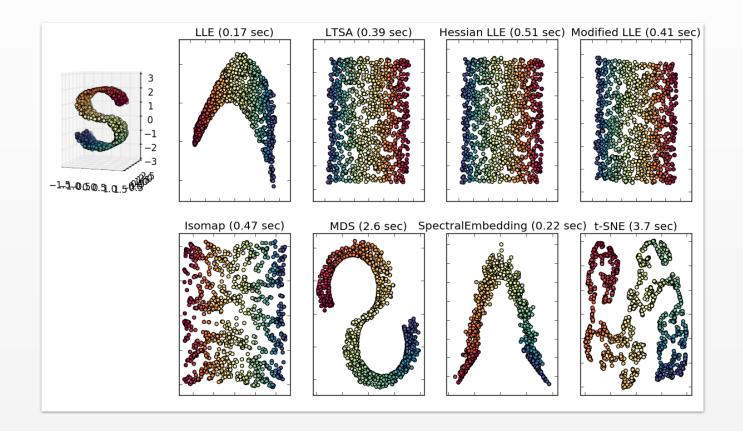


Dimensionality Reduction

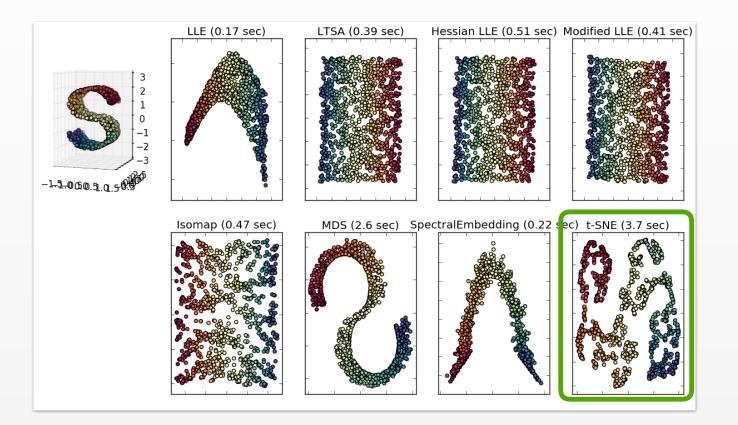
Shantanu Jain

Manifold Learning



Idea: Perform a *non-linear* dimensionality reduction in a manner that preserves proximity (but not distances)

Manifold Learning



Visualizing data using **t-SNE**

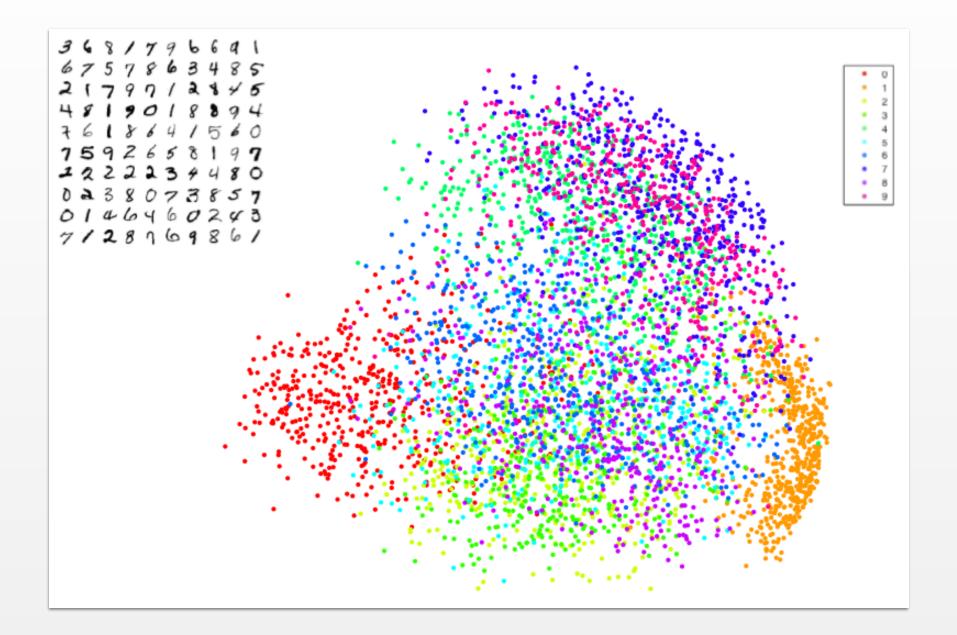
[PDF] jmlr.org

L Maaten, G Hinton - Journal of Machine Learning Research, 2008 - jmlr.org

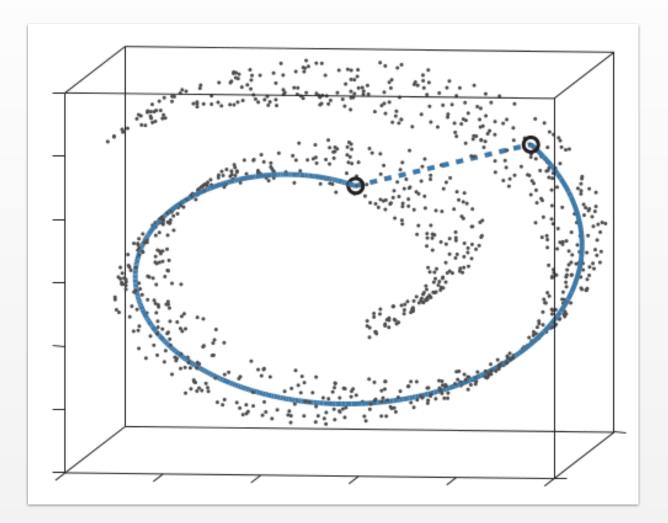
Abstract We present a new technique called" **t-SNE**" that visualizes high-dimensional data by giving each datapoint a location in a two or three-dimensional map. The technique is a variation of Stochastic Neighbor Embedding (Hinton and Roweis, 2002) that is much ...

Cited by 1771 Related articles All 35 versions Cite Save

PCA on MNIST Digits

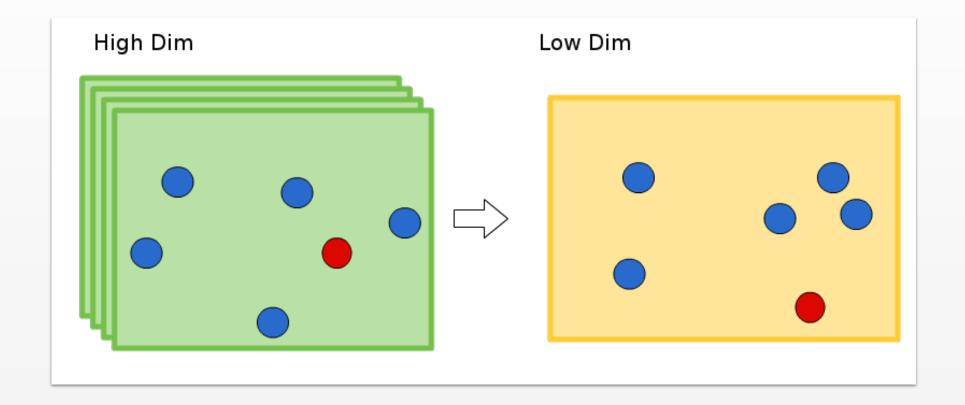


Swiss Roll



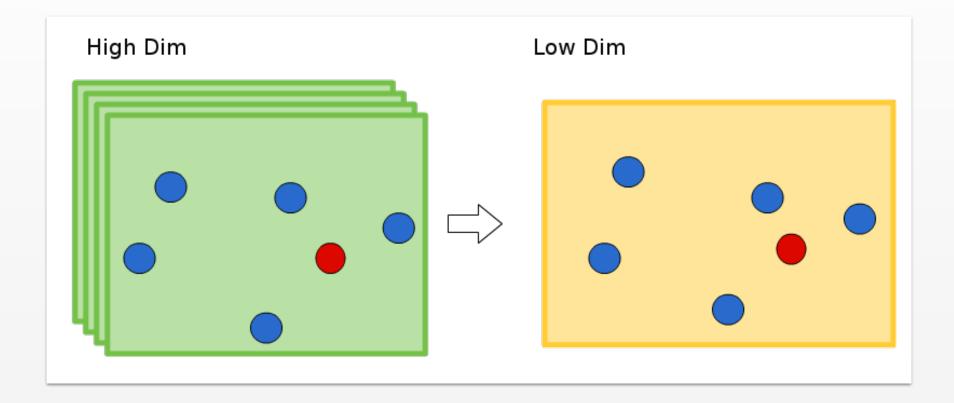
Euclidean distance is not always a *good* notion of proximity

Non-linear Projection

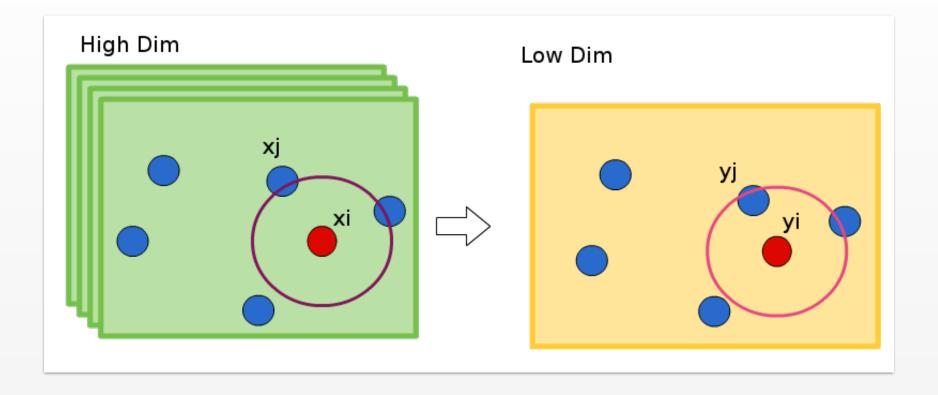


Bad projection: relative position to neighbors changes

Non-linear Projection



Intuition: Want to preserve *local* neighborhood



Similarity in *high* dimension

Similarity in *low* dimension

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

$$q_{j|i} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

• Similarity of datapoints in High Dimension

$$p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

• Similarity of datapoints in Low Dimension

$$q_{j|i} = rac{exp(-||y_i - y_j||^2)}{\sum_{k \neq i} exp(-||y_i - y_k||^2)}$$

Cost function

 $C = \sum_{i} KL(P_i || Q_i) = \sum_{i} \sum_{j \neq i} p_{j|i} \log \frac{p_{j|i}}{q_{j|i}} \quad Q_i = [q_{j|i}]_{j \neq i}$ Vector with entries $Q_i = [q_{j|i}]_{j \neq i}$

 $P_i = [p_{i|i}]_{j \neq i}$

Idea: Optimize y_i via gradient descent on C

Gradient has a surprisingly simple form

$$\frac{\partial C}{\partial y_i} = \sum_{j \neq i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

The gradient update with momentum term is given by

$$Y^{(t)} = Y^{(t-1)} + \eta \frac{\partial C}{\partial y_i} + \beta(t)(Y^{(t-1)} - Y^{(t-2)})$$

 $Y^{(t)}$ is a matrix containing the low-dimension representation of all the points at iteration t

Gradient has a surprisingly simple form

$$\frac{\partial C}{\partial y_i} = \sum_{j \neq i} (p_{j|i} - q_{j|i} + p_{i|j} - q_{i|j})(y_i - y_j)$$

The gradient update with momentum term is given by

$$Y^{(t)} = Y^{(t-1)} + \eta \frac{\partial C}{\partial y_i} + \beta(t)(Y^{(t-1)} - Y^{(t-2)})$$

Problem: *p*_{jli} is not equal to *p*_{ilj}

Symmetric SNE

Minimize a single KL divergence between a joint probability distribution

$$C = KL(P||Q) = \sum_{i} \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

 $\sum_{i} \sum_{j \neq i} p_{j|i} \log \frac{q_{j|i}}{p_{i|i}}$

• The obvious way to redefine the pairwise similarities is

$$p_{ij} = \frac{\exp(-||x_i - x_j||^2/2\sigma^2)}{\sum_{k \neq l} \exp(-||x_l - x_k||^2/2\sigma^2)}$$

$$q_{ij} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq l} exp(-||y_l - y_k||^2)}$$

If the i^{th} point is an outlier all p_{ij} 's are small. Which means that the cost function C is insensitive to the positioning of the i^{th} point's representation in the lower dimensional space

Symmetric SNE

• Minimize a single KL divergence between a joint probability distribution

$$C = KL(P||Q) = \sum_{i} \sum_{j \neq i} p_{ij} \log \frac{p_{ij}}{q_{ij}}$$

Solution for weakly determined outlier points.

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N}$$

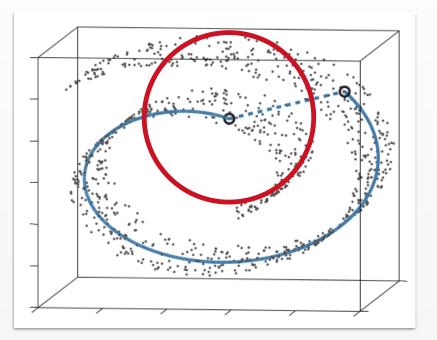
$$q_{ij} = \frac{exp(-||y_i - y_j||^2)}{\sum_{k \neq I} exp(-||y_I - y_k||^2)}$$

The total probability of the i^{th} point is at least $\frac{1}{2N}$ $p_i = \sum_{j \neq i} p_{ij}$

 $=\frac{\sum_{j\neq i} p_{j|i} + \sum_{j\neq i} p_{i|j}}{2N}$

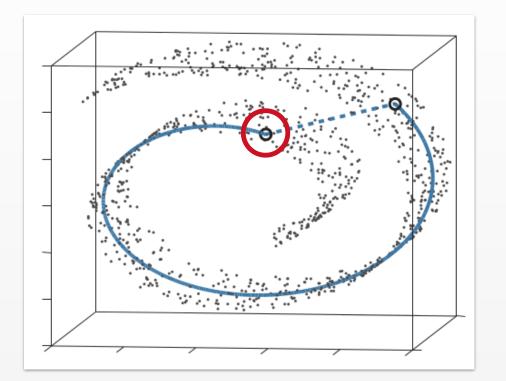
 $= \frac{1 + \sum_{j \neq i} p_{i|j}}{2N}$

 $\geq \frac{1}{2N}$



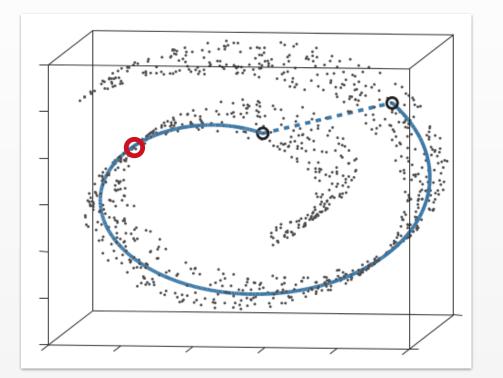
$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N} \qquad p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

Bad *o*: Neighborhood is not local in manifold



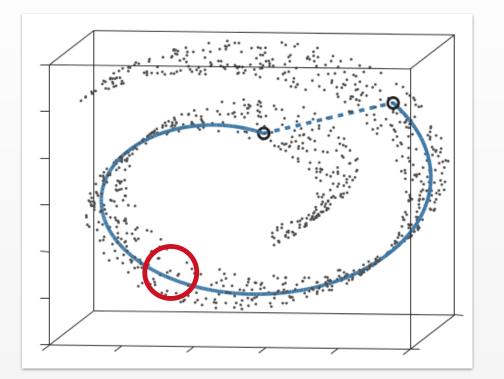
$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N} \qquad p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

Solution: Define σ_i per point. Good σ_i : Neighborhood contains 5-50 points



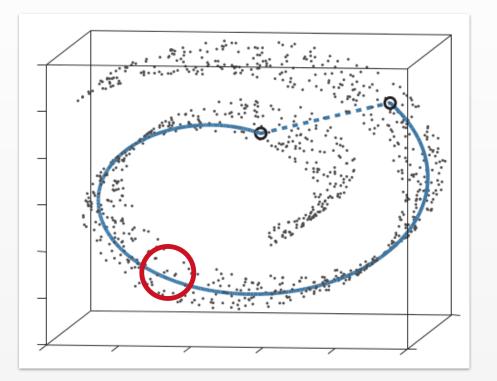
$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N} \qquad p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

Solution: Define σ_i per point.



$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N} \qquad p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

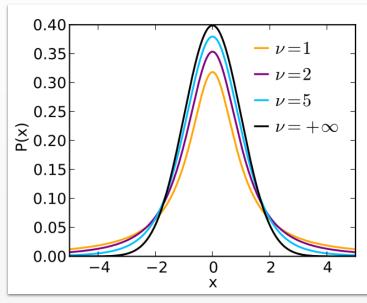
Solution: Define σ_i per point.



$$\operatorname{Perp}(\mathbf{p}_{j|i}) = \exp H(\mathbf{p}_{j|i}) = \exp^{-\sum_{j} \mathbf{p}_{j|i} \log \mathbf{p}_{j|i}}$$

Set σ_i to ensure constant perplexity

t-SNE: SNE with a t-Distribution



Similarity in High Dimension

$$p_{ij} = \frac{p_{j|i} + p_{i|j}}{2N} \qquad p_{j|i} = \frac{\exp(-||x_i - x_j||^2/2\sigma_i^2)}{\sum_{k \neq i} \exp(-||x_i - x_k||^2/2\sigma_i^2)}$$

Similarity in Low Dimension

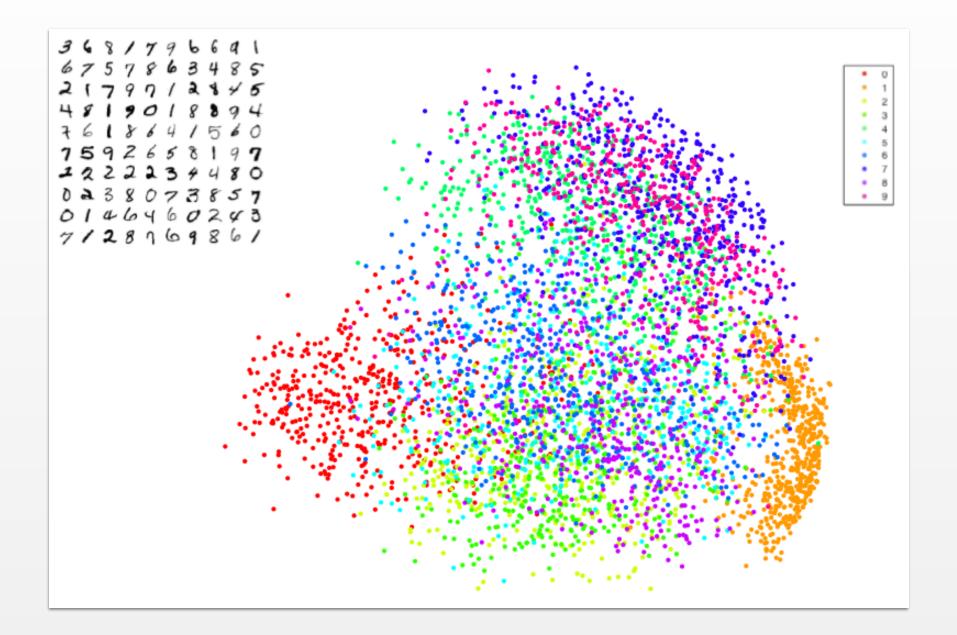
$$rac{\Gammaig(rac{
u+1}{2}ig)}{\sqrt{
u\pi}\,\Gammaig(rac{
u}{2}ig)}ig(1+rac{x^2}{
u}ig)^{-rac{
u+1}{2}}$$

$$q_{ij} = rac{(1+||y_i-y_j||^2)^{-1}}{\sum_{k
eq l} (1+||y_k-y_l||^2)^{-1}}$$

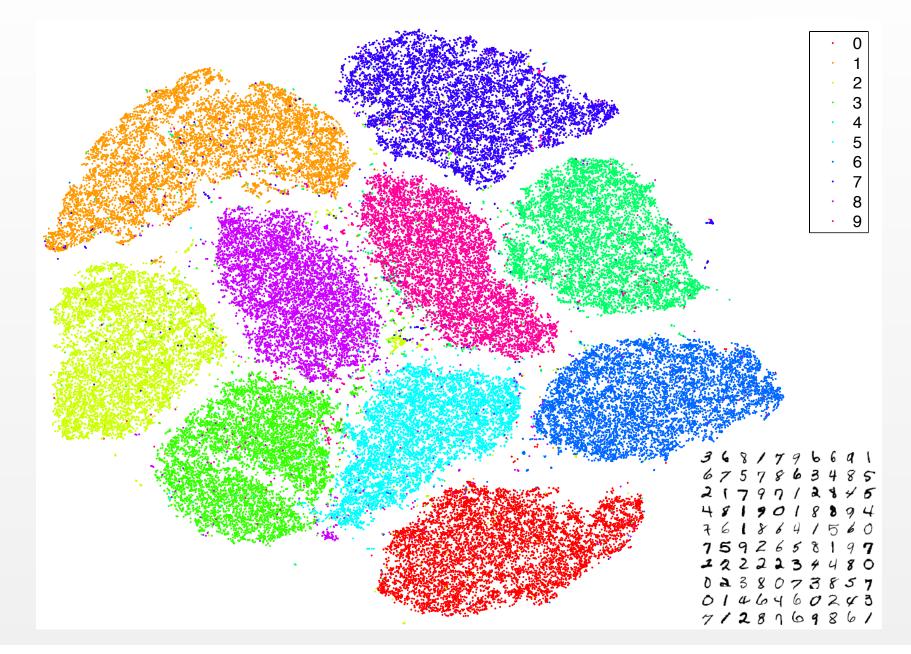
Gradient

$$\frac{\partial C}{\partial y_i} = 4 \sum_{j \neq i} (p_{ij} - q_{ij})(1 + ||y_i - y_j||^2)^{-1}(y_i - y_j)$$

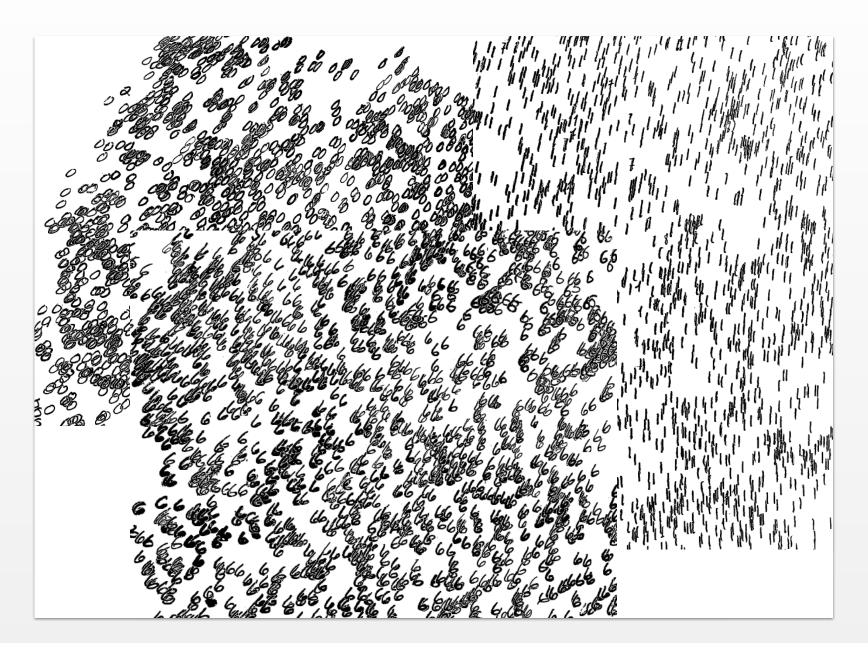
PCA on MNIST Digits



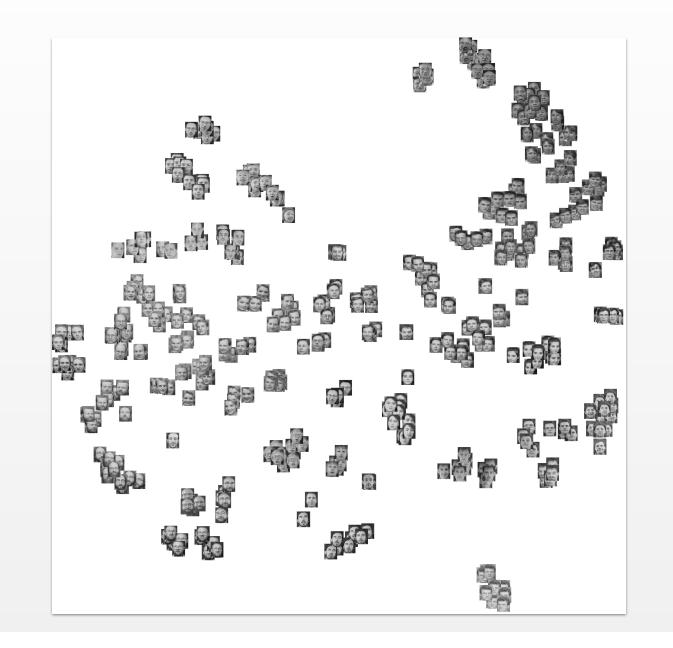
t-SNE on MNIST Digits



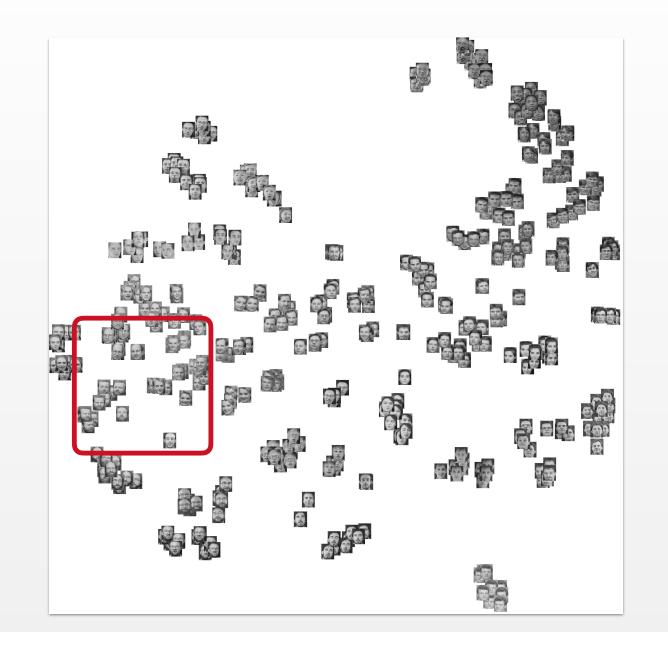
t-SNE on MNIST Digits



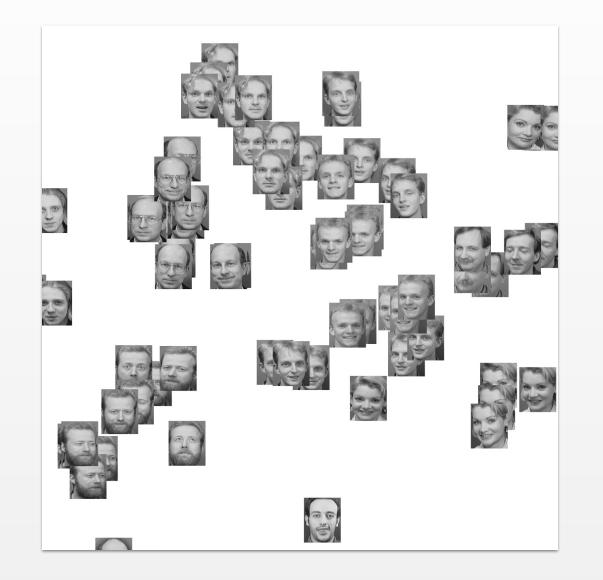
t-SNE on Olivetti Faces



t-SNE on Olivetti Faces



t-SNE on Olivetti Faces



Manifold Learning

