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Abstract

We propose an algorithm called query by com�
mittee� in which a committee of students is
trained on the same data set	 The next query
is chosen according to the principle of maximal
disagreement	 The algorithm is studied for two
toy models
 the high�low game and perceptron
learning of another perceptron	 As the number
of queries goes to in�nity� the committee algo�
rithm yields asymptotically �nite information
gain	 This leads to generalization error that
decreases exponentially with the number of ex�
amples	 This in marked contrast to learning
from randomly chosen inputs� for which the in�
formation gain approaches zero and the gener�
alization error decreases with a relatively slow
inverse power law	 We suggest that asymptot�
ically �nite information gain may be an impor�
tant characteristic of good query algorithms	

� Introduction

Although query algorithms have been proposed for a va�
riety of learning problems�Bau��
� little work has gone
into understanding the general principles by which these
algorithms should be constructed	 In this work� we ar�
gue that the Shannon information of a query can be
a suitable guide�Fed��
	 We further show that the de�
gree of disagreement among a committee of learners can
serve as an estimate of this information value	 The al�
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gorithms considered in this work focus on minimizing
the number of queries required� and hence are most rel�
evant to situations in which queries carry the heaviest
computational cost	

We consider the paradigm of incremental query learn�
ing� in which the training set is built up one example
at a time	 We restrict our scope to parametric learning
models with continuously varying weights� learning per�
fectly realizable� boolean�valued target rules	 The prior
distribution on the weight space is assumed to be �at	

An incremental learning procedure consists of two com�
ponents
 a training algorithm and a query algorithm	
Given a set of P examples� the training algorithm pro�
duces a set of weights satisfying the training set	 The
query algorithm is then used to select example P � �	
Then the training algorithm is run again on the newly
incremented training set� and so on	

In this paper� the only training algorithm that we con�
sider is the �zero temperature� Gibbs algorithm� which
selects a weight vector at random from the version
space� the set of all weight vectors that are consistent
with the training set	 This will enable us to use tech�
niques from statistical mechanics�SST��
	

After training �k students on the same training set� the
query by committee algorithm selects an input that is
classi�ed as positive by half of the committee� and neg�
ative by the other half	 By maximizing disagreement
among the committee� the information gain of the query
can be made high	 In the k � � limit� each query bi�
sects the version space� so that the information gain
saturates the bound of � bit per query	

In the following� the query by committee algorithm is
�rst illustrated using a very simple model� the high�low
game	 We then move on to a more complicated model�
perceptron learning of another perceptron�GD��
	 For
both models� the information gain approaches a �nite
value as the number of queries goes to in�nity	 This
asymptotically �nite information gain leads to general�
ization error that decreases exponentially with the num�
ber of queries	

This is in marked contrast to the case of learning
with random inputs� in which the information gain



approaches zero as the number of examples increases	
In the random input case� the generalization error de�
creases relatively slowly� as an inverse power law in the
number of examples	

� The information content of a query

Denote the target function� or �teacher�� by ���X��
and the parametric learning model� or �student�� by
��W�X�	 Both teacher and student are boolean�valued
functions� i	e	 maps into the set f��g	 We further as�
sume that the target function is perfectly realizable by
the student� which means that there exists some weight
vector W� such that ���X� � ��W��X� for all X	
The input vector Xt is called a positive or negative ex�
ample depending on the sign of the teacher�s output
�t � ���Xt�	 The training set of input�output pairs
�t � �Xt� �t� determines the version space

WP � fW 
 ��W�Xt� � �t� t � �� � � � � Pg � ���

which is the set of allW consistent with the training set	
If the prior distribution P��W� is assumed to be �at�
then the posterior distribution is uniform on the version
space� and vanishes outside�TLS��
	 This is written as

P�Wj��� � � � � �P � �
�
V ��
P � W � WP �
�� otherwise�

���

where VP is the volume of WP 	 We consider the Gibbs
training algorithm�HKS��
� in which the weight vector
W is drawn at random from this posterior distribution	

A query algorithm speci�es a way of choosing another
inputXP�� with which to query the teacher	 In general�
it can be written as a conditional probability

P�XP��j��� � � � � �P � � ���

which we leave unspeci�ed for now	 An input XP�� is
chosen from this distribution and receives a label �P��

from the teacher	 The results of this query are then
added to the training set	

The entropy of the posterior distribution ��� on the
weight space is

S � logVP � ���

Since the entropy quanti�es our uncertainty about W�
the information gained from query P �� can be de�ned
as the reduction in the entropy� or

IP�� � ��S � � log�P�� � ���

Here we have de�ned the volume ratio

�P�� � VP��
VP

� ���

The information gain IP�� depends on the query se�
quence f��� � � � � �P��g� although the dependence is not
explicit in the notation of ���	 This dependence can be
eliminated by considering averaged quantities	 For ex�
ample� one can average the information gain �and other
quantities of interest� over query sequences� and then
over the prior distribution of W�	

For our purposes� only a partial average will su�ce	
Holding the query sequence ��� � � � � �P constant� we will
average over the input XP�� with respect to ��� and the
teacher weight vector W� with respect to the posterior
distribution ���	 In other words� the average is over all
teacher vectors W� that are consistent with the �rst P
examples� and over all inputs XP�� given by the query
algorithm	 So the average information gain is given by

hIP��i � �hlog�P��iW��XP��
���

Similarly� we can calculate the complete probability dis�
tribution for the volume ratio� which is

P��P��j��� � � � � �P � �
�
�

�
�P�� � VP��

VP

��
W��XP��

�

���
Note that these quantities still contain a dependence on
the query sequence ��� � � � � �P 	

Performing the W� average in ��� leads to a bayesian
interpretation of the formula	 Any input XP�� divides
the version space WP into two parts�

W� � fW � WP 
 ��W�XP��� � ��g � ���

W� � fW � WP 
 ��W�XP��� � ��g � ����

Averaging over the posterior distribution ofW�� we �nd
that the average information gain ��� is given by

hIP��i �
�
�V �

VP
log

V �

VP
� V �

VP
log

V �

VP

�
XP��

� ����

where V � are the volumes of W� and hence depend
upon XP�� implicitly	 After the teacher answers the
query� �P�� is known with certainty	 Before the answer
arrives� the value of �P�� is uncertain
 according to the
bayesian� it is �� with probability V ��VP � and �� with
probability V ��VP 	 The entropy of this distribution is
precisely the information value of the query� and is the
expression inside the average ����	 The average infor�
mation gain is maximized byXP�� such that V � � V ��
i	e	 by queries that divide the version space in half	 In
this case of exact bisection� I � � bit exactly	

Unfortunately� for most nontrivial learning models� the
geometry of the version space is complex� and one can�
not practically calculate the volumes V � for any given
input� much less �nd an input for which V � � V �	
Training algorithms typically yield single points in the
version space� not global information about the version
space	 However� a committee of students can be used
to obtain global information	 Train a committee of �k
weight vectors using the Gibbs algorithm	 Find an in�
put vector that is classi�ed as a positive example by k
members of the committee� and classi�ed as negative
by the other k	 Query the teacher about this input vec�
tor	 Train the committee again using the new enlarged
training set� and repeat	 As k � � this algorithm
approaches the bisection algorithm	 This algorithm is
very much in the spirit of �OH��
� in which consensus
was used to improve generalization performance	 Here
we use lack of consensus to choose a query� or a principle
of maximal disagreement	



We de�ne the generalization function by

�g�W�W�� � h�����W�X���W��X��iX � ����

where the average is taken over the prior distribution
P��X� of inputs	 This measures the probability of error
by a student W on input�output pairs drawn from a
teacher W�	 Given a query sequence ��� � � � � �P � the
generalization error is de�ned by

�g��
�� � � � � �P � � h�g�W�W��iW�W� � ����

where the averages over W and W� are taken over the
posterior distribution	 The average generalization error
�g�P � is de�ned as the average of ���� over the query
sequence	

� High�Low

The game of high�low� perhaps the simplest model of
query learning� can be formalized within our parametric
learning framework	 The teacher and student are

���X� � sgn�X �W�� � ����

��X�W � � sgn�X �W � � ����

The input and weight spaces are the unit interval ��� �
�
and the prior distributions on these spaces are �at�

P��W�� � � � ����

P��X� � � � ����

Given any query X� the teacher will respond with ��
or ��� depending on whether X is higher or lower than
W 	

Suppose that there already exists a training set of P � �
examples	 Let XL be the largest negative example� and
XR the smallest positive example	 Then the version
space is

WP � �XL� XR
 � ����

with volume
VP � XR �XL � ����

The posterior weight distribution

PP �W � �

�
V ��
P � W � �XL� XR
 �
�� otherwise�

����

has entropy S � logVP 	 The Gibbs training algorithm
simply picks a W at random from the version space� i	e	
from the interval �XL� XR
	

We �rst consider the case of randomly chosen inputs	
With probability � � VP the next input XP�� will
fall outside the version space� so that the volume ra�
tio will be �	 If XP�� falls inside the version space�
the probability distribution of the volume ratio is given
by ��� where this result is obtained by averaging over
all XP�� �W � �XL� XR
	 Combining these two alter�
natives� we �nd that the probability distribution of the
volume ratio is

P��P��jVP � � ���VP ����P�� � ���VP ��P�� � ����

The expected information gain is given by the average
of � log�P�� with respect to this distribution� or

IP�� �
VP
�

�nat� ����

As the number of examples increases� the volume VP
shrinks� and the information gain tends to zero	

The generalization error ���� is linear in the volume of
the version space�

�g��
�� � � � � �P � �

�

�
VP � ����

Averaging this over all possible training sets� one can
show that the average generalization error satis�es

�g�P � �
�

�

�

P � �
� ����

an inverse power law in the number of examples	

Maximal information gain can be attained by the bisec�
tion algorithm� in which XP�� is chosen to be halfway
between XL and XR	 In this case� the probability dis�
tribution of the volume ratio is

P��� � �

�
� � �

�

�
����

so that the information gain is � bit per query	 The
volume decreases exponentially�

VP � ��P � ����

Indeed� our knowledge of the binary representation of
W� increases by one bit per query	

For a committee with �k members� the probability dis�
tribution of the volume ratio is given by

P��� � ��

Z �

�

dy

Z �

�

dz
yk����� z�k��

z � y
� ����

where we have omitted the normalization constant	
Here we have written P��� rather than P��P �� since
the distribution is independent of the query history� un�
like the random input case ����	 Figure � shows ���� for
various values of k	 Note that as k approaches in�nity�
the curves approach the delta function ���� of the bisec�
tion algorithm	 The average information gain in nats is
given by

I�k� �

Z �

�

d� log�P��� ����

� ���k � ��� ��k � ��� ���k � ��

��k � �� � ��k�
�
�

�
�

where ��x� � ���x����x� is the Euler ��function	 As
k��� this saturates the bound of � bit per query	

Since �g � VP �� is the product of the volume ratios�

log �g �
PX
t��

log�t � const � ����
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Figure �
 Probability distribution of the volume ratio for a �k�member committee playing the high�low game	

The volume ratios �t are independent� identically dis�
tributed random variables drawn from ����	 Hence by
the central limit theorem �g approaches a log�normal
random variable as P � �	 The most probable �g�P �
scales like

�g�P � � e�PI�k� � ����

where I�k� is given by ����	� Thus for query learning of
high�low there is a very simple exponential relationship
between information gain and generalization error	 In
the next section we will see that a similar relationship
can be written for perceptrons	

� Perceptron Learning

We now consider perceptron learning of another percep�
tron� where the teacher and student are given by

���X� � sgn�W� 	X� � ����

��X�W� � sgn�W 	X� � ����

The vectors W� W�� and X all have N components	
The weight space is taken to be the hypersphere

W � fW 
W 	W � Ng� ����

and the input distribution is Gaussian

P��X� � ��	��N�� exp�
�
�
X�X � ����

Given P examples the posterior distribution is uniform
on the version space

WP � fW � W 
 �W 	Xt��W� 	Xt� 
 �� 
t � �� � � �Pg
����

�We could also calculate the average of �g rather than
log �g� The coe�cient of P in the resulting exponential is
given by logh�i rather than hlog �i�

��� Random inputs

When all inputs are chosen at random from the distribu�
tion ����� the replica method can be used to calculate
the entropy of the posterior distribution�GT��
	 The
calculation is exact in the thermodynamic limit� where
P�N � � with � � P�N constant	 The entropy per
weight s � S�N is then

s��� �
�

�
log��� q� �

�

�
q � ��

Z
DxH��x� logH��x� �

����
where

� �
r

q

�� q
� ����

Dx � dxp
�	

e�x
��� � ����

H�y� �
Z �

y

Dx � ����

The entropy must be extremized with respect to the or�
der parameter q� from which the average generalization
error can be obtained using the relation

�g � 	�� cos�� q � ����

In the large � limit� this leads to the inverse power law
behavior

�g��� � �����

�
����

The large � asymptotics can also be obtained by ex�
amining the scaling of the entropy with the generaliza�
tion error� similar to the arguments in �SST��
 using
the microcanonical high�T limit for a general classi�ca�
tion of learning curves	 As q � �� the �rst term of ����



dominates� so that the entropy has a simple logarithmic
dependence on the generalization error

s � log �g � ����

where we have used the asymptotic result �g �
	��
p
���� q�	 The information gain is given by

I��� � � 
s


�
� ��

Z
DxH��x� logH��x�

� ��
p
�� q

Z
dxH�x� logH�x�

� �����g � ����

This condition combined with ���� can only be satis�ed
by the inverse power law �g � ���� as in ����	

We have performed a Monte Carlo simulation
of this algorithm	 The deterministic perceptron
algorithm�MP��
 was used to obtain a weight vector in
the version space	 Then zero�temperature Monte Carlo
was used to random walk inside the version space	 To
maintain acceptance rates of approximately ���� the
size of the Monte Carlo step was scaled downward with
increasing �	 The resulting learning curve is shown in
Fig	 �� and �ts the analytic results obtained through the
replica method	

��� Query by committee

Because each query depends on the previous history of
queries� the committee algorithm is a dynamical pro�
cess� where the number of examples plays the role of
�time	� In the replica calculations for this algorithm�
we must know the overlaps between weight vectors at
di erent �times	� This makes the calculations much
more di�cult than for the case of random�inputs	 The
replica calculation in the appendix makes the simplify�
ing assumption that the typical overlap between weight
vectors at di erent �times� is equal to the typical over�
lap of two vectors at the earlier �time	� In other words�
we assume that the overlaps satisfy

Wt 	Wt�

N
� q�minft� t�g� � ����

and are self�averaging quantities	 Taking the thermody�
namic limit N � � turns the discrete�time dynamics
in t into a continuous�time dynamics in � � t�N 	 The
entropy of the weight space at time � is calculated by
treating q���� for previous �times� �� � � as an exter�
nal �eld	 The resulting saddle point equation for q���
is an integral equation that can be solved numerically	

The replica results for the two�member committee are
shown in Fig	 �� along with Monte Carlo simulations	
In the simulations� zero�temperature Gibbs training
was implemented by training two perceptrons using the
standard perceptron algorithm� and then equilibrating
them with zero�temperature Monte Carlo	 Input vec�
tors were then selected at random from the prior distri�
bution ���� until an input that produced disagreement
was found	 The teacher was queried on this input� and

�nat� �bit�
� �	��� �	���
� �	��� �	���
� �	��� �	���
� �	��� �

Table �
 Information gain of the query by committee
algorithm for perceptron learning

the input and the teacher�s output were added to the
training set	

Note that the generalization error of the two�member
committee is very close to the random input results for
� of order � or less	 Even for relatively large �� di erent
committee sizes �not shown� perform almost identically	
However� the algorithms are quite di erent in their large
� asymptotic properties	 By taking the derivative of the
committee entropy ���� with respect to �� we �nd that
the information gain approaches the limit

I������
R
dxHk�x�Hk��x�H�x� logH�x�R

dxHk�x�Hk��x� ����

as � � �	 These limiting values for some small k can
be found in Table �	 As k � �� the information gain
saturates the bound of one bit per query	

How does the information gain a ect the generalization
performance! For the committee algorithm� we have
found that the information gain approaches a �nite con�
stant value

ds

d�
��I��� ����

We assume that the entropy is still given by s��� �
log �g as in ����	 This assumption� which is shown to
be consistent in the appendix� leads to the asymptotic
result

�g � e��I��� � ����

The generalization error is asymptotically exponential in
�� with a decay constant determined by the information
gain	 This is markedly faster than the inverse power law
���� for random inputs	

In our implementation of the committee algorithms� a
source of random inputs is screened by a committee un�
til one is found that provokes disagreement	 A practical
drawback of this scheme is that the time to �nd a query
diverges like the inverse of the generalization error	 In
this respect� algorithms which construct queries directly
may be superior	 For example� the query algorithm
proposed by Kinzel and Ruj"an�KR��� WR��
 for per�
ceptron learning constructs input vectors that are per�
pendicular to the student weight vector	 In conjunction
with the Gibbs training algorithm� this method yields
generalization performance only slightly worse than that
of the committee algorithms for moderate �� but much
faster query times	 However� the committee algorithms
appear to possess a generality that other query algo�
rithms do not	
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Figure �
 Generalization curves for perceptron learning using the random�input� committee� and minimal training
set algorithms	 The Monte Carlo simulations were done with N � ��� averaged over �� samples	 After each query�
the perceptron was equilibrated for ���� steps	 The standard error of measurement is smaller than the size of the
symbol	 The solid lines are analytic results from replica theory	

� Conclusion

We have compared query by committee and random#
input training for the case of the perceptron	 For ran�
dom inputs� the information gain approaches zero with
the generalization error�

I��� � � ds

d�
� �g � ����

For the committee algorithm� the information gain is
asymptotically �nite

I���� I��� � ����

where I��� 
 � is given by ����	

For perceptron learning� the entropy behaves asymptot�
ically as

s � S

N
� log �g � ����

for both random#input and query algorithms	

Given ds�d� and s in terms of �g� one can derive the
generalization curve as a function of �	 For random
inputs� ���� and ���� imply

�g � �

�
� ����

For the committee algorithms� ���� and ���� imply

log �g � �I���� � ����

The high�low game and the perceptron have provided
simple illustrations of the query by committee algo�
rithm� and of the relationship between information gain

and generalization error	 However� we have not ad�
dressed the issue of whether the behaviors exhibited by
these toy models are general	 For what architectures
does query by committee lead to asymptotically �nite
information gain! Under what conditions does asymp�
totically �nite information gain lead to exponential gen�
eralization curves! These questions are currently under
investigation	
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Appendix� Replica calculations for
query by committee

The volume VP of the version space determines the en�
tropy S � lnVP for a �xed teacher W�	 The average of
the entropy over all possible query sequences ��� � � � � �P

consistent with the teacher is denoted by Sav 	 From
this quantity we shall �nd the overlap q between two
random weight vectors inside the version space WP 	 If
we take one them to be the target vector� this in turn
will give us the generalization error on a new random
input	

We begin with the de�nition

Sav � hlnVP ifXtg ����

� lim
n��





n
ln hhV n

P ifXtgiW�
����

In the second line we have introduced the replica trick�
and an average of W� over the prior distribution of
teachers has been added� as in �OH��
	 This makes the
symmetry of the teacher and the students explicit� so
that the teacher vector W� can be treated as another
replica�

Sav � lim
n��





n
ln Tr
f�tg

Z nY
���

dWa�
�

PY
t��

nY
���

���tW� 	Xt�

�
fXtg

����

Note that for all integer n we have now n� � replicas	

Recall that for the k � � committee� the t � �st input
Xt�� is selected so as to cause disagreement between
two committeemembersWt

� andWt
� drawn at random

from the version spaceWt	 Thus the probability density
for Xt�� is

P�Xt��jWt
��W

t
�� � P��Xt����X

����

���Wt
� 	Xt�������Wt

� 	Xt��� �����

where a prefactor must be added to achieve the correct
normalization

R
dXt��P�Xt��jWt

��W
t
�� � �	 The

prior distribution of patterns P��X� is the Gaussian
P��X� � ��	�N��e�

�
�
X�X � ����

Let us consider the average over Xt��� with the com�
mittee weights Wt

� and Wt
� �xed for the time being	�
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The average with respect to P��Xt��� involves n � �

quantities Wa 	 Xt�
p
N � where a can be any of the

symbols �� �� � � � � n����	 These quantities are Gaussian
random variables with zero mean� and covariance given
by �

Wa 	Xp
N

Wb 	Xp
N

�
P��X�

�
Wa 	Wb

N
� qab � ����

The average ���� depends on the vectors Wa only
through these overlaps qab	 In accord with the ansatz
���� and the ansatz of replica symmetry� we assume

q�� � ��� � ��� ����q ����

q�� � q�t� ����

q�� � � ����

q�� � q�t� � ����

We now make the replacements

Wt
� 	Xt��

p
N

� x
p
q�t� � z�

p
�� q�t� � ����

W� 	Xt��

p
N

� x
p
q�t� � y

p
q � q�t�

�z�
p
�� q � ����



where x� y� z�� z� are uncorrelated Gaussian random
variables of unit variance	 This change of variables
yields the proper covariances	

This average must be done for every Xt� and yields
an entropy that depends on the order parameters q�t��
t � � to P � �� and on the overlap q at time P of
the weight vectors W�	 We treat the q�t� as exter�
nal �elds and determine q variationally	 This is valid
provided that the q�t� are self�averaging quantities� so
that the �uctuations in the committeemembers at times
t � P do not a ect the calculation of the entropy at
time P 	 To take the continuum limit N � �� we de�
�ne P � �N and t � ��N and replace the productQP

t���� � �� by exp�N
R �
�
d�� ln�� � ��	 Finally� the W� in�

tegrals are done� as usual� by introducing entropic terms
containing q	

Generalizing to a committee of �k members� we �nd for
the entropy per weight

s �
�

�
q �

�

�
ln�� � q� ����

� �

Z �

�

d��
R
Dx
R
DyHk���x�Hk����x�H�u� lnH�u�R

DxHk���x�Hk����x� �

where

�� �
s

q����

�� q����
� ����

u � x

s
q����

�� q
� y

s
q � q����

�� q
� ����

The value of q � q��� is determined variationally from
����	

The information gain can be calculated by di erentiat�
ing ���� with respect to ��

I�q� � ��
R
DxHk��x�Hk���x�H��x� logH��x�R

DxHk��x�Hk���x� �

����
where � is de�ned as in ����	 As q � �� this yields the
asymptotic result ����	

Assuming that the generalization error is asymptotically
exponential in �� one can show that the disorder term in
����� the integral over ��� approaches a constant	 Hence
the ln���q� term dominates� s � log �g� and the deriva�
tion in the text of asymptotically exponential �g is self�
consistent	


