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BiasBias--Variance Analysis in Variance Analysis in 
RegressionRegression

True function is y = f(x) + True function is y = f(x) + εε
–– where where εε is normally distributed with zero mean is normally distributed with zero mean 

and standard deviation and standard deviation σσ..
Given a set of training examples, {(xGiven a set of training examples, {(xii, y, yii)}, )}, 
we fit an hypothesis  h(x) = w we fit an hypothesis  h(x) = w ·· x + b  to x + b  to 
the data to minimize the squared errorthe data to minimize the squared error

ΣΣii [y[yii –– h(xh(xii)])]22



Example: 20 pointsExample: 20 points
y = x + 2 sin(1.5x) + N(0,0.2)y = x + 2 sin(1.5x) + N(0,0.2)



50 fits (20 examples each)50 fits (20 examples each)



BiasBias--Variance AnalysisVariance Analysis

Now, given a new data point x* (with Now, given a new data point x* (with 
observed value y* = f(x*) + observed value y* = f(x*) + εε), we would ), we would 
like to understand the expected prediction like to understand the expected prediction 
errorerror

E[ (y* E[ (y* –– h(x*))h(x*))2 2 ]]



Classical Statistical AnalysisClassical Statistical Analysis

Imagine that our particular training sample Imagine that our particular training sample 
S is drawn from some population of S is drawn from some population of 
possible training samples according to possible training samples according to 
P(S).P(S).
Compute ECompute EPP [ (y* [ (y* –– h(x*))h(x*))2 2 ]]
Decompose this into Decompose this into ““biasbias””, , ““variancevariance””, , 
and and ““noisenoise””



LemmaLemma
Let Z be a random variable with probability Let Z be a random variable with probability 
distribution P(Z)distribution P(Z)
Let Let ZZ = E= EPP[ Z ] be the average value of Z.[ Z ] be the average value of Z.
Lemma:  E[ (Z Lemma:  E[ (Z –– ZZ))22 ] = E[Z] = E[Z22] ] –– ZZ22

E[ (Z E[ (Z –– ZZ))22 ] = E[ Z] = E[ Z22 –– 2 Z 2 Z ZZ + + ZZ2 2 ]]
= E[Z= E[Z22] ] –– 2 E[Z] 2 E[Z] ZZ + + ZZ22

= E[Z= E[Z22] ] –– 2 2 ZZ22 + + ZZ22

= E[Z= E[Z22] ] –– ZZ22

Corollary: E[ZCorollary: E[Z22] = E[ (Z ] = E[ (Z –– ZZ))22 ] + ] + ZZ22



BiasBias--VarianceVariance--Noise Noise 
DecompositionDecomposition

E[ (h(x*) E[ (h(x*) –– y*)y*)22 ] = E[ h(x*)] = E[ h(x*)22 –– 2 h(x*) y* + y*2 h(x*) y* + y*22 ]]
= E[ h(x*)= E[ h(x*)2 2 ] ] –– 2 E[ h(x*) ] E[y*] + E[y*2 E[ h(x*) ] E[y*] + E[y*22]]
= E[ (h(x*) = E[ (h(x*) –– h(x*)h(x*)))22 ] + ] + h(x*h(x*))22 (lemma)(lemma)

–– 2 2 h(x*)h(x*) f(x*)f(x*)
+ E[ (y* + E[ (y* –– f(x*))f(x*))22 ] + f(x*)] + f(x*)22 (lemma)(lemma)

= E[ (h(x*) = E[ (h(x*) –– h(x*)h(x*)))22 ] +               [variance]] +               [variance]
((h(x*)h(x*) –– f(x*))f(x*))22 +                       [bias+                       [bias22]]
E[ (y* E[ (y* –– f(x*))f(x*))22 ]                       [noise]]                       [noise]



Derivation (continued)Derivation (continued)
E[ (h(x*) E[ (h(x*) –– y*)y*)22 ] = ] = 

= E[ (h(x*) = E[ (h(x*) –– h(x*)h(x*)))22 ] +] +
((h(x*)h(x*) –– f(x*))f(x*))22 ++
E[ (y* E[ (y* –– f(x*))f(x*))22 ]]

= Var(h(x*)) + Bias(h(x*))= Var(h(x*)) + Bias(h(x*))22 + E[ + E[ εε22 ]]
= Var(h(x*)) + Bias(h(x*))= Var(h(x*)) + Bias(h(x*))22 + + σσ22

Expected prediction error = Variance + BiasExpected prediction error = Variance + Bias22 + Noise+ Noise22



Bias, Variance, and NoiseBias, Variance, and Noise

Variance: Variance: E[ (h(x*) E[ (h(x*) –– h(x*)h(x*)))22 ]]

Describes how much h(x*) varies from one Describes how much h(x*) varies from one 
training set S to anothertraining set S to another
Bias: Bias: [[h(x*)h(x*) –– f(x*)]f(x*)]

Describes the Describes the averageaverage error of h(x*). error of h(x*). 
Noise: Noise: E[ (y* E[ (y* –– f(x*))f(x*))22 ] = E[] = E[εε22] = ] = σσ22

Describes how much y* varies from f(x*)Describes how much y* varies from f(x*)



50 fits (20 examples each)50 fits (20 examples each)



BiasBias



VarianceVariance



NoiseNoise



50 fits (20 examples each)50 fits (20 examples each)



Distribution of predictions at Distribution of predictions at 
x=2.0x=2.0



50 fits (20 examples each)50 fits (20 examples each)



Distribution of predictions at Distribution of predictions at 
x=5.0x=5.0



Measuring Bias and VarianceMeasuring Bias and Variance

In practice (unlike in theory), we have only In practice (unlike in theory), we have only 
ONE training set S.ONE training set S.
We can simulate multiple training sets by We can simulate multiple training sets by 
bootstrap replicatesbootstrap replicates
–– SS’’ = {x | x is drawn at random with       = {x | x is drawn at random with       

replacement from S} and |Sreplacement from S} and |S’’| = |S|.| = |S|.



Procedure for Measuring Bias Procedure for Measuring Bias 
and Varianceand Variance

Construct B bootstrap replicates of S (e.g., Construct B bootstrap replicates of S (e.g., 
B = 200): SB = 200): S11, , ……, S, SBB

Apply learning algorithm to each replicate Apply learning algorithm to each replicate 
SSbb to obtain hypothesis hto obtain hypothesis hbb

Let TLet Tbb = S = S \\ SSbb be the data points that do be the data points that do 
not appear in Snot appear in Sb   b   ((out of bagout of bag points)points)
Compute predicted value hCompute predicted value hbb(x) for each x (x) for each x 
in Tin Tbb



Estimating Bias and Variance Estimating Bias and Variance 
(continued)(continued)

For each data point x, we will now have For each data point x, we will now have 
the observed corresponding value y and the observed corresponding value y and 
several predictions yseveral predictions y11, , ……, y, yKK. . 
Compute the average prediction Compute the average prediction hh..
Estimate bias as (Estimate bias as (hh –– y)y)
Estimate variance as Estimate variance as ΣΣkk (y(ykk –– hh))22/(K /(K –– 1)1)
Assume noise is 0Assume noise is 0



Approximations in this Approximations in this 
ProcedureProcedure

Bootstrap replicates are not real dataBootstrap replicates are not real data
We ignore the noiseWe ignore the noise
–– If we have multiple data points with the same If we have multiple data points with the same 

x value, then we can estimate the noisex value, then we can estimate the noise
–– We can also estimate noise by pooling y We can also estimate noise by pooling y 

values from nearby x valuesvalues from nearby x values



Ensemble Learning MethodsEnsemble Learning Methods

Given training sample SGiven training sample S
Generate multiple hypotheses, hGenerate multiple hypotheses, h11, h, h22, , ……, , 
hhLL. . 
Optionally: determining corresponding Optionally: determining corresponding 
weights wweights w11, w, w22, , ……, , wwLL

Classify new points according toClassify new points according to
∑∑ll wwll hhll > > θθ



Bagging: Bootstrap AggregatingBagging: Bootstrap Aggregating

For b = 1, For b = 1, ……, B do, B do
–– SSbb = bootstrap replicate of S= bootstrap replicate of S
–– Apply learning algorithm to SApply learning algorithm to Sbb to learn hto learn hbb

Classify new points by Classify new points by unweightedunweighted vote:vote:
–– [[∑∑bb hhbb(x(x)]/B > 0)]/B > 0



BaggingBagging

Bagging makes predictions according toBagging makes predictions according to
y = y = ΣΣbb hhbb(x) / B(x) / B
Hence, baggingHence, bagging’’s predictions are s predictions are hh(x)(x)



Estimated Bias and Variance of Estimated Bias and Variance of 
BaggingBagging

If we estimate bias and variance using the same If we estimate bias and variance using the same 
B bootstrap samples, we will have:B bootstrap samples, we will have:
–– Bias = (Bias = (hh –– y)    [same as before]y)    [same as before]
–– Variance = Variance = ΣΣkk ((hh –– hh))22/(K /(K –– 1) = 01) = 0

Hence, according to this approximate way of Hence, according to this approximate way of 
estimating variance, bagging removes the estimating variance, bagging removes the 
variance while leaving bias unchanged.variance while leaving bias unchanged.
In reality, bagging only In reality, bagging only reducesreduces variance and variance and 
tends to slightly increase biastends to slightly increase bias



Bias/Variance HeuristicsBias/Variance Heuristics
Models that fit the data poorly have high bias:  Models that fit the data poorly have high bias:  
““inflexible modelsinflexible models”” such as linear regression, such as linear regression, 
regression stumpsregression stumps
Models that can fit the data very well have low Models that can fit the data very well have low 
bias but high variance:  bias but high variance:  ““flexibleflexible”” models such as models such as 
nearest neighbor regression, regression treesnearest neighbor regression, regression trees
This suggests that bagging of a flexible model This suggests that bagging of a flexible model 
can reduce the variance while benefiting from can reduce the variance while benefiting from 
the low biasthe low bias



BiasBias--Variance Decomposition Variance Decomposition 
for Classificationfor Classification

Can we extend the biasCan we extend the bias--variance decomposition variance decomposition 
to classification problems?to classification problems?
Several extensions have been proposed; we will Several extensions have been proposed; we will 
study the extension due to Pedro Domingos study the extension due to Pedro Domingos 
(2000a; 2000b)(2000a; 2000b)
Domingos developed a unified decomposition Domingos developed a unified decomposition 
that covers both regression and classificationthat covers both regression and classification



Classification Problems:Classification Problems:
Noisy Channel ModelNoisy Channel Model

Data points are generated by yData points are generated by yii = = nn(f(x(f(xii)),     )),     
wherewhere
–– f(xf(xii) is the true class label of x) is the true class label of xii
–– nn((··) is a noise process that may change the true label ) is a noise process that may change the true label 

f(xf(xii).).
Given a training set {(xGiven a training set {(x11, y, y11), ), ……, (x, (xmm, y, ymm)}, our )}, our 
learning algorithm produces an hypothesis h. learning algorithm produces an hypothesis h. 
Let y* = Let y* = nn(f(x*)) be the observed label of a new (f(x*)) be the observed label of a new 
data point x*.  h(x*) is the predicted label.  The data point x*.  h(x*) is the predicted label.  The 
error (error (““lossloss””) is defined as   L(h(x*), y*)) is defined as   L(h(x*), y*)



Loss Functions for ClassificationLoss Functions for Classification

The usual loss function is 0/1 loss. L(yThe usual loss function is 0/1 loss. L(y’’,y) ,y) 
is 0 if yis 0 if y’’ = y and 1 otherwise.= y and 1 otherwise.
Our goal is to decompose EOur goal is to decompose Epp[L(h(x*), y*)] [L(h(x*), y*)] 
into bias, variance, and noise termsinto bias, variance, and noise terms



Discrete Equivalent of the Discrete Equivalent of the 
Mean: The Main PredictionMean: The Main Prediction

As before, we imagine that our observed training As before, we imagine that our observed training 
set S was drawn from some population set S was drawn from some population 
according to P(S)according to P(S)
Define the Define the main predictionmain prediction to beto be

yymm(x*) = argmin(x*) = argminyy’’ EEPP[ L(y[ L(y’’, h(x*)) ], h(x*)) ]
For 0/1 loss, the main prediction is the most For 0/1 loss, the main prediction is the most 
common vote of h(x*) (taken over all training common vote of h(x*) (taken over all training 
sets S weighted according to P(S))sets S weighted according to P(S))
For squared error, the main prediction is For squared error, the main prediction is h(x*)h(x*)



Bias, Variance, NoiseBias, Variance, Noise

Bias B(x*) = L(yBias B(x*) = L(ymm, f(x*)), f(x*))
–– This is the loss of the main prediction with respect to This is the loss of the main prediction with respect to 

the true label of x*the true label of x*

Variance V(x*) = E[ L(h(x*), yVariance V(x*) = E[ L(h(x*), ymm) ]) ]
–– This is the expected loss of h(x*) relative to the main This is the expected loss of h(x*) relative to the main 

predictionprediction

Noise N(x*) = E[ L(y*, f(x*)) ]Noise N(x*) = E[ L(y*, f(x*)) ]
–– This is the expected loss of the noisy observed value This is the expected loss of the noisy observed value 

y* relative to the true label of x*y* relative to the true label of x*



Squared Error LossSquared Error Loss

These definitions give us the results we These definitions give us the results we 
have already derived for squared error have already derived for squared error 
loss  L(yloss  L(y’’,y) = (y,y) = (y’’ –– y)y)22

–– Main prediction yMain prediction ymm = = h(x*)h(x*)
–– BiasBias22: L(: L(h(x*)h(x*), f(x*)) = (, f(x*)) = (h(x*)h(x*) –– f(x*))f(x*))22

–– Variance: Variance: 
E[ L(h(x*), E[ L(h(x*), h(x*)h(x*)) ] = E[ (h(x*) ) ] = E[ (h(x*) –– h(x*)h(x*)))22 ]]

–– Noise: E[ L(y*, f(x*)) ] = E[ (y* Noise: E[ L(y*, f(x*)) ] = E[ (y* –– f(x*))f(x*))22 ]]



0/1 Loss for 2 classes0/1 Loss for 2 classes

There are three components that There are three components that 
determine whether y* = h(x*)determine whether y* = h(x*)
–– Noise:  y* = f(x*)?Noise:  y* = f(x*)?
–– Bias:  f(x*) = yBias:  f(x*) = ymm??
–– Variance: yVariance: ymm = h(x*)?= h(x*)?
Bias is either 0 or 1, because neither f(x*) Bias is either 0 or 1, because neither f(x*) 
nor ynor ymm are random variablesare random variables



Case Analysis of ErrorCase Analysis of Error
f(x*) = ym?

ym = h(x*)?

y* = f(x*)?

correct error
[variance]

yes

yes no [bias]

y* = f(x*)?

error
[noise]

correct
[noise

cancels
variance]

ym = h(x*)?

y* = f(x*)?

error
[bias]

correct
[variance
cancels

bias]

yes no [variance]

y* = f(x*)?

correct
[noise

cancels
bias]

error
[noise

cancels
variance
cancels

bias]

yes no [noise] yes no [noise] yes no [noise] yes no [noise]

no [variance]



Unbiased caseUnbiased case

Let P(y* Let P(y* ≠≠ f(x*)) = N(x*) = f(x*)) = N(x*) = ττ
Let P(yLet P(ymm ≠≠ h(x*)) = V(x*) = h(x*)) = V(x*) = σσ
If (f(x*) = yIf (f(x*) = ymm), then we suffer a loss if ), then we suffer a loss if 
exactly one of these events occurs:  exactly one of these events occurs:  
L(h(x*), y*) = L(h(x*), y*) = ττ(1(1--σσ) + ) + σσ(1(1--ττ))

= = ττ + + σσ –– 22τστσ
= N(x*) + V(x*) = N(x*) + V(x*) –– 2 N(x*) V(x*)2 N(x*) V(x*)



Biased CaseBiased Case

Let P(y* Let P(y* ≠≠ f(x*)) = N(x*) = f(x*)) = N(x*) = ττ
Let P(yLet P(ymm ≠≠ h(x*)) = V(x*) = h(x*)) = V(x*) = σσ
If (f(x*) If (f(x*) ≠≠ yymm), then we suffer a loss if either ), then we suffer a loss if either 
both or neither of these events occurs:  both or neither of these events occurs:  

L(h(x*), y*) = L(h(x*), y*) = τστσ + (1+ (1––σ)σ)(1(1––ττ))
= 1 = 1 –– ((ττ + + σσ –– 22τστσ))
= B(x*) = B(x*) –– [N(x*) + V(x*) [N(x*) + V(x*) –– 2 N(x*) 2 N(x*) V(x*)]V(x*)]



Decomposition for 0/1 LossDecomposition for 0/1 Loss
(2 classes)(2 classes)

We do not get a simple additive decomposition We do not get a simple additive decomposition 
in the 0/1 loss case:in the 0/1 loss case:
E[ L(h(x*), y*) ] = E[ L(h(x*), y*) ] = 

if B(x*) = 1:  B(x*) if B(x*) = 1:  B(x*) –– [N(x*) + V(x*) [N(x*) + V(x*) –– 2 N(x*) V(x*)]2 N(x*) V(x*)]
if B(x*) = 0:  B(x*) + [N(x*) + V(x*) if B(x*) = 0:  B(x*) + [N(x*) + V(x*) –– 2 N(x*) V(x*)]2 N(x*) V(x*)]

In biased case, noise and variance In biased case, noise and variance reducereduce error; error; 
in unbiased case, noise and variance in unbiased case, noise and variance increaseincrease
errorerror



Summary of 0/1 LossSummary of 0/1 Loss

A good classifier will have low bias, in A good classifier will have low bias, in 
which case the expected loss will which case the expected loss will 
approximately equal the varianceapproximately equal the variance
The interaction terms will usually be small, The interaction terms will usually be small, 
because both noise and variance will because both noise and variance will 
usually be < 0.2, so the interaction term 2 usually be < 0.2, so the interaction term 2 
V(x*) N(x*) will be < 0.08V(x*) N(x*) will be < 0.08



0/1 Decomposition in Practice0/1 Decomposition in Practice

In the noiseIn the noise--free case:free case:
E[ L(h(x*), y*) ] = E[ L(h(x*), y*) ] = 

if B(x*) = 1:  B(x*) if B(x*) = 1:  B(x*) –– V(x*)V(x*)
if B(x*) = 0:  B(x*) + V(x*)if B(x*) = 0:  B(x*) + V(x*)

It is usually hard to estimate N(x*), so we It is usually hard to estimate N(x*), so we 
will use this formulawill use this formula



Decomposition over an entire Decomposition over an entire 
data setdata set

Given a set of test points Given a set of test points 
T = {(x*T = {(x*11,y*,y*11),),……, (x*, (x*nn,y*,y*nn)}, )}, 

we want to decompose the average loss: we want to decompose the average loss: 
LL = = ΣΣii E[ L(h(x*E[ L(h(x*ii), y*), y*ii) ] / n) ] / n

We will write it asWe will write it as
LL = = BB + + VuVu –– VbVb

where where BB is the average bias, is the average bias, VuVu is the average is the average 
unbiased variance, and unbiased variance, and VbVb is the average is the average 
biased variance (We ignore the noise.)biased variance (We ignore the noise.)
VuVu –– VbVb will be called will be called ““net variancenet variance””



Classification Problems:Classification Problems:
Overlapping Distributions ModelOverlapping Distributions Model

Suppose at each point x, the label is Suppose at each point x, the label is 
generated according to a probability generated according to a probability 
distribution y ~ distribution y ~ P(y|xP(y|x))
The goal of learning is to discover this The goal of learning is to discover this 
probability distributionprobability distribution
The loss function The loss function L(p,hL(p,h) = ) = KL(p,hKL(p,h) is the ) is the 
KullbackKullback--LieblerLiebler divergence between the divergence between the 
true distribution p and our hypothesis h. true distribution p and our hypothesis h. 



KullbackKullback--LeiblerLeibler DivergenceDivergence

For simplicity, assume only two classes:  y For simplicity, assume only two classes:  y 
∈∈ {0,1}{0,1}
Let p be the true probability Let p be the true probability P(yP(y=1|x) and h =1|x) and h 
be our hypothesis for be our hypothesis for P(yP(y=1|x).=1|x).
The KL divergence isThe KL divergence is
KL(p,hKL(p,h) = p log ) = p log p/hp/h + (1+ (1--p) log (1p) log (1--p)/(1p)/(1--h)h)



BiasBias--VarianceVariance--Noise Noise 
Decomposition for KLDecomposition for KL

Goal: Decompose EGoal: Decompose ESS[ [ KL(yKL(y, h) ] into noise, , h) ] into noise, 
bias, and variance termsbias, and variance terms
Compute the main prediction:Compute the main prediction:

hh = = argminargminuu EESS[ [ KL(uKL(u, h) ], h) ]

This turns out to be the geometric mean:This turns out to be the geometric mean:
log(log(hh/(1/(1--hh)) = E)) = ESS[ log(h/(1[ log(h/(1--h)) ]h)) ]
hh = 1/Z * exp( E= 1/Z * exp( ESS[ log h ] )[ log h ] )



Computing the NoiseComputing the Noise

Obviously the best estimator h would be p.  Obviously the best estimator h would be p.  
What loss would it receive?What loss would it receive?

E[ E[ KL(yKL(y, p) ] = E[ y log , p) ] = E[ y log y/py/p + (1+ (1--y) log (1y) log (1--y)/(1y)/(1--p)p)
= E[ y log y = E[ y log y –– y log p + y log p + 

(1(1--y) log (1y) log (1--y) y) –– (1(1--y) log (1y) log (1--p) ]p) ]
= = --p log p p log p –– (1(1--p) log (1p) log (1--p)p)
= = H(pH(p))



Bias, Variance, NoiseBias, Variance, Noise

Variance:  EVariance:  ESS[ [ KL(KL(hh, h) ], h) ]
Bias:  Bias:  KL(pKL(p, , hh))
Noise: Noise: H(pH(p))
Expected loss = Noise + Bias + VarianceExpected loss = Noise + Bias + Variance

E[ E[ KL(yKL(y, h) ] = , h) ] = H(pH(p) + ) + KL(pKL(p, , hh) + E) + ESS[ [ KL(KL(hh, h) ], h) ]



Consequences of this DefinitionConsequences of this Definition

If our goal is probability estimation and we If our goal is probability estimation and we 
want to do bagging, then we should want to do bagging, then we should 
combine the individual probability combine the individual probability 
estimates using the geometric meanestimates using the geometric mean

log(log(hh/(1/(1--hh)) = E)) = ESS[ log(h/(1[ log(h/(1--h)) ]h)) ]
In this case, bagging will produce pure In this case, bagging will produce pure 
variance reduction (as in regression)!variance reduction (as in regression)!



Experimental Studies of Bias Experimental Studies of Bias 
and Varianceand Variance

Artificial data: Can generate multiple Artificial data: Can generate multiple 
training sets S and measure bias and training sets S and measure bias and 
variance directlyvariance directly
Benchmark data sets: Generate bootstrap Benchmark data sets: Generate bootstrap 
replicates and measure bias and variance replicates and measure bias and variance 
on separate test seton separate test set



Algorithms to StudyAlgorithms to Study

KK--nearest neighbors:  What is the effect of nearest neighbors:  What is the effect of 
K?K?
Decision trees:  What is the effect of Decision trees:  What is the effect of 
pruning?pruning?
Support Vector Machines:  What is the Support Vector Machines:  What is the 
effect of kernel width effect of kernel width σσ??



KK--nearest neighbor nearest neighbor 
(Domingos, 2000)(Domingos, 2000)

Chess (left): Increasing K primarily reduces VuChess (left): Increasing K primarily reduces Vu
Audiology (right): Increasing K primarily Audiology (right): Increasing K primarily 
increases B.increases B.



Size of Decision TreesSize of Decision Trees

Glass (left), Primary tumor (right): deeper Glass (left), Primary tumor (right): deeper 
trees have lower B, higher Vutrees have lower B, higher Vu



Example: 200 linear SVMs Example: 200 linear SVMs 
(training sets of size 20)(training sets of size 20)

Error: 13.7%

Bias:  11.7%

Vu: 5.2%

Vb: 3.2%



Example: 200 RBF SVMs Example: 200 RBF SVMs 
σσ = 5= 5

Error: 15.0%

Bias:  5.8%

Vu: 11.5%

Vb: 2.3%



Example: 200 RBF SVMs Example: 200 RBF SVMs 
σσ = 50= 50

Error: 14.9%

Bias:  10.1%

Vu: 7.8%

Vb: 3.0%



SVM Bias and VarianceSVM Bias and Variance

BiasBias--Variance tradeoff controlled by Variance tradeoff controlled by σσ
Biased classifier (linear SVM) gives Biased classifier (linear SVM) gives 
better results than a classifier that can better results than a classifier that can 
represent the true decision boundary!represent the true decision boundary!



B/V Analysis of BaggingB/V Analysis of Bagging
Under the bootstrap assumption, Under the bootstrap assumption, 
bagging reduces only variancebagging reduces only variance
–– Removing Vu reduces the error rateRemoving Vu reduces the error rate
–– Removing Vb increases the error rateRemoving Vb increases the error rate
Therefore, bagging should be applied to Therefore, bagging should be applied to 
lowlow--bias classifiers, because then Vb will bias classifiers, because then Vb will 
be smallbe small
Reality is more complex!Reality is more complex!



Bagging Nearest NeighborBagging Nearest Neighbor

Bagging first-nearest 
neighbor is equivalent 
(in the limit) to a 
weighted majority vote 
in which the k-th 
neighbor receives a 
weight of

exp(-(k-1)) – exp(-k)

Since the first nearest neighbor gets more than half of the vote, it will 
always win this vote.  Therefore, Bagging 1-NN is equivalent to 1-NN.



Bagging Decision TreesBagging Decision Trees

Consider unpruned trees of depth 2 on the Consider unpruned trees of depth 2 on the 
Glass data set.  In this case, the error is Glass data set.  In this case, the error is 
almost entirely due to biasalmost entirely due to bias
Perform 30Perform 30--fold bagging (replicated 50 fold bagging (replicated 50 
times; 10times; 10--fold crossfold cross--validation)validation)
What will happen?What will happen?



Bagging Primarily Reduces Bagging Primarily Reduces 
Bias!Bias!



QuestionsQuestions

Is this due to the failure of the bootstrap Is this due to the failure of the bootstrap 
assumption in bagging?assumption in bagging?
Is this due to the failure of the bootstrap Is this due to the failure of the bootstrap 
assumption in estimating bias and assumption in estimating bias and 
variance?variance?
Should we also think of Bagging as a Should we also think of Bagging as a 
simple additive model that expands the simple additive model that expands the 
range of range of representablerepresentable classifiers?classifiers?



Bagging Large Trees?Bagging Large Trees?

Now consider unpruned trees of depth 10 Now consider unpruned trees of depth 10 
on the Glass dataset.  In this case, the on the Glass dataset.  In this case, the 
trees have much lower bias.trees have much lower bias.
What will happen?What will happen?



Answer: Bagging Primarily Answer: Bagging Primarily 
Reduces VarianceReduces Variance



Bagging of SVMsBagging of SVMs

We will choose a lowWe will choose a low--bias, highbias, high--variance variance 
SVM to bag:  RBF SVM with SVM to bag:  RBF SVM with σσ=5=5



RBF SVMs again:  RBF SVMs again:  σσ = 5= 5



Effect of 30Effect of 30--fold Bagging: fold Bagging: 
Variance is ReducedVariance is Reduced



Effects of 30Effects of 30--fold Baggingfold Bagging

Vu is decreased by 0.010; Vb is Vu is decreased by 0.010; Vb is 
unchangedunchanged
Bias is increased by 0.005Bias is increased by 0.005
Error is reduced by 0.005Error is reduced by 0.005



Bagging Decision TreesBagging Decision Trees
(Freund & (Freund & SchapireSchapire))



BoostingBoosting



BiasBias--Variance Analysis of Variance Analysis of 
BoostingBoosting

Boosting seeks to find a weighted Boosting seeks to find a weighted 
combination of classifiers that fits the data combination of classifiers that fits the data 
wellwell
Prediction: Boosting will primarily act to Prediction: Boosting will primarily act to 
reduce biasreduce bias



Boosting DNA splice (left) and Boosting DNA splice (left) and 
Audiology (right)Audiology (right)

Early iterations reduce bias.  Later iterations also 
reduce variance



Boosting Boosting vsvs BaggingBagging
(Freund & (Freund & SchapireSchapire))



Review and ConclusionsReview and Conclusions
For regression problems (squared error loss), For regression problems (squared error loss), 
the expected error rate can be decomposed the expected error rate can be decomposed 
intointo
–– Bias(x*)Bias(x*)22 + Variance(x*) + Noise(x*)+ Variance(x*) + Noise(x*)

For classification problems (0/1 loss), the For classification problems (0/1 loss), the 
expected error rate depends on whether bias expected error rate depends on whether bias 
is present:is present:
–– if B(x*) = 1: B(x*) if B(x*) = 1: B(x*) –– [V(x*) + N(x*) [V(x*) + N(x*) –– 2 V(x*) N(x*)]2 V(x*) N(x*)]
–– if B(x*) = 0: B(x*) + [V(x*) + N(x*) if B(x*) = 0: B(x*) + [V(x*) + N(x*) –– 2 V(x*) N(x*)]2 V(x*) N(x*)]
–– or B(x*) + Vu(x*) or B(x*) + Vu(x*) –– Vb(x*)  [ignoring noise]Vb(x*)  [ignoring noise]



Review and Conclusions (2)Review and Conclusions (2)

For classification problems with log loss, For classification problems with log loss, 
the expected loss can be decomposed into the expected loss can be decomposed into 
noise + bias + variancenoise + bias + variance
E[ E[ KL(yKL(y, h) ] = , h) ] = H(pH(p) + ) + KL(pKL(p, , hh) + E) + ESS[ [ KL(KL(hh, h) ], h) ]



Sources of Bias and VarianceSources of Bias and Variance

Bias arises when the classifier cannot Bias arises when the classifier cannot 
represent the true function represent the true function –– that is, the that is, the 
classifier underfits the dataclassifier underfits the data
Variance arises when the classifier overfits Variance arises when the classifier overfits 
the datathe data
There is often a tradeoff between bias and There is often a tradeoff between bias and 
variancevariance



Effect of Algorithm Parameters Effect of Algorithm Parameters 
on Bias and Varianceon Bias and Variance

kk--nearest neighbor:  increasing k typically nearest neighbor:  increasing k typically 
increases bias and reduces varianceincreases bias and reduces variance
decision trees of depth D: increasing D decision trees of depth D: increasing D 
typically increases variance and reduces typically increases variance and reduces 
biasbias
RBF SVM with parameter RBF SVM with parameter σ: σ: increasing increasing σσ
increases bias and reduces varianceincreases bias and reduces variance



Effect of BaggingEffect of Bagging
If the bootstrap replicate approximation If the bootstrap replicate approximation 
were correct, then bagging would reduce were correct, then bagging would reduce 
variance without changing biasvariance without changing bias
In practice, bagging can reduce both bias In practice, bagging can reduce both bias 
and varianceand variance
–– For highFor high--bias classifiers, it can reduce bias bias classifiers, it can reduce bias 

(but may increase Vu)(but may increase Vu)
–– For highFor high--variance classifiers, it can reduce variance classifiers, it can reduce 

variance variance 



Effect of BoostingEffect of Boosting

In the early iterations, boosting is primary In the early iterations, boosting is primary 
a biasa bias--reducing methodreducing method
In later iterations, it appears to be primarily In later iterations, it appears to be primarily 
a variancea variance--reducing methodreducing method


