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Exercise 5: Regularization
In this exercise, you will implement regularized linear regression and regularized logistic regression.

Data

To begin, download ex5Data.zip and extract the files from the zip file. This data bundle contains two sets of data, one for
linear regression and the other for logistic regression. It also includes a helper function named 'map_feature.m' which will
be used for logistic regression. Make sure that this function's m-file is placed in the same working directory where you plan
to write your code.

Regularized linear regression

The first part of this exercise focuses on regularized linear regression and the normal equations.

Plot the data

Load the data files "ex5Linx.dat" and "ex5Liny.dat" into your program. These correspond to the "x" and "y" variables that
you will start out with.

Notice that in this data, the input "x" is a single feature, so you can plot y as a function of x on a 2-dimensional graph (try it
yourself):

From looking at this plot, it seems that fitting a straight line might be too simple of an approximation. Instead, we will try
fitting a higher-order polynomial to the data to capture more of the variations in the points.

Let's try a fifth-order polynomial. Our hypothesis will be 

This means that we have a hypothesis of six features, because   are now all features of our regression.

Notice that even though we are producing a polynomial fit, we still have a linear regression problem because the
hypothesis is linear in each feature.

Since we are fitting a 5th-order polynomial to a data set of only 7 points, over-fitting is likely to occur. To guard against this,
we will use regularization in our model.
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Recall that in regularization problems, the goal is to minimize the following cost function with respect to :

The regularization parameter  is a control on your fitting parameters. As the magnitues of the fitting parameters
increase, there will be an increasing penalty on the cost function. This penalty is dependent on the squares of the
parameters as well as the magnitude of . Also, notice that the summation after  does not include 

Normal equations

Now we will find the best parameters of our model using the normal equations. Recall that the normal equations solution to
regularized linear regression is 

The matrix following  is an  diagonal matrix with a zero in the upper left and ones down the other

diagonal entries. (Remember that  is the number of features, not counting the intecept term). The vector  and the

matrix  have the same definition they had for unregularized regression: 

Using this equation, find values for  using the three regularization parameters below:

a.  (this is the same case as non-regularized linear regression)

b. 

c. 

As you are implementing your program, keep in mind that  is an  matrix, because there are  training

examples and  features, plus an  intercept term. In the data provided for this exercise, you were only give the

first power of . You will need to include the other powers of  in your feature vector , which means that the first
column will contain all ones, the next column will contain the first powers, the next column will contain the second powers,
and so on. You can do this in Matlab/Octave with the command

x = [ones(m, 1), x, x.^2, x.^3, x.^4, x.^5];

When you have found the answers for , verify them with the values in the solutions. In addition to listing the values for
each element  of the  vector, we will also provide the L2-norm of  so you can quickly check if your answer is

correct. In Matlab/Octave, you can calculate the L2-norm of a vector x using the command norm(x).

Also, plot the polyomial fit for each value of . You will get plots similar to these:





From looking at these graphs, what conclusions can you make about how the regularization parameter  affects your
model?

Regularized logistic regression

In this 2nd part of the exercise, you will implement regularized logistic regression using Newton's Method. To begin, load
the files 'ex5Logx.dat' and ex5Logy.dat' into your program. This dataset represents the training set of a logistic regression
problem with two features. To avoid confusion later, we will refer to the two input features contained in 'ex5Logx.dat' as 
and . So in the 'ex5Logx.dat' file, the first column of numbers represents the feature , which you will plot on the
horizontal axis, and the second feature represents , which you will plot on the vertical axis.

After loading the data, plot the points using different markers to distinguish between the two classifications. The
commands in Matlab/Octave will be:

x = load('ex5Logx.dat'); 
y = load('ex5Logy.dat');

figure

% Find the indices for the 2 classes
pos = find(y); neg = find(y == 0);

plot(x(pos, 1), x(pos, 2), '+')
hold on
plot(x(neg, 1), x(neg, 2), 'o')

After plotting your image, it should look something like this:

We will now fit a regularized regression model to this data.

Recall that in logistic regression, the hypothesis function is 

 

  

Let's look at the  parameter in the sigmoid function .

In this exercise, we will assign  to be all monomials (meaning polynomial terms) of  and  up to the sixth power: 



To clarify this notation: we have made a 28-feature vector  where .

Remember that  was the first column of numbers in your 'ex5Logx.dat' file and  was the second column. From now on,
we will just refer to the entries of  as , , and so on instead of their values in terms of  and .

To save you the trouble of enumerating all the terms of , we've included a Matlab/Octave helper function named
'map_feature' that maps the original inputs to the feature vector. This function works for a single training example as
well as for an entire training. To use this function, place 'map_feature.m' in your working directory and call

x = map_feature(u, v)

This assumes that the two original features were stored in column vectors named 'u' and 'v.' (If you had only one training
example, each column vector would be a scalar.) The function will output a new feature array stored in the variable 'x.' Of
course, you can use any names you'd like for the arguments and the output. Just make sure your two arguments are
column vectors of the same size.

Before building this model, recall that our objective is to minimize the cost function in regularized logistic regression: 

Notice that this looks like the cost function for unregularized logistic regression, except that there is a regularization term at
the end. We will now minimize this function using Newton's method.

Newton's method

Recall that the Newton's Method update rule is 

This is the same rule that you used for unregularized logistic regression in Exercise 4. But because you are now
implementing regularization, the gradient   and the Hessian  have different forms: 

Notice that if you substitute  into these expressions, you will see the same formulas as unregularized logistic
regression. Also, remember that in these formulas,



1.  is your feature vector, which is a 28x1 vector in this exercise.

2.  is a 28x1 vector.

3.  and  are 28x28 matrices.

4.  and  are scalars.

5. The matrix following  in the Hessian formula is a 28x28 diagonal matrix with a zero in the upper left and ones on

every other diagonal entry.

Run Newton's Method

Now run Newton's Method on this dataset using the three values of lambda below:

a.  (this is the same case as non-regularized linear regression)

b. 

c. 

To determine whether Newton's Method has converged, it may help to print out the value of  during each iteration. 

 should not be decreasing at any point during Newton's Method. If it is, check that you have defined  correctly.

Also check your definitions of the gradient and Hessian to make sure there are no mistakes in the regularization parts.

After convergence, use your values of theta to find the decision boundary in the classification problem. The decision
boundary is defined as the line where 

 

Plotting the decision boundary here will be trickier than plotting the best-fit curve in linear regression. You will need to plot
the  line implicity, by plotting a contour. This can be done by evaluating  over a grid of points representing
the original  and  inputs, and then plotting the line where  evaluates to zero.

The plot implementation for Matlab/Octave is given below. To get the best viewing results, use the same plotting ranges
that we use here.

% Define the ranges of the grid
u = linspace(-1, 1.5, 200);
v = linspace(-1, 1.5, 200);

% Initialize space for the values to be plotted
z = zeros(length(u), length(v));

% Evaluate z = theta*x over the grid
for i = 1:length(u)
    for j = 1:length(v)
        % Notice the order of j, i here!
        z(j,i) = map_feature(u(i), v(j))*theta;
    end
end

% Because of the way that contour plotting works
% in Matlab, we need to transpose z, or
% else the axis orientation will be flipped!
z = z'
% Plot z = 0 by specifying the range [0, 0]
contour(u,v,z, [0, 0], 'LineWidth', 2)

When you are finished, your plots for the three values of  should look similar to the ones below.



Finally, because there are 28 elements , we will not provide an element-by-element comparison in the solutions. Instead,



use norm(theta) to calculate the L2-norm of , and check it against the norm in the solutions.

Show Solution
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