
Model Sparsity and Feature Selection

1 The “Bet on Sparsity” Principle

book: Elements, 16.2.2
book: Statistics for high dimensional data, introduction

Yi = µ+

p∑
j=1

βjX
j
i + εi

Roughly speaking, for High-dimensional statistical inference to achieve reason-
able accuracy or asymptotic consistency, we need

log(p)(sparsity(β)) << n

2 Forward Selection

Forward selection starts with no feature(variable) in the model, and adds fea-
tures to the model one at a time. At each step, the feature that can contribute
most to the model is added. The procedure is repeated until one new feature
can improve the model significantly(defined by some statistical test threshold).

For a complete survey of feature selection methods, see [3].

3 Regularized Linear Models

3.1 Regularized Linear Regression

Consider the linear regression model

Y = β0 + xTβ

Suppose we have N data points, and p features. Each feature is standardized to
have mean 0 an variance 1. Regularized Linear Regression solves the following
problem:

min
(β0,β)∈Rp+1

[
1

2N

N∑
i=1

(yi − β0 − xTi β)2 + λP (β)],

where
∑N
i=1(yi − β0 − xTi β)2 is the square loss term, P (β) is a penalty term,

and λ controls the strength of the penalty.
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There are three kinds of commonly used penalties in linear regression:

• P (β) = 1
2 ||β||

2
2 = 1

2

∑p
j=1 β

2
j is called the RIDGE-regression penalty.

• P (β) = ||β||1 =
∑p
j=1 |βj | is called the LASSO penalty.

• Pα(β) = (1− α) 1
2 ||β||

2
2 + α||β||1 =

∑p
j=1[ 12 (1− α)β2

j + α|βj |] is called the
elastic-net penalty. The elastic-net penalty is a compromise between the
ridge-regression penalty and the lasso penalty.

Ridge Regression shrinks the size the regression coefficients. In linear regression,
if there are two correlated features, there coefficients can be poorly determined
and have high variance. One of them can have a very large positive coefficient,
and the other correlated feature can have a very large negative coefficient. They
cancel each other. By adding the ridge penalty, the problem is alleviated, as it
shrinks the coefficients towards 0. In the extreme case of k identical features,
they each get small identical coefficients. So ridge penalty encourages features
to borrow strength from each other. From a Bayesian point of view, the ridge
regression estimation assumes that βj has a Gaussian distribution with 0 mean
as its prior distribution. And the solution to ridge regression is the mean (or
mode) of the posterior distribution.

Lasso behaves differently than Ridge. If there are several correlated features,
Lasso tends to pick one and ignore the rest. That is, some features will have
coefficients exactly 0. So Lasso can be used to perform continuous feature
selection. From a Bayesian point of view, the Lasso penalty corresponds to a
Laplace prior.

To illustrate the behaviors of Ridge and Lasso, we write them as constrained
optimization problems.

Ridge regression can be equivalently formulated as

β̂ridge = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

subject to

p∑
j=1

β2
j ≤ t

There is a one-to-one correspondence between λ and t.
Lasso regression can be equivalently formulated as

β̂lasso = arg min
β

N∑
i=1

(yi − β0 −
p∑
j=1

xijβj)
2

subject to

p∑
j=1

|βj | ≤ t

Similarly, there is a one-to-one correspondence between λ and t.
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Figure 1: Source: Figure 3.11 of [4]

Figure 1 shows the difference between lasso and ridge regression estimations
when there are only two features. The square loss has elliptical contours. Ridge
regression has a disk constraint region, while lasso has a diamond constraint
region. In both constrained optimization problems, the optimal solution is the
first point where the elliptical contours hit the constraint region. In Lasso
regression, if the solution occurs at a corner, then it has one parameter βj equal
to zero. When p is large, there are many corners so that many parameters are
likely to become zero.

3.2 Regularized Logistic Regression

The regularized Logistic Regression has the form

max
β0,β
{ 1

2N

N∑
i=1

[yi(log(P (y = 1|xi)) + (1− yi)log(P (y = 0|xi))− λPα(β)}

= max
β0,β
{ 1

2N

N∑
i=1

[yi(β0 + βTxi)− log(1 + eβ0+β
T xi)]− λPα(β)}

If we use RIDGE penalty, we get

max
β0,β
{ 1

2N

N∑
i=1

[yi(β0 + βTxi)− log(1 + eβ0+β
T xi)]− λ1

2

p∑
j=1

β2
j }
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3.3 Solving Regularized Linear Models

packages:

• Liblinear[1]

• glmnet[2]

• sklearn[5]
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