
Feature Generation: 
LDA and PCA

Theodoridis  Chs. 5.8, 6.1-6.3 (see also DHS, Ch 3.8)



Feature Generation

Purpose:

Given a training set, transform existing features 
to a smaller set that maintains as much 
classification-related information as possible

• i.e. ‘Pack’ information into a smaller feature space, 
removing redundant feature information
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Linear Discriminant Analysis
(LDA)

Goal

Find a line in feature space on which to project all 
samples, such that the samples are well 
(maximally) separated

Projection

w is a unit vector (with length one): points 
projected onto line in direction of w

• Magnitude of w is not important (scales y) 3
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FIGURE 3.5. Projection of the same set of samples onto two different lines in the di-
rections marked w. The figure on the right shows greater separation between the red
and black projected points. From: Richard O. Duda, Peter E. Hart, and David G. Stork,
Pattern Classification. Copyright c© 2001 by John Wiley & Sons, Inc.



Criterion: FDR

Criterion

We use Fisher’s Discriminant Ratio to 
evaluate how well a particular projection 
separates classes on the projection line
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FDR for LDA
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Between class scatter

Covariance matrix

Within class scatter

Recall:

Modified Criterion for LDA:
(Raleigh Quotient)
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Finding the Optimal 
Projection Direction w

Our Goal: Find w maximizing FDR(w)

• achieved if w chosen such that:

• where lambda is the largest eigenvalue of 

• For two classes, to get the direction of w, use:

• This is the optimal reduction of m features to 
one for class separation
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A Classifier for ‘Free’

Linear classifier also defined by LDA:

w0 not defined directly by LDA; for 
Gaussians with identical covariances optimal 
classifier is:
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(class 1 if >= 0, class two if < 0)





LDA, Cont’d

If original distributions multimodal and 
overlapping:

Classes for samples will overlap in the 
projection (little use)

Generalization for multiple classes is 
discussed further in the Theodoridis text.
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Karhunen-Loève Transform (Principal 
Components Analysis - PCA)

Key Idea:

Model points in feature space by their 
deviation from the global mean in the 
primary directions of variation in feature space

• Defines a new, smaller feature space, often 
with more discriminating information

Directions of variation are computed from 
the global covariance matrix (unsupervised)
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PCA Transform
(Abridged)

1.  Compute mean, covariance matrix for training set

• e.g. MATLAB:  m = mean(Train);   C = cov( Train.data );

2.  Find the (unit-length) eigenvectors of the covariance matrix 
(see DHS Appendix A2.7) - complexity O(D3) for DxD matrix

• e.g. MATLAB: [ V, L ] = eig( C )

3.  Sort eigenvectors by decreasing eigenvalue

4.  Choose k eigenvectors with largest eigenvalues (principal 
components)

5.  Return components as columns of a matrix, and associated 
eigenvalues (in a diagonal matrix) 12



Selection of Components

k Largest Eigenvalues

Correspond to eigenvectors in primary 
directions of variation within the data

• Large eigenvalues may be interpreted as the 
“inherent dimensionality” of ‘signal’ in the data

• Often only a small number of large eigenvalues

m - k Remaining Eigenvalues

Generally contain noise (random variation)
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Why PCA?
Features are mutually uncorrelated (artifact 
of covariance matrix being real and 
symmetric)

The feature space reduction produced by a 
PCA with k components minimizes the 
mean-squared error between samples in the 
original space, and the newly transformed 
space, for any k-element transform matrix:
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The New Order (Feature Space)

Feature Space after PCA:

Becomes coefficients of the principal 
components (first, including all d 
eigenvectors):

To reduce feature space size, we limit the 
number of principle components to k:
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Coefficients (Bishop, Ch. 12)

Coefficients (ai)

For each eigenvector used (component), 
difference between inner product with 
original sample and global mean
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PCA Revisited
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Example: MNIST (Bishop, Ch. 12)
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M: # Principal Components Utilized
(max. components = 784 (28x28))

Eigenvectors shown in yellowish-green: eigenvalues above images

Eigenvalue spectrum for digit data:






