subject to: 

w = ∑αiyixi

∑αiyi = 0

What we need to see: xiand xj (input vectors) appear only in the form
of dot product – we will soon see why that is important.

The Dual problem

• Original problem: fix value of f and find α
• New problem: Fix the values of α, and solve the 

(now unconstrained) problem max L(α, x)
• Ie, get a solution for each α, f*(α)
• Now minimize this over the space of α
• Kuhn-Tucker theorem: this is equivalent to 

original problem
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At a solution p

• The the constraint line g and the contour lines of f
must be tangent

• If they are tangent, their gradient vectors  
(perpindiculars) are parallel 

• Gradient of g must be 0 – I.e., steepest ascent & so 
perpendicular to f

• Gradient of f must also be in the same direction as 
g

Inner products

The task:
Max L = ∑αi – ½∑αiαjxi•xj,
Subject to: 

w = ∑αiyixi

∑αiyi = 0

Inner product
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Why should inner product kernels be involved in pattern 
recognition?

-- Intuition is that they provide some measure of similarity 

-- cf Inner product in 2D between 2 vectors of unit length 
returns the cosine of the angle between them. 

e.g. x = [1, 0]T ,  y = [0, 1]T

I.e. if they are parallel inner product is 1

xT x = x.x = 1

If they are perpendicular inner product is 0 

xT y = x.y = 0

Inner products

But…are we done???
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Not Linearly Separable

Find a line that penalizes
points on “the wrong side”.
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Transformation to separate
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Non Linear SVMs

a b

( )( ) ( )2x a x b x a b x ab− − = − + +

{ }2 ,x x x

• The idea is to gain linearly separation by 
mapping the data to a higher dimensional space
– The following set can’t be separated by a linear 

function, but can be separated by a quadratic one

– So if we map 
we gain linear separation

Problems with linear SVM

=-1
=+1

What if the decision function is not linear? What transform would separate these?
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Ans: polar coordinates!
Non-linear SVM 1

The Kernel trick

=-1
=+1

Imagine a function φ that maps the data into another space:
φ=Rd→Η

=-1
=+1

Remember the function we want to optimize: Ldual = ∑αi – ½∑αiαjxi•xj,
xi and xj as a dot product. We will have φ(xi) • φ(xj) in the non-linear case.
If there is a ”kernel function” K such as K(xi,xj) = φ(xi) • φ(xj), we
do not need to know φ explicitly. One example: 

Rd Η

φ

We’ve already seen a nonlinear
transform…

• What is it???

• tanh(β0xTxi + β1)
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Examples for Non Linear SVMs

( ) ( ), 1 pK = ⋅ +x y x y

( ) { }2

22, expK σ
−= − x yx y

( ) ( ), tanhK κ δ= ⋅ −x y x y

1st is polynomial (includes x•x as special case)
2nd is radial basis function (gaussians)
3rd is sigmoid (neural net activation function)

Inner Product Kernels

Mercer’s theorem is 
satisfied only for some 
values of β0 and β1

tanh(β0xTxi + β1)Two layer perceptron

The width σ2 is 
specified apriori

exp(1/(2σ2)||x-xi||2)Radial-basis function 
network

Power p is specified 
apriori by the user

(xTxi + 1)pPolynomial learning 
machine

CommentsInner Product Kernel
K(x,xi), I = 1, 2, …, N

Type of Support Vector 
Machine
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Non-linear svm2
The function we end up optimizing is:
Max Ld = ∑αi – ½∑αiαjK(xi•xj),

Subject to: 
w = ∑αiyixi

∑αiyi = 0

Another kernel example: The polynomial kernel
K(xi,xj) = (xi•xj + 1)p, where p is a tunable parameter.
Evaluating K only require one addition and one exponentiation
more than the original dot product.

Examples for Non Linear SVMs 2 –
Gaussian Kernel

Gaussian

Linear
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Nonlinear rbf kernel

Admiral’s delight w/ difft kernel 
functions
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Overfitting by SVM

Building an SVM Classifier

• Now we know how to build a separator for 
two linearly separable classes

• What about classes whose exemplary 
examples are not linearly separable?
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