Boosting (ensemble)

Module 4 - Ensemble classifiers - Objectives

module 4: boosting (ensemble models)

RAW DATA 3! FEATURES | EVALUATION
UCI datasets : ‘
20newsgroups Hnigrams \ /
SUPERVISED ANALYSIS
LEARNING
LABELS »| boost/adaboost
multiclass gradient boosting’
ECOC active learning
ECOC setup

. BOOSTING: combine weak/simple classifiers into a powerful one

. Bagging: combine classifiers by sampling training set

. Active Learning: select the datapoints to train on

. ECOC for Multiclass data : introducing the 20Newsgroups dataset of articles
. VC dimension as a measure of classifier complexity

Weak Learners

- Need not to be very accurate
. Better than random guess

. Examples:

- Decision trees/Decision stump
- Neural Network

- Logistic regression

- SVM

- Essentially any classifier

1-Level decision tree

A simple test based on one feature

Eg: If an email contains the word "money’, it is a
spam; otherwise, It IS a non-spam

moderately accurate

Geometry: horizontal or vertical lines

Positive

| Negative

Positive

Negative

Limitation of Weak Learner

. Might not be able to fit the training
data well (high bias)

. Example: no single decision stump can
classifier all the data points correctly

Can weak learners combine to do better?

. Can we separate the positive data from the
negative data by drawing several lines?

. Yes, we canl!

Can weak learners combine to do better?

. It turns out this complicated classifier can be
expressed as a linear combination of several
decision stumps

H =sign | 0.42 + 0.65 +0.92

An analogy of Committee

A weak Learner = a committee member

Combination of weak leaners(ensemble) = a
committee

A Weak learner's decision hypothesis = a committee
member's judgement

Ensemble’'s decision hypothesis = a committee's
decision

A combination of weak learners often classifies better
than a single weak learner = a committee often
makes better decisions than a single committee
member

ldea: Generating diverse weak leaners

. adaBoost picks its weak learners h in such a
fashion that each newly added weak learner is
able to infer something new about the data

. adaBoost maintains a weight distribution D
among all data points. Each data point is
assigned a weight D(i) indicting its importance

- by manipulating the weight distribution, we can
guide the weak learner to pay attention to
different part of the data

ldea: Generating diverse weak leaners

. AdaBoost proceeds by rounds

. In each round, we ask the weak
learner to focus on hard data
points that previous weak
learners cannot handle well

. Technically, in each round, we
increase the weights of
misclassified data points, and
decrease the weights of correctly
classified data points

N

D|s’rr|buhon on the data D

Weok

learner |

Updated distribution D Hypothesis h

Boosting
algorithm

Final
Hypothesis

AdaBoost

.+ AdaBoost init: uniform weight

distribution D on datapoints

. AdaBoost loop:

- train weak learner h according to
current weights D

htl X — {].,].}
- observe error(h,D); compute coefficient

€ = P’I"Z’NDt [ht(mt) # yl] Xy = %lﬂ(l;et')

€t

- store weak learner h; , coefficient a;

- update Distribution D for next round,
emphasizing misclassified points

. AdaBoost final classifier

T
H(x) = sz’gn(z arhy(x))

Adaboost Algorithm

Fort=1,...,T:
e Train weak learner using distribution D;.
e Get weak hypothesis h;: X — {—1,1}.
e Aim: select h; to minimize the weighted error:

€ = PT‘I:"*D: [ht(ﬂ?t) #* yi]

e Choose a; = 3 ln(IZ—f‘)

Update

D= 240 [)=

Zy e if hy(x;) # v

_ D, (i)exp(—aiyihi(z:)))
Zy

where Z; is a normalization factor (chosen so that D;,; will be a distri-
bution).

Output the final hypothesis:

T
H(z) = sign()_ avhu(z))

Adaboost Algorithm

Fort=1,...,T:

e Train weak learner using distribution D;. o e
e Get weak hypothesis hy: X — {—1,1}. N It Setu P

e Aim: select h; to minimize the weighted error:
€ = PT‘I:"*D: [ht(ﬂ?t) #* yi]

e Choose a; = 3 ln(IZ—f‘)

Update

D= 240 [)=

Zy e if hy(x;) # v

_ D, (i)exp(—aiyihi(z:)))
Zy

where Z; is a normalization factor (chosen so that D;,; will be a distri-
bution).

Output the final hypothesis:

T
H(z) = sign()_ avhu(z))

Adaboost Algorithm

Fort=1,...,T:

e Train weak learner using distribution D;. o e
e Get weak hypothesis hy: X — {—1,1}. N It Setu P

e Aim: select h; to minimize the weighted error:

€ = Prop,[hu(a) # v round error

e Choose a; = 3 ln(IZ—f‘)

Update

Dyyq(i) =

D, (z) « e~ if hy(z;) = y;
Zy e if hy(x;) # v

_ D, (i)exp(—aiyihi(z:)))
Zy

where Z; is a normalization factor (chosen so that D;,; will be a distri-
bution).

Output the final hypothesis:

T
H(z) = sign()_ avhu(z))

Adaboost Algorithm

Fort=1,...,T:
e Train weak learner using distribution D;.

e Get weak hypothesis hy: X — {—1,1}. In It Setu P

e Aim: select h; to minimize the weighted error:

€ = Prop,[hu(a) # v round error

e Choose a; = 3 ln(IZ—f‘)

e Update

D= 240 [)=

2 “\e ine+w Weight update

_ D, (i)exp(—aiyihi(z:)))
Zy

where Z; is a normalization factor (chosen so that D;,; will be a distri-
bution).

Output the final hypothesis:

T
H(z) = sign()_ avhu(z))

Adaboost Algorithm

Fort=1,...,T:
e Train weak learner using distribution D;.

e Get weak hypothesis hy: X — {—1,1}. In It Setu P

e Aim: select h; to minimize the weighted error:

i = Prowp,(hu(z)) # vl round error

e Choose a; = 3 ln(IZ—f‘)

e Update

D= 240 [)=

2 “\e ine+w Weight update

_ D, (i)exp(—aiyihi(z:)))
Zy

where Z; is a normalization factor (chosen so that D;,; will be a distri-
bution).

Output the final hypothesis:

H () — sign(>" arhi(z) final classifier

Adaboost: an example

1 2 3

5 6 7

8 9 10

Dy (i)
e—1Yih1(xi)

D (i) e @1Yil1(xi)

0.10 0.10 0.10

1.53 153 1.53
0.15 0.15 0.15

0.10
0.65
0.07

0.10 0.10 0.10
0.65 0.65 0.65
0.07 0.07 0.07

0.100 0.10 0.10
0.65 0.65 0.65
0.07 0.07 0.07

€1 = 0.30, 01 ~ 0.42

Z1 ~0.92

Adaboost: an example

Dl hl
1+2 4 @
N D @
£z | -
+ 10 L5 —
D, hy
- +
+ 4+ - + "
+ - - + @@
+ - - =

1 2 3 4 5 6 7 8 9 10
D1 (i) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 € = 0.30, a1 ~ 0.42
e~ yih1(xi) 153 153 153 065 065 065 065 0.65 0.65 0.65
D1 (i) e~@il&) 015 0.15 0.15 0.07 0.07 0.07 007 0.07 0.07 007 Z;~092
D> (i) 0.17 0.17 0.17 007 007 0.07 0.07 0.07 0.07 0.07 e ~0.21,a; ~ 0.65
e~ 2Yih2(xi) 052 052 052 052 052 191 191 052 191 0.52
D>(i) e~ @2¥ih2() 009 0.09 009 004 0.04 0.14 0.14 0.04 0.14 0.04 Z,~0.82

Adaboost: an example

Dl hl
1+2 4 @
T D @
£ Tz | -
+ 10 L5 —
2 —_
D, hy
+ +
+ 4+ - + "
+ - - + @@
+ - - -
- S)
Ds
+ -
T+ Tk L ©
+ 0 — ® =« —

1 2 3 4 5 6 7 8 9 10

D1 (i) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 € = 0.30, a1 ~ 0.42

e~ yih1(xi) 153 153 153 065 065 065 065 0.65 0.65 0.65

D1 (i) e~@il&) 015 0.15 0.15 0.07 0.07 0.07 007 0.07 0.07 007 Z;~092

D> (i) 0.17 0.17 0.17 007 007 0.07 0.07 0.07 0.07 0.07 e ~0.21,a; ~ 0.65
e~ 2Yih2(xi) 052 052 052 052 052 191 191 052 191 0.52

D>(i) e~ @2¥ih2() 009 0.09 009 004 0.04 0.14 0.14 0.04 0.14 0.04 Z,~0.82

Ds(i) 0.11 0.11 0.11 0.05 0.05 0.17 0.17 005 0.17 0.05 e =~0.14, a3 ~ 0.92
e~ 3Yih3(xi) 040 040 040 252 252 040 040 252 0.40 0.40

D3(i) e ®3Yil3xi) 004 0.04 0.04 0.11 0.11 0.07 0.07 0.11 0.07 0.02 Z3=0.69

Adaboost: an example

Dl h]
1 +2 4 @
t £ ® @~ 1 2 3 4 5 6 1 8 9 10
£ T +|
- — Di (i) 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 € = 0.30,; ~ 0.42
. . e—1Yih (i) 153 153 153 0.65 065 0.65 065 0.65 065 0.65
e . - + — | D) e il 015 0.15 0.15 007 0.07 0.07 0.07 0.07 0.07 0.07 Z;=~0.92
D, hy
_ o D (i) 0.17 0.17 0.17 0.07 007 0.07 0.07 007 0.07 0.07 e ~0.21,a ~ 0.65
+ - + © e~ 2Yih2(xi) 052 052 052 052 052 191 191 052 191 052
Dy(i) e~ 009 0.09 0.09 004 004 0.14 0.14 004 0.14 0.04 Z,~082
+ - + -
- ©
D3
- +
T+ Tk L ©
- — D3(i) 0.11 0.1 0.11 0.05 0.05 0.17 0.17 0.05 0.17 0.05 €3~ 0.14, 03 ~ 0.92
+ — ® — e—3Yih3(xi) 040 040 0.40 252 252 040 040 252 0.40 0.40
D3(i) e~@il3x) 004 0.04 0.04 0.11 0.11 0.07 0.07 0.11 0.07 0.02 Z3~0.69
+ - ® -
+
- L -
H =sign | 0.42 +0.65 +0.92 = |F -

Adaboost Training error

Let v = % — €¢, and let D1 be an arbitrary initial distribution over the training

set. It can be shown [7] that the weighted training error of the combined classifier
H with respect to D is bounded as

T T
Prip, [H(z:) # yi] < H \/1 — 47 < 63319(—22)
t=1 t=1

Adaboost Training error

Let v = % — €¢, and let D1 be an arbitrary initial distribution over the training

set. It can be shown [7] that the weighted training error of the combined classifier
H with respect to D is bounded as

T T
Prip, [H(z:) # yi] < H \/1 — 47 < 63319(—22)
t=1 t=1

There are two possibilities for ending AdaBoost training

1. Training error goes to 0

2. v:=0(equivalent ¢ = 0.5). Boosting gets stuck: the boosting weights on
training set are in such a way that every weak learner has 50 % error.

Adaboost Training error

Let v = % — €¢, and let D1 be an arbitrary initial distribution over the training

set. It can be shown [7] that the weighted training error of the combined classifier
H with respect to D is bounded as

T T
Priop, [H(z:) # i) < |] \/1 — 492 < exp(—2) 77)
t=1 t=1

There are two possibilities for ending AdaBoost training

1. Training error goes to 0

2. v:=0(equivalent ¢ = 0.5). Boosting gets stuck: the boosting weights on
training set are in such a way that every weak learner has 50 % error.

® comments: in practice, we usually stop
boosting after certain iterations to both
save time and prevent overfitting

Adaboost Training error

Proof: Define F(x) = Z;F:l ath(z). We have

e—Yiarhy(x;) e—viarhr(z;)
Dpoq1(i) = Dy(i) X 2 X o X 7
D1 (i)exp(—y; Zthl aihy(x;))
[Ti-s Z
D (i)exp(—y; F(z;))

T
Ht:l Zt

=1
m T

=> Dra(i)] 2
=1 t=1

Adaboost Training error

A ~ .
orcjejele C Al L data point xe X;

1.0- — WF®=) a*h(x)

Margin(x) = y(x)* F) e [-1,1]

2.9

{

0.5-

.
hd-*—hd—*—hd-*-hd-*-“‘;‘—.*—h ' ' . . .

cumulative distribution

-1 -0.5 0.5 | 1
margin |
apire,rreund,barile ee YcC
Or & <G

T
Poyy~s [f(z) < 0] < 2T TT el =0 (1 — €)1+,

Adaboost testing error based on VCdim

—
testing error < training error + O Q —)

. d = VC dim of classifiers (measure of
complexity)
- T = number of boosting rounds

- a loose bound as T can be very large, without
decreasing the testing error

Adaboost testing error based on margins

Theorem 1 Let D be a distribution over X x {—1,1}, and let S be a sample of m examples chosen
independently at random according to D. Assume that the base-classifier space H is finite, and let
& > 0. Then with probability at least 1 — & over the random choice of the training set S, every weighted
average function | € C satisfies the following bound for all § > 0:

1/ 1 logm log |'H A\ M2
Pp [yf(x) < 0| <[Ps [yf(x) < 6] O (— (e L +1og(1,-'<>))) .
V - .

. A better bound for testing error based on
margins

- Does not depend on T= number of boosting
rounds

Deep decision trees vs Boosted decision stumps

- Deep decision trees and Boosted decision stumps look very similar. Both can easily
drive the training error down to 0, and both yield similar decision boundaries. Why
does boosted decision stumps often generalize better than deep decision trees?

Boosted decision
stumps

Deep Decision Tree

Partition the

lines parallel to axis
space

lines parallel to axis

DECISION ZIg-zags Zlg-zags
boundary J-4a9 J-2ad
Bias low low

Deep decision trees vs Boosted decision stumps

Deep Decision Tree Boosted decision stumps

Variance high

Each leaf node contains at least
one example.

The number of examples required Can generalize to regions not covered by
Rl essnienileln | to train a constant-leaves decision the training set. Have exponentially more

Power tree can grow exponentially with the efficient power than single decision trees.
dimension of the input space.

Cannot generalize to new
variations.

voting on local tiny regions among voting among weak learners. If learners
data points; more likely to overfit have low complexity, harder to overfit.

voting schema

Bagging Decision Trees

. Train multiple classifiers, independently

. Each classifier = Decision Tree trained on a
sampled-with-replacement dataset

. Final prediction: run all classifiers, average their
output

Bagging : sampling with replacement

. Trainset of size N; want sampling set of size N

. For 1=1:N
- Randomly select a point Xi from Trainset

- Do not remove this point so it can be
sampled again

- Not all points will be selected
- selected points expected count ~63%*N
. Some points all be selected multiple times

Bagging Decision Trees VS Boosting

- Both have final prediction as a linear combination of

classifiers

- Bagging combination

weights are uniform; boosting

weights (ar) are a measure of performance for

classifier at round

- Bagging has independent classifiers, boosting ones

are dependent of each other

- Bagging randomly se

ects training sets; boosting

focuses on most difficult points

