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Abstract
In this paper we show how to boost products of
simple base learners. Similarly to trees, we call
the base learner as a subroutine but in an iter-
ative rather than recursive fashion. The main
advantage of the proposed method is its sim-
plicity and computational efficiency. On bench-
mark datasets, our boosted products of decision
stumps clearly outperform boosted trees, and on
the MNIST dataset the algorithm achieves the
second best result among no-domain-knowledge
algorithms after deep belief nets. As a sec-
ond contribution, we present an improved base
learner for nominal features and show that boost-
ing the product of two of these new subset indi-
cator base learners solves the maximum margin
matrix factorization problem used to formalize
the collaborative filtering task. On a small bench-
mark dataset, we get experimental results com-
parable to the semi-definite-programming-based
solution but at a much lower computational cost.

1. Introduction
ADABOOST (Freund & Schapire, 1997) is one of the best
off-the-shelf learning methods developed in the last decade.
It constructs a classifier in an incremental fashion by adding
simple classifiers to a pool, and using their weighted “vote”
to determine the final classification. ADABOOST was later
extended to multi-class classification problems (Schapire
& Singer, 1999). Although various other attempts have
been made to deal directly with the multi-class setting,
ADABOOST.MH has become the gold standard of multi-
class boosting due to its simplicity and versatility.

In practice, boosting simple learners like decision stumps
has often been found to be sub-optimal. Indeed, the class
of linear combinations of stumps is not a universal approx-
imator (e.g., the XOR problem is not in the class), and it
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is easy to find even toy examples for which there is a mis-
match between the function class and the data distribution.
The most common solution for overcoming this problem
is to use trees as base learners that call the simple base
learner in a recursive fashion to partition the input space.
As the main contribution of this paper, we propose and
explore another possibility of learning products of simple
base learners. The main advantage of the proposed method
is its simplicity and computational efficiency. Similarly to
trees, we call the base learner as a subroutine but in an itera-
tive rather than recursive fashion. In the optimization loop
we fix all but one of the base classifier terms, temporar-
ily re-label the points, and call the base learner using the
“virtual” labels. On benchmark datasets, ADABOOST.MH
using products of decision stumps definitely outperforms
boosted trees. As a highlight, note that the 1.26% test er-
ror on the MNIST dataset is the best reported error rate
among no-domain-knowledge algorithms after Hinton and
Salakhutdinov’s (2007) deep belief nets (1.00%); it is sig-
nificantly better than the error rates of support vector ma-
chines (1.4%), randomly initialized back-propagation neu-
ral nets (1.6%), or boosted trees (1.53%).

As a second contribution, we propose an improved base
learner for nominal features. In the standard approach a
nominal base learner selects only one value to test in each
boosting iteration. Here we show how we can optimize
a nominal base learner that acts as a subset indicator us-
ing the same computational effort. We will also show that
boosting the product of two indicator base learners solves
the maximum margin matrix factorization (MMMF) prob-
lem (Srebro et al., 2005) used to formalize and solve the
collaborative filtering problem. We carried out experiments
on a small benchmark dataset and compared the method to
the semi-definite-programming-based (SDP) solution (Sre-
bro et al., 2005). The results are slightly worse, but the
computational effort needed to produce them was an or-
der of magnitude smaller than in the case of SDP MMMF.
Since ADABOOST.MH scales linearly with the data size,
the approach has a greater prospective on large collabora-
tive filtering problems.
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The paper is organized as follows. First we describe the
algorithm in Section 2, then we present the experimental
results in Section 3. Lastly we draw some brief conclusions
and make a few pertinent remarks.

2. The algorithm
In Section 2.1 we first describe ADABOOST.MH to the ex-
tent that is necessary to understand our contribution. For
further details we refer the reader to the original paper
(Schapire & Singer, 1999). Section 2.2 contains details on
the base learning, including our contribution on the subset
indicator base learner. Then we describe the new product
base learner in Section 2.3.

2.1. ADABOOST.MH
For the formal description let X = (x1, . . . ,xn) be the
n × d observation matrix, where the elements x(j)

i
of the

d-dimensional observation vectors xi ∈ X are either real
numbers, or they come from an unordered set of cardinality
M . In this latter case, without loss of generality, we will
assume that x(j)

i
∈ I = {1, . . . ,M}. The column vectors

of X will be denoted by x(j), j = 1, . . . , d. We are also
given a label matrix Y = (y1, . . . ,yn) of dimension n×K
where yi ∈ {+1,−1}K . In multi-class classification one
and only one of the elements of y1 is +1, whereas in multi-

label (or multi-task) classification yi is arbitrary, meaning
that the observation xi can belong to several classes at the
same time. In the former case we will denote the index of
the correct class by �(xi).

The goal of the ADABOOST.MH algorithm ((Schapire &
Singer, 1999), Figure 1) is to return a vector-valued classi-
fier f : X → RK with a small Hamming loss

RH
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=
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�=1
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sign
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1

by minimizing its upper bound (the exponential margin
loss)
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(1)
where f�(xi) is the �th element of f(xi). The user-defined
weights W(1) =

�
w(1)

i,�

�
are usually set either uniformly to

w(1)
i,�

= 1/(nK), or, in the case of multi-class classifica-
tion, to

w(1)
i,�

=

�
1
2n

if � = �(xi) (i.e., if yi,� = 1),
1

2n(K−1) otherwise (i.e., if yi,� = −1)
(2)

to create K well-balanced one-against-all classification
problems. ADABOOST.MH builds the final classifier f as

a sum of base classifiers h(t) : X → RK returned by a
base learner algorithm BASE(X,Y,W(t)) in each itera-
tion t. In general, the base learner should seek to minimize
the base objective

E
�
h,W(t)

�
=

n�

i=1

K�

�=1

w(t)
i,�

exp
�
−h�(xi)yi,�

�
. (3)

Using the weight update formula of line 5 (Figure 1), it can
be shown that

Re

�
f (T ),W(1)

�
=

T�

t=1

E
�
h(t),W(t)

�
,

so minimizing (3) in each iteration is equivalent to mini-
mizing (1) in an iterative greedy fashion. By obtaining the
multi-class prediction

��(x) = arg max
�

f (T )
�

(x),

it can also be proven that the “traditional” multi-class loss
(or one-error)

R
�
f (T )

�
=

n�

i=1

I
�

�(xi) �= ��(xi)
�

has an upper bound KRe

�
f (T ),W(1)

�
if the weights are

initialized uniformly, and
√

K − 1Re

�
f (T ),W(1)

�
with

the multi-class initialization (2). This justifies the mini-
mization of (1).

2.2. Learning the base classifier
In this section we will first describe the details of multi-
class base learning, then we will briefly define decision
stumps used on numerical features, and finally we will in-
troduce a new technique for optimizing a nominal base
learner. There are two generic learning schemes avail-
able that are used to transform a scalar binary base clas-
sifier ϕ : R → {+1,−1} (or ϕ : I → {+1,−1})
into a (real) vector-valued base classifier h. In discrete

ADABOOST.MH, h(x) is represented by

h(x) = αvϕ(x),

where α ∈ R+ is the base coefficient and v ∈ {+1,−1}K

is the vote vector, whereas in real ADABOOST.MH the
vote vector v is real-valued and α = 1 (therefore it can
be omitted). In discrete ADABOOST.MH it can be shown
that for a given ϕ, (3) is minimized by

v� =

�
1 if µ�+ > µ�−

−1 otherwise,
� = 1, . . . ,K, (4)

and

α =
1
2

ln

�
K

�=1

�
µ�+I {v� = +1} + µ�−I {v� = −1}

�

�
K

�=1

�
µ�−I {v� = +1} + µ�+I {v� = −1}

� ,
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ADABOOST.MH(X,Y,W(1), BASE(·, ·, ·), T )

1 for t← 1 to T

2
�
α(t),v(t),ϕ(t)(·)

�
← BASE

�
X,Y,W(t)

�

3 h(t)(·)← α(t)v(t)ϕ(t)(·)
4 for i← 1 to n for �← 1 to K

5 w(t+1)
i,�

← w(t)
i,�

exp
�
−h(t)

�
(xi)yi,�

�

�
n

i�=1

�
K

��=1 w(t)
i�,�� exp

�
−h(t)

�� (xi�)yi�,��
�

6 return f (T )(·) =
�

T

t=1 h(t)(·)

Figure 1. The pseudocode of the ADABOOST.MH algorithm. X is the observation matrix, Y is the label matrix, W(1) is the initial
weight matrix, BASE(·, ·, ·) is the base learner algorithm, and T is the number of iterations. α(t) is the base coefficient, v(t) is the vote
vector, ϕ(t)(·) is the scalar base classifier, h(t)(·) is the vector-valued base classifier, and f (T )(·) is the final (strong) classifier.

where

µ�− =
n�

i=1

wi,�I {ϕ(xi) �= yi,�}, � = 1, . . . ,K (5)

is the weighted per-class error rate, and

µ�+ =
n�

i=1

wi,�I {ϕ(xi) = yi,�} � = 1, . . . ,K. (6)

The goal of the scalar base learner is to return a ϕ that max-
imizes the edge

γ(ϕ) =
n�

i=1

K�

�=1

wi,�v�ϕ(xi)yi,�. (7)

In real ADABOOST.MH, ϕ is found in the same way by
maximizing the edge (7) using the discrete votes (4), but
then we set

v� =
1
2

ln
µ�+

µ�−
, � = 1, . . . ,K.

This procedure finds the minimizer of (3) in discrete
ADABOOST.MH. In real ADABOOST.MH it is suboptimal
(corresponding to the two-stage greedy functional gradient
descent approach of (Mason et al., 2000)); however, it en-
sures that E(t)(h) < 1, so the algorithm will converge.

The simplest scalar base learner used in practice on numer-
ical features is the decision stump, a one-decision two-leaf
decision tree of the form

ϕj,b(x) =

�
1 if x(j) ≥ b,

−1 otherwise,

where j is the index of the selected feature and b is the
decision threshold. If the features are pre-ordered before
the first boosting iteration, a decision stump maximizing
the edge (7) can be found very efficiently in Θ(ndK) time
(making the total running time Θ

�
nd(log n + KT )

�
).

To handle nominal features x(j)
i
∈ I(j) = {1, . . . ,M (j)}

with a possibly large number of values M (j), we introduce
a novel subset indicator base learner (Figure 2). The stan-
dard procedure (Schapire & Singer, 1999) is equivalent to
using stumps on one-hot encoded nominal features: only
one of the nominal values ι ∈ I(j) is tested in each itera-
tion using base learners of the form

ϕj,ι(x) =

�
1 if x(j) = ι,

−1 otherwise.
(8)

Optimizing this selector base learner takes
Θ (ndK + KΣ) time, where Σ =

�
d

j=1 M (j) is the
number of all the different feature values. Hence, to obtain
a strong learner that potentially uses (tests) Ω(M (j))
values for each feature, we will need Ω

�
(ndK + KΣ)Σ

�

operations, which can be prohibitive if Σ is large. On the
other hand, we saw that we can optimize a base learner that
makes a decision on all values of I(j) in each iteration,
using essentially the same number Θ (ndK + KΣ) of op-
erations per iteration as the selector base learner. Formally,
we consider base learners of the form

ϕj,u(x) = ux(j) , (9)

where u is a vector over the index set I(j). In the
base learner, we initialize u randomly, and then we op-
timize v and u in an alternating iteration until con-
vergence is achieved. Convergence is guaranteed since
E

�
αvϕj,u,W

�
is bounded from below by zero, it must de-

crease in each iteration, and the decrease is bounded away
from zero because the weights wi,� are bounded away from
zero. In practice INDICATORBASE always stopped after a
few iterations. There is no guarantee that the global mini-
mum of the base objective will be found, but this is not a
problem in ADABOOST.MH: the boosting loop can con-
tinue with any base learner h with E

�
h,W(t)

�
< 1.

Another advantage of the new indicator base learner (be-
sides being faster) is that the vote vector v is shared among
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INDICATORBASE(X,Y,W)

1 for j ← 1 to d � all (nominal) features

2 (αj ,vj ,uj)← BESTINDICATOR(x(j),Y,W, I(j)) � x(j) �=
�
x(j)

1 , . . . , x(j)
n

�

3 j∗ ← arg min
j

E
�
αjvjϕj,uj ,W

�

4 return
�
αj∗ ,vj∗ ,ϕj∗,uj∗ (·)

�

BESTINDICATOR(x,Y,W, I)

1 for ι ∈ I
2 for �← 1 to K

3 γ+
ι,�
← γ−

ι,�
← 0

4 uι ← RANDOM(±1)
5 for i← 1 to n for �← 1 to K

6 if wi,�yi,� > 0 then
7 γ+

xi,�
← γ+

xi,�
+ wi,�yi,�

8 else
9 γ−

xi,�
← γ−

xi,�
− wi,�yi,�

10 α← 0, v← 0
11 while TRUE

12 αprev ← α, vprev ← v � save current optimal α and v
13 for �← 1 to K

14 v� ← sign

�
�

ι∈I
(γ+

ι,�
− γ−

ι,�
)uι

�
or v� ← 1

2 ln
P

ι∈I(γ
+
ι,�I{uι>0}+γ

−
ι,�I{uι<0})

P
ι∈I(γ

−
ι,�I{uι>0}+γ

+
ι,�I{uι<0})

15 α← 1
2 ln

PK
�=1

P
ι∈I(γ

+
ι,�I{uι>0}+γ

−
ι,�I{uι<0})

PK
�=1

P
ι∈I(γ

−
ι,�I{uι>0}+γ

+
ι,�I{uι<0}) or α← 1

16 if E
�
αvϕu,W

�
≥ E

�
αprevvprevϕu,W

�
then

17 return (αprev,vprev,u)
18 αprev ← α, uprev ← u � save current optimal α and u
19 for ι ∈ I

20 uι ← sign

�
K�

�=1

(γ+
ι,�
− γ−

ι,�
)v�

�
or uι ← 1

2 ln
PK

�=1(γ
+
ι,�I{v�>0}+γ

−
ι,�I{v�<0})

PK
�=1(γ

−
ι,�I{v�>0}+γ

+
ι,�I{v�<0})

21 α← 1
2 ln

P
ι∈I

PK
�=1(γ

+
ι,�I{v�>0}+γ

−
ι,�I{v�<0})

P
ι∈I

PK
�=1(γ

−
ι,�I{v�>0}+γ

+
ι,�I{v�<0}) or α← 1

22 if E
�
αvϕu,W

�
≥ E

�
αprevvϕuprev ,W

�
then

23 return (αprev,v,uprev)

Figure 2. The pseudocode of the subset indicator base learner. Between lines 12 and 17 we optimize v and α given a fixed u, and
between lines 18 and 23 we optimize u and α given a fixed v. The two alternatives in lines 14, 15, 20, and 21 refer to discrete and real
ADABOOST.MH, respectively.

the selectors while in the standard learner we learn a vote
vector for each selector. This means that the capacity of
the base classifier is considerably reduced (compared to the
sum of Σ selectors), suggesting that the algorithm is less
susceptible to overfitting. Sharing the vote vector may also
help to “pick up” dependencies between feature values in
the case where there is a structure in the feature space (e.g.,
using discrete ADABOOST.MH, each indicator ϕj,u clus-

ters the feature values I(j) into two groups).

In a broader sense, the proposed learner is related to Co-
hen’s (1996) model which allows set-valued features as
well as the common real-valued and nominal features. The
main difference is that in (Cohen, 1996) it is the features

of the observations that can take a subset of a large set of
possible values but the decision functions are still selectors
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of the form (8), whereas what we propose here are subset-
indicator decision functions (9). In another related algo-
rithm (SLIPPER), Cohen and Singer (1999) build rules that
are conjunctions of selectors (8) using a growing/pruning
procedure. The selectors in the same base rule can use dif-
ferent features, whereas INDICATORBASE acts on different
values of one feature. Although superficially similar to our
method, both approaches use different base classifiers and
different algorithms to learn the classifiers. On the other
hand, they can be incorporated into our approach with just
a few modifications to INDICATORBASE.

2.3. The product base learner
The goal of the procedure is to optimize base learners of
the form

h(·) = α
m�

j=1

vjϕj(·),

where the vote vectors vj are multiplied element-wise, and
the number of terms m is a complexity parameter that
should be validated (similarly to the size of decision trees).
We suppose that ϕj(·) is a simple base classifier equipped
with a base learner that returns the optimal α, vj , and ϕj(·),
as described in Section 2.2. To maximize the edge (7), we
follow a simple iterative approach (Figure 3). In each iter-
ation we fix each base learner except for one ϕj , and max-
imize the edge with respect to ϕj . Because of the product
form of the edge (7), we can carry out this maximization
by simply calling the base learner of ϕj with “virtual” la-
bels defined as the sign of the product of the real labels
and the outputs of the remaining base learners (line 7 in
Figure 3). The procedure is guaranteed to converge since
in each batch of m iterations at least one “virtual” sign
y�

i,�
must change (otherwise the base learner in line 8 re-

turns the same set of m classifiers, and we have equality in
line 9) and the number of different sign vectors is finite. As
with subset indicator base learners, we found that in prac-
tice PRODUCTBASE always returns after a few iterations.

REMARK 1: PRODUCTS OF STUMPS. In experiments (see
Section 3) we found that ADABOOST.MH with products of
stumps achieves excellent test results on benchmark data
sets, for which, at this point, we can only provide a par-
tial explanation. First, it is easy to see that the algorithm
solves the XOR problem: a product of two stumps can ob-
viously implement the XOR function. As an extension, the
product of d stumps can implement the parity function on
any subsequence of the (binary or thresholded real-valued)
feature vector up to d elements. It can also be shown that
the class of sums of products of d stumps is a universal ap-
proximator if and only if the observation space X is at most
d-dimensional.2 Second, it is clear that the class of sums of

2Here we shall only give an outline of the constructive proof: f
can be set to an arbitrary value on any hypercube in Rd, indepen-
dently of the rest of the space by carefully selecting and weighting

products of stumps is a subclass of decision trees: there are
constraints on how homogeneous regions are created, and
each base learner term of the product has a “global” con-
tribution. Nevertheless, we also found that one product of
stumps does not have enough capacity to achieve a low test
error even if m is set to infinity: PRODUCTBASE underfits
the data, probably due to the greediness of the optimization
loop. Hence, unlike trees, products cannot be used as stan-
dalone strong learners. On the other hand, boosting prod-
ucts is less susceptible to overfitting than boosting trees, for
which we also provide some experimental evidence.

REMARK 2: PRODUCTS OF SUBSET INDICATORS. Boost-
ing products of indicator base classifiers (9) is a solution
of maximum margin matrix factorization (MMMF) (Sre-
bro et al., 2005), used to formalize and solve the collabo-
rative filtering problem. Taking the simple case when the
observations consist of two index features x(1) ∈ I(1) and
x(2) ∈ I(2) (for example, movie id’s and user id’s), and
the classification is binary (for example, y = +1 if userx(1)

liked moviex(2) and y = −1 if he or she disliked it), indi-
vidual base classifiers will take the form

h(t)
u(t),z(t)

�
x(1), x(2)

�
= α(t)u(t)

x(1)z
(t)
x(2) ,

where u(t) and z(t) are vectors over I(1) and I(2), respec-
tively. The strong classifier f can then be used to classify
every pair of I(1) × I(2). The resulting M (1) ×M (2) ma-
trix can be expressed as the product of two matrices, an
M (1)×T “user feature” matrix containing the column vec-
tors

√
α(t)u(t), and a T × M (2) “movie feature” matrix

containing the row vectors
√

α(t)z(t). The maximization
of the exponential margin loss (1) leads to a large mar-
gin solution, and all the relevant results on the generaliza-
tion error (e.g., (Schapire et al., 1998)) apply immediately.
Finding two low-rank (or otherwise low-complexity) ma-
trices whose product produces large margins on the train-
ing data is the exact goal of MMMF (Srebro et al., 2005).
In a certain sense, boosting products of two index learners
is related to the semi-definite-programming-based solution
of MMMF as the classical binary ADABOOST is related to
support vector machines.

The algorithm can be applied directly to multi-valued pref-
erences by adding the optimization of the vote vectors v(t).
In this case, the preference prediction matrix becomes a
hyper-matrix with vector-valued elements. The formula-
tion also permits one to boost products of more than two
indices (or to use two or more times a base learner on the
same index) which goes beyond the matrix-decomposition-
based formulation of the collaborative filtering problem. It
is also quite straightforward to combine collaborative fea-
tures with “traditional” numerical or nominal covariates by
allowing mixed products. The main shortcoming of the

products of stumps placed at the corners of the hypercube.
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PRODUCTBASE(X,Y,W, BASE(·, ·, ·),m)

1 for j ← 1 to m

2 ϕj(·)← 1, vj ← 1 � terms are initialized to the constant 1 function

3 α← 1
4 while TRUE for j ← 1 to m

5 ϕ∗(·)←
�

m

j�=1 ϕj�(·), v∗ ←
�

m

j�=1 vj� , α∗ ← α � save current optimal classifier

6 for i← 1 to n for �← 1 to K

7 y�
i,�
← sign

�
yi,�

v∗
�
ϕ∗(xi)

vj�
ϕj(xi)

�
� “virtual” labels

8
�
α,vj ,ϕj(·)

�
← BASE(X,Y�,W)

9 if E
�
α

�
m

j�=1 vj�ϕj� ,W
�
≥ E

�
α∗v∗ϕ∗,W

�
then

10 return
�
α∗,v∗,ϕ∗(·)

�

Figure 3. The pseudocode of the product base learner. m is the number of base classifier terms to be optimized. The vote vectors are
multiplied element-wise in lines 5 and 9. The sign(·) operator in line 7 can be omitted in the case of discrete ADABOOST.MH.

method at this point is that the exponential margin loss (1)
is designed for multi-class or multi-label classification, and
it is sub-optimal if the preferences come from an ordered
set. One of our aims for future study is to examine the pos-
sibility of using product learners in regression or ranking.

3. Experiments
To test the algorithm3, we carried out two sets of experi-
ments. In the first we boosted products of decision stumps
on five benchmark datasets4 using the standard train/test
cuts. We used discrete ADABOOST.MH with multi-class
initial weights (2). We found no overfitting whatsoever in
terms of the number of boosting iterations T (Figure 4),
so instead of validating T and performing an early stop-
ping, we decided to run the algorithm for a long time af-
ter convergence (T = 105 in each experiment), and mea-
sure the average test error R

�
f (T )

�
on the last T/2 iter-

ations. The advantage of this approach is that this esti-
mate is more robust in terms of random fluctuations after
convergence than the error at a given iteration. It is also
a pessimistic estimate of the error when there is a slight
overfitting (since the average is always an upper bound of
the minimum). For the two image datasets we also report
results using ADABOOST.MH with stumps on Haar filters
(Viola & Jones, 2004).5

3The multi-platform C++ source code is available
at http://users.web.lal.in2p3.fr/kegl/
research/multiboost.

4The data sets are available at
yann.lecun.com/exdb/mnist (MNIST),
www.kernel-machines.org/data.html (USPS),
www.ics.uci.edu/˜mlearn/MLRepository.html
(letter, pendigit, isolet), and
www.cs.umn.edu/Research/GroupLens (MovieLens).

5It is not the subject of this paper, however, we give some
details for reproducibility. We used five filter types (“bw” and

We conducted experiments using a range of values for the
number of terms m for which we report the test errors in
Table 1. The optimal number of terms (error rate in bold
face) was selected by a 80%-20% simple validation on the
training set. We compared our algorithm with two versions
of boosted decision trees. We implemented a tree learner
similar to ID3 in our AdaBoost.MH version which uses the
boosting’s base objective (3) (instead of the entropy-based
criterion) to learn stumps in a recursive fashion. Since this
algorithm was more prone to overfitting (last plot in Fig-
ure 4), we validated both the number of leaves N and the
number of boosting iterations T . Table 1 indicates that,
with one exception, boosting products is significantly bet-
ter than boosting trees. We also tested the Weka (Witten
& Frank, 2005) implementation of boosted trees. How-
ever the comparison is slightly unfair for two reasons: first,
the Weka implementation uses ADABOOST.M1 which is
known to be inferior to ADABOOST.MH for multi-class
boosting, and second, the high computational complexity
did not allow us a complete exploration of the hyperpa-
rameter space, so we cannot claim that we have found the
optimal tree size and number of iterations T . Neverthe-
less, these results provide a reasonable idea about what the
novice user’s experience with AdaBoost.

On an absolute scale the results are on a par with the state-
of-the-art results reported in the literature on the same data
sets. In particular, they are the best results obtained by
any ensemble method. We would especially like to under-
line the 1.26% test error on the MNIST dataset, which is
the best reported error rate among generic classification al-

“bwb”, vertical and horizontal, and four-field checkerboard). Due
to the large number of possible filters (order of 105), we selected
just the best of a random 100 in each boosting iteration.
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Figure 4. The “winning” learning curves on the five benchmark datasets indicate no overfitting in terms of the number of boosting
iterations T when products are used. With a tree base learner (last plot), on the other hand, we do observe slight overfitting sometimes.

learner \ data set MNIST USPS UCI pendigit UCI isolet UCI letter
Stump (m = 1) 7.71 (0.05) 6.48 (0.05) 4.97 (0.00) 4.88 (0.07) 14.74 (0.06)
Product / m = 2 1.56 (0.03) 4.92 (0.06) 1.89 (0.02) 3.91 (0.10) 3.65 (0.04)
Product / m = 3 1.26 (0.02) 4.24 (0.04) 2.07 (0.03) 3.97 (0.04) 2.71 (0.02)
Product / m = 4 1.38 (0.02) 4.72 (0.07) 3.95 (0.05) 2.54 (0.06)
Product / m = 5 3.87 (0.07) 2.41 (0.04)
Product / m = 6 3.92 (0.08) 2.40 (0.03)
Product / m = 8 3.89 (0.04) 2.38 (0.04)
Product / m = 10 4.11 (0.04) 2.35 (0.04)
Haar (m = 1) (Viola & Jones, 2004) 1.02 (0.02) 4.29 (0.05)
Haar / Product / m = 2 0.84 (0.02) 3.84 (0.07)
Haar / Product / m = 3 0.87 (0.02) 4.03 (0.06)
Haar / Product / m = 4 0.90 (0.02) 4.05 (0.04)
Tree 1.53 (0.02) 4.73 (0.04) 2.14 (0.04) 3.69 (0.04) 2.62 (0.04)
Haar / Tree 1.08 (0.02) 4.98 (0.05)
AdaBoost.M1 / C4.5 4.05 5.98 2.66 4.81 2.88

Table 1. Test error percentages 100 2
T

PT
t=T/2 R

`
f (t)

´
on benchmark datasets using discrete ADABOOST.MH with products of stumps.

The results with the optimal number of terms m selected by 80%-20% simple validation on the training set are shown in bold. Tree and
Haar/Tree are “in-house” implementations of a tree base learner. In this case both T and the number of leaves N were validated. For
AdaBoost.M1/C4.5 we used the Weka implementation of it.

gorithms6 after Hinton, G. E. and Salakhutdinov’s (2007)
deep belief nets (1.00%); it is significantly better than the
error rates of support vector machines (1.4%) and ran-
domly initialized two-layer back-propagation neural nets
using cross-entropy loss (1.6%).

It seems also quite surprising that we were able to improve
on boosting stumps over the feature space generated by
Haar filters. Boosting stumps over Haar filters is already
one of the best semi-generic method7, achieving similar er-

6Algorithms that do not make explicit use of the fact that the
observation vectors represent images.

7Algorithms that do make explicit use of the fact that the ob-
servation vectors represent images, but not of the fact that the

ror rates to convolutional neural nets (LeCun et al., 1998).
Boosting these feature extractors also outperforms boosting
stumps and even boosting products of stumps (on MNIST).
The feature space has a large dimension (of order 105) and
the Haar filters are well-adapted to natural images, so one
would expect that a simple linear combination over this
space can achieve the best results. While this intuition is
reaffirmed when using trees over the Haar space, we were
genuinely surprised to see that using the product of a small
number of Haar filters as a base learner can significantly
outperform boosting single Haar filters.

images depict characters.
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set WLRA (Marlin, 2004) MMMF SDP (Srebro et al., 2005) ADABOOST
1 rank 2 57.5 max-norm, C = 0.0012 56.2 T = 7275 56.3
2 rank 2 56.2 trace norm, C = 0.24 55.2 T = 9940 54.5
3 rank 1 54.3 max-norm, C = 0.0012 52.7 T = 475 53.9
4 rank 2 55.3 max-norm, C = 0.0012 55.0 T = 9515 56.6
Avg 55.8 54.8 55.3

Table 2. Test error percentages on the MovieLens dataset using the experimental setup of (Srebro et al., 2005). The errors in columns 3
and 5 were taken directly from (Srebro et al., 2005).

In the second set of experiments we tested the algorithm
on a small subset of the MovieLens collaborative filtering
database using the same experimental settings as Srebro et
al. (2005): the data is divided into four sets, for each of the
four test sets the algorithms are trained and validated on the
remaining three in a 3-fold cross validation. The two best
of the three learners are selected and tested on the hold-
out test set. In the case of ADABOOST, we validated the
real/discrete version, the weight initialization, the number
of terms m and the number of iterations T . In each ex-
periment, using real ADABOOST.MH with uniform weight
initialization w(1)

i,�
= 1/(nK) and m = 2 proved to be

the best approach. The results in Table 2 place this ap-
proach between WLRA (Marlin, 2004) and semi-definite-
programming-based MMMF (Srebro et al., 2005). The
computational effort needed to produce the results was an
order of magnitude smaller than in the case of SDP MMMF
(minutes vs. hours). Since ADABOOST.MH scales linearly
with the data size, this approach has a greater prospective
on large collaborative filtering problems.

4. Conclusions
In this paper we described and tested ADABOOST.MH
with products of simple base learners, introduced a new
nominal base learner, and demonstrated that boosting the
products of this new base learners solves the MMMF prob-
lem. We found that boosting products outperforms boost-
ing trees, it is less prone to overfitting, and it is even able to
improve boosting stumps in such complex feature spaces
where boosting stumps is expected to be the state-of-the-
art. The main issues that we foresee to attack in the near
future are 1) the extension of the algorithm to regression
and ranking, and 2) investigating the initializing of the sub-
set indicators in a more sophisticated way than the random
initialization used here.
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