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We consider boosting decision stumps and the e↵ect that individual features have on the margin distri-
bution associated with the weighted linear combination that boosting produces.
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where `(x) is the {�1,+1} label associated with the example x.
Now assume that each decision stump is simply a feature-threshold pair. Let F be the total number of

unique features used across all T decision stumps, and for any chosen feature f , let N
f

be the total number
of times that feature f is used. We then have
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Finally, let h
f,j

be the decision stump that corresponds to the j-th use of feature f , and let ↵
f,j

be the
associated confidence.

We can now redefine H(x) and margin(x) as follows.
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Now for any individual feature f , one can consider the weighted linear combination associated with that
feature and the “conditional” margin associated with just that weighted linear combination.
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Now consider the fraction of absolute “confidence” weight associated with any feature f , defined as follows.

�
f

=

P
Nf

j=1 |↵
f,j

|
P

t

t=1 |↵
t

|
=

P
Nf

j=1 |↵
f,j

|
P

F

f=1

P
Nf

j=1 |↵
f,j

|

We then have the following theorem.
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Thus, we have that

the overall margin associated with any instance x is the weighted linear combination of conditional

margins, where �
f

are the weights.

This gives some justification for the use of �
f

as an indicator of the utility of a given feature f . Note,
however, that while a feature f may have a large �

f

, it will not contribute to a good overall margin unless
margin
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(x) is also large. A better indicator, perhaps, is the fraction of the overall margin that is due to f :
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Note, however, that this only deals with a single instance x. To combine across all instances, one might be
tempted to sum (or average) the above over all x. However, we care more about the entire margin distribution

and the e↵ect of a feature on this distribution.
Consider the mean of the margin distribution, i.e., the average margin. While the mean does not entirely

characterize the margin distribution, it is a decent single-point measure of how “good” the margin distribution
is. The expected margin is
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Thus, the fraction of expected margin due to feature f is
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