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Abstract

The key idea behind active learning is that a machine learning algorithm can
achieve greater accuracy with fewer training labels if it is allowed to choose the
data from which it learns. An active learner may pose queries, usually in the form
of unlabeled data instances to be labeled by an oracle (e.g., a human annotator).
Active learning is well-motivated in many modern machine learning problems,
where unlabeled data may be abundant or easily obtained, but labels are difficult,
time-consuming, or expensive to obtain.

This report provides a general introduction to active learning and a survey of
the literature. This includes a discussion of the scenarios in which queries can
be formulated, and an overview of the query strategy frameworks proposed in
the literature to date. An analysis of the empirical and theoretical evidence for
successful active learning, a summary of problem setting variants and practical
issues, and a discussion of related topics in machine learning research are also
presented.



Contents
1 Introduction 3

1.1 What is Active Learning? . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Active Learning Examples . . . . . . . . . . . . . . . . . . . . . 5
1.3 Further Reading . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Scenarios 8
2.1 Membership Query Synthesis . . . . . . . . . . . . . . . . . . . . 9
2.2 Stream-Based Selective Sampling . . . . . . . . . . . . . . . . . 10
2.3 Pool-Based Sampling . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Query Strategy Frameworks 12
3.1 Uncertainty Sampling . . . . . . . . . . . . . . . . . . . . . . . . 12
3.2 Query-By-Committee . . . . . . . . . . . . . . . . . . . . . . . . 15
3.3 Expected Model Change . . . . . . . . . . . . . . . . . . . . . . 18
3.4 Expected Error Reduction . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Variance Reduction . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.6 Density-Weighted Methods . . . . . . . . . . . . . . . . . . . . . 25

4 Analysis of Active Learning 26
4.1 Empirical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2 Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . 28

5 Problem Setting Variants 30
5.1 Active Learning for Structured Outputs . . . . . . . . . . . . . . 30
5.2 Active Feature Acquisition and Classification . . . . . . . . . . . 32
5.3 Active Class Selection . . . . . . . . . . . . . . . . . . . . . . . 33
5.4 Active Clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 33

6 Practical Considerations 34
6.1 Batch-Mode Active Learning . . . . . . . . . . . . . . . . . . . . 35
6.2 Noisy Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
6.3 Variable Labeling Costs . . . . . . . . . . . . . . . . . . . . . . . 37
6.4 Alternative Query Types . . . . . . . . . . . . . . . . . . . . . . 39
6.5 Multi-Task Active Learning . . . . . . . . . . . . . . . . . . . . . 42
6.6 Changing (or Unknown) Model Classes . . . . . . . . . . . . . . 43
6.7 Stopping Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . 44

1



7 Related Research Areas 44
7.1 Semi-Supervised Learning . . . . . . . . . . . . . . . . . . . . . 44
7.2 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . 45
7.3 Submodular Optimization . . . . . . . . . . . . . . . . . . . . . . 46
7.4 Equivalence Query Learning . . . . . . . . . . . . . . . . . . . . 47
7.5 Model Parroting and Compression . . . . . . . . . . . . . . . . . 47

8 Conclusion and Final Thoughts 48

Bibliography 49

2



1 Introduction
This report provides a general review of the literature on active learning. There
have been a host of algorithms and applications for learning with queries over
the years, and this document is an attempt to distill the core ideas, methods, and
applications that have been considered by the machine learning community. To
make this survey more useful in the long term, an online version will be updated
and maintained indefinitely at:

http://active-learning.net/

When referring to this document, I recommend using the following citation:

Burr Settles. Active Learning Literature Survey. Computer Sciences Tech-
nical Report 1648, University of Wisconsin–Madison. 2009.

An appropriate BIBTEX entry is:

@techreport{settles.tr09,
Author = {Burr Settles},
Institution = {University of Wisconsin--Madison},
Number = {1648},
Title = {Active Learning Literature Survey},
Type = {Computer Sciences Technical Report},
Year = {2009},

}

This document is written for a machine learning audience, and assumes the reader
has a working knowledge of supervised learning algorithms (particularly statisti-
cal methods). For a good introduction to general machine learning, I recommend
Mitchell (1997) or Duda et al. (2001). I have strived to make this review as com-
prehensive as possible, but it is by no means complete. My own research deals pri-
marily with applications in natural language processing and bioinformatics, thus
much of the empirical active learning work I am familiar with is in these areas.
Active learning (like so many subfields in computer science) is rapidly growing
and evolving in a myriad of directions, so it is difficult for one person to provide
an exhaustive summary. I apologize for any oversights or inaccuracies, and en-
courage interested readers to submit additions, comments, and corrections to me
at: bsettles@cs.cmu.edu.
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1.1 What is Active Learning?
Active learning (sometimes called “query learning” or “optimal experimental de-
sign” in the statistics literature) is a subfield of machine learning and, more gener-
ally, artificial intelligence. The key hypothesis is that if the learning algorithm is
allowed to choose the data from which it learns—to be “curious,” if you will—it
will perform better with less training. Why is this a desirable property for learning
algorithms to have? Consider that, for any supervised learning system to perform
well, it must often be trained on hundreds (even thousands) of labeled instances.
Sometimes these labels come at little or no cost, such as the the “spam” flag you
mark on unwanted email messages, or the five-star rating you might give to films
on a social networking website. Learning systems use these flags and ratings to
better filter your junk email and suggest movies you might enjoy. In these cases
you provide such labels for free, but for many other more sophisticated supervised
learning tasks, labeled instances are very difficult, time-consuming, or expensive
to obtain. Here are a few examples:

• Speech recognition. Accurate labeling of speech utterances is extremely
time consuming and requires trained linguists. Zhu (2005a) reports that
annotation at the word level can take ten times longer than the actual au-
dio (e.g., one minute of speech takes ten minutes to label), and annotating
phonemes can take 400 times as long (e.g., nearly seven hours). The prob-
lem is compounded for rare languages or dialects.

• Information extraction. Good information extraction systems must be trained
using labeled documents with detailed annotations. Users highlight entities
or relations of interest in text, such as person and organization names, or
whether a person works for a particular organization. Locating entities and
relations can take a half-hour or more for even simple newswire stories (Set-
tles et al., 2008a). Annotations for other knowledge domains may require
additional expertise, e.g., annotating gene and disease mentions for biomed-
ical information extraction usually requires PhD-level biologists.

• Classification and filtering. Learning to classify documents (e.g., articles
or web pages) or any other kind of media (e.g., image, audio, and video
files) requires that users label each document or media file with particular
labels, like “relevant” or “not relevant.” Having to annotate thousands of
these instances can be tedious and even redundant.
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Active learning systems attempt to overcome the labeling bottleneck by asking
queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human
annotator). In this way, the active learner aims to achieve high accuracy using
as few labeled instances as possible, thereby minimizing the cost of obtaining
labeled data. Active learning is well-motivated in many modern machine learning
problems where data may be abundant but labels are scarce or expensive to obtain.
Note that this kind of active learning is related in spirit, though not to be confused,
with the family of instructional techniques by the same name in the education
literature (Bonwell and Eison, 1991).

1.2 Active Learning Examples

machine learning
model

L
U

labeled
training set

unlabeled pool

oracle (e.g., human annotator)

learn a model

select queries

Figure 1: The pool-based active learning cycle.

There are several scenarios in which active learners may pose queries, and
there are also several different query strategies that have been used to decide which
instances are most informative. In this section, I present two illustrative examples
in the pool-based active learning setting (in which queries are selected from a
large pool of unlabeled instances U) using an uncertainty sampling query strategy
(which selects the instance in the pool about which the model is least certain how
to label). Sections 2 and 3 describe all the active learning scenarios and query
strategy frameworks in more detail.
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Figure 2: An illustrative example of pool-based active learning. (a) A toy data set of
400 instances, evenly sampled from two class Gaussians. The instances are
represented as points in a 2D feature space. (b) A logistic regression model
trained with 30 labeled instances randomly drawn from the problem domain.
The line represents the decision boundary of the classifier (70% accuracy). (c)
A logistic regression model trained with 30 actively queried instances using
uncertainty sampling (90%).

Figure 1 illustrates the pool-based active learning cycle. A learner may begin
with a small number of instances in the labeled training set L, request labels for
one or more carefully selected instances, learn from the query results, and then
leverage its new knowledge to choose which instances to query next. Once a
query has been made, there are usually no additional assumptions on the part of
the learning algorithm. The new labeled instance is simply added to the labeled
set L, and the learner proceeds from there in a standard supervised way. There are
a few exceptions to this, such as when the learner is allowed to make alternative
types of queries (Section 6.4), or when active learning is combined with semi-
supervised learning (Section 7.1).

Figure 2 shows the potential of active learning in a way that is easy to visu-
alize. This is a toy data set generated from two Gaussians centered at (-2,0) and
(2,0) with standard deviation σ = 1, each representing a different class distribu-
tion. Figure 2(a) shows the resulting data set after 400 instances are sampled (200
from each class); instances are represented as points in a 2D feature space. In
a real-world setting these instances may be available, but their labels usually are
not. Figure 2(b) illustrates the traditional supervised learning approach after ran-
domly selecting 30 instances for labeling, drawn i.i.d. from the unlabeled pool U .
The line shows the linear decision boundary of a logistic regression model (i.e.,
where the posterior equals 0.5) trained using these 30 points. Notice that most
of the labeled instances in this training set are far from zero on the horizontal
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Figure 3: Learning curves for text classification: baseball vs. hockey. Curves plot clas-
sification accuracy as a function of the number of documents queried for two se-
lection strategies: uncertainty sampling (active learning) and random sampling
(passive learning). We can see that the active learning approach is superior here
because its learning curve dominates that of random sampling.

axis, which is where the Bayes optimal decision boundary should probably be.
As a result, this classifier only achieves 70% accuracy on the remaining unlabeled
points. Figure 2(c), however, tells a different story. The active learner uses uncer-
tainty sampling to focus on instances closest to its decision boundary, assuming it
can adequately explain those in other parts of the input space characterized by U .
As a result, it avoids requesting labels for redundant or irrelevant instances, and
achieves 90% accuracy with a mere 30 labeled instances.

Now let us consider active learning for a real-world learning task: text classifi-
cation. In this example, a learner must distinguish between baseball and hockey
documents from the 20 Newsgroups corpus (Lang, 1995), which consists of 2,000
Usenet documents evenly divided between the two classes. Active learning al-
gorithms are generally evaluated by constructing learning curves, which plot the
evaluation measure of interest (e.g., accuracy) as a function of the number of
new instance queries that are labeled and added to L. Figure 3 presents learning
curves for the first 100 instances labeled using uncertainty sampling and random
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sampling. The reported results are for a logistic regression model averaged over
ten folds using cross-validation. After labeling 30 new instances, the accuracy of
uncertainty sampling is 81%, while the random baseline is only 73%. As can be
seen, the active learning curve dominates the baseline curve for all of the points
shown in this figure. We can conclude that an active learning algorithm is superior
to some other approach (e.g., a random baseline like traditional passive supervised
learning) if it dominates the other for most or all of the points along their learning
curves.

1.3 Further Reading
This is the first large-scale survey of the active learning literature. One way to view
this document is as a heavily annotated bibliography of the field, and the citations
within a particular section or subsection of interest serve as good starting points
for further investigation. There have also been a few PhD theses over the years
dedicated to active learning, with rich related work sections. In fact, this report
originated as a chapter in my PhD thesis (Settles, 2008), which focuses on active
learning with structured instances and potentially varied annotation costs. Also of
interest may be the related work chapters of Tong (2001), which considers active
learning for support vector machines and Bayesian networks, Monteleoni (2006),
which considers more theoretical aspects of active learning for classification, and
Olsson (2008), which focuses on active learning for named entity recognition (a
type of information extraction). Fredrick Olsson has also written a survey of active
learning specifically within the scope of the natural language processing (NLP)
literature (Olsson, 2009).

2 Scenarios
There are several different problem scenarios in which the learner may be able
to ask queries. The three main settings that have been considered in the litera-
ture are (i) membership query synthesis, (ii) stream-based selective sampling, and
(iii) pool-based sampling. Figure 4 illustrates the differences among these three
scenarios, which are explained in more detail in this section. Note that all these
scenarios (and the lion’s share of active learning work to date) assume that queries
take the form of unlabeled instances to be labeled by the oracle. Sections 6 and 5
discuss some alternatives to this setting.
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pool-based sampling query is labeled
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Figure 4: Diagram illustrating the three main active learning scenarios.

2.1 Membership Query Synthesis
One of the first active learning scenarios to be investigated is learning with mem-
bership queries (Angluin, 1988). In this setting, the learner may request labels
for any unlabeled instance in the input space, including (and typically assuming)
queries that the learner generates de novo, rather than those sampled from some
underlying natural distribution. Efficient query synthesis is often tractable and
efficient for finite problem domains (Angluin, 2001). The idea of synthesizing
queries has also been extended to regression learning tasks, such as learning to
predict the absolute coordinates of a robot hand given the joint angles of its me-
chanical arm as inputs (Cohn et al., 1996).

Query synthesis is reasonable for many problems, but labeling such arbitrary
instances can be awkward if the oracle is a human annotator. For example, Lang
and Baum (1992) employed membership query learning with human oracles to
train a neural network to classify handwritten characters. They encountered an
unexpected problem: many of the query images generated by the learner con-
tained no recognizable symbols, only artificial hybrid characters that had no nat-
ural semantic meaning. Similarly, one could imagine that membership queries
for natural language processing tasks might create streams of text or speech that
amount to gibberish. The stream-based and pool-based scenarios (described in the
next sections) have been proposed to address these limitations.

However, King et al. (2004, 2009) describe an innovative and promising real-
world application of the membership query scenario. They employ a “robot scien-
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tist” which can execute a series of autonomous biological experiments to discover
metabolic pathways in the yeast Saccharomyces cerevisiae. Here, an instance is a
mixture of chemical solutions that constitute a growth medium, as well as a partic-
ular yeast mutant. A label, then, is whether or not the mutant thrived in the growth
medium. All experiments are autonomously synthesized using an active learning
approach based on inductive logic programming, and physically performed us-
ing a laboratory robot. This active method results in a three-fold decrease in the
cost of experimental materials compared to naı̈vely running the least expensive
experiment, and a 100-fold decrease in cost compared to randomly generated ex-
periments. In domains where labels come not from human annotators, but from
experiments such as this, query synthesis may be a promising direction for auto-
mated scientific discovery.

2.2 Stream-Based Selective Sampling
An alternative to synthesizing queries is selective sampling (Cohn et al., 1990,
1994). The key assumption is that obtaining an unlabeled instance is free (or in-
expensive), so it can first be sampled from the actual distribution, and then the
learner can decide whether or not to request its label. This approach is sometimes
called stream-based or sequential active learning, as each unlabeled instance is
typically drawn one at a time from the data source, and the learner must decide
whether to query or discard it. If the input distribution is uniform, selective sam-
pling may well behave like membership query learning. However, if the distri-
bution is non-uniform and (more importantly) unknown, we are guaranteed that
queries will still be sensible, since they come from a real underlying distribution.

The decision whether or not to query an instance can be framed several ways.
One approach is to evaluate samples using some “informativeness measure” or
“query strategy” (see Section 3 for examples) and make a biased random deci-
sion, such that more informative instances are more likely to be queried (Dagan
and Engelson, 1995). Another approach is to compute an explicit region of uncer-
tainty (Cohn et al., 1994), i.e., the part of the instance space that is still ambiguous
to the learner, and only query instances that fall within it. A naı̈ve way of doing
this is to set a minimum threshold on an informativeness measure which defines
the region. Instances whose evaluation is above this threshold are then queried.
Another more principled approach is to define the region that is still unknown to
the overall model class, i.e., to the set of hypotheses consistent with the current la-
beled training set called the version space (Mitchell, 1982). In other words, if any
two models of the same model class (but different parameter settings) agree on all

10



the labeled data, but disagree on some unlabeled instance, then that instance lies
within the region of uncertainty. Calculating this region completely and explicitly
is computationally expensive, however, and it must be maintained after each new
query. As a result, approximations are used in practice (Seung et al., 1992; Cohn
et al., 1994; Dasgupta et al., 2008).

The stream-based scenario has been studied in several real-world tasks, includ-
ing part-of-speech tagging (Dagan and Engelson, 1995), sensor scheduling (Kr-
ishnamurthy, 2002), and learning ranking functions for information retrieval (Yu,
2005). Fujii et al. (1998) employ selective sampling for active learning in word
sense disambiguation, e.g., determining if the word “bank” means land alongside
a river or a financial institution in a given context (only they study Japanese words
in their work). The approach not only reduces annotation effort, but also limits
the size of the database used in nearest-neighbor learning, which in turn expedites
the classification algorithm.

It is worth noting that some authors (e.g., Thompson et al., 1999; Moskovitch
et al., 2007) use “selective sampling” to refer to the pool-based scenario described
in the next section. Under this interpretation, the term merely signifies that queries
are made with a select set of instances sampled from a real data distribution.
However, in most of the literature selective sampling refers to the stream-based
scenario described here.

2.3 Pool-Based Sampling
For many real-world learning problems, large collections of unlabeled data can be
gathered at once. This motivates pool-based sampling (Lewis and Gale, 1994),
which assumes that there is a small set of labeled data L and a large pool of un-
labeled data U available. Queries are selectively drawn from the pool, which is
usually assumed to be closed (i.e., static or non-changing), although this is not
strictly necessary. Typically, instances are queried in a greedy fashion, according
to an informativeness measure used to evaluate all instances in the pool (or, per-
haps if U is very large, some subsample thereof). The examples from Section 1.2
use this active learning setting.

The pool-based scenario has been studied for many real-world problem do-
mains in machine learning, such as text classification (Lewis and Gale, 1994; Mc-
Callum and Nigam, 1998; Tong and Koller, 2000; Hoi et al., 2006a), information
extraction (Thompson et al., 1999; Settles and Craven, 2008), image classification
and retrieval (Tong and Chang, 2001; Zhang and Chen, 2002), video classification
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and retrieval (Yan et al., 2003; Hauptmann et al., 2006), speech recognition (Tür
et al., 2005), and cancer diagnosis (Liu, 2004) to name a few.

The main difference between stream-based and pool-based active learning is
that the former scans through the data sequentially and makes query decisions
individually, whereas the latter evaluates and ranks the entire collection before
selecting the best query. While the pool-based scenario appears to be much more
common among application papers, one can imagine settings where the stream-
based approach is more appropriate. For example, when memory or processing
power may be limited, as with mobile and embedded devices.

3 Query Strategy Frameworks
All active learning scenarios involve evaluating the informativeness of unlabeled
instances, which can either be generated de novo or sampled from a given distribu-
tion. There have been many proposed ways of formulating such query strategies
in the literature. This section provides an overview of the general frameworks that
are used. From this point on, I use the notation x∗A to refer to the most informative
instance (i.e., the best query) according to some query selection algorithm A.

3.1 Uncertainty Sampling
Perhaps the simplest and most commonly used query framework is uncertainty
sampling (Lewis and Gale, 1994). In this framework, an active learner queries
the instances about which it is least certain how to label. This approach is often
straightforward for probabilistic learning models. For example, when using a
probabilistic model for binary classification, uncertainty sampling simply queries
the instance whose posterior probability of being positive is nearest 0.5 (Lewis
and Gale, 1994; Lewis and Catlett, 1994).

For problems with three or more class labels, a more general uncertainty sam-
pling variant might query the instance whose prediction is the least confident:

x∗LC = argmax
x

1− Pθ(ŷ|x),

where ŷ = argmaxy Pθ(y|x), or the class label with the highest posterior prob-
ability under the model θ. One way to interpret this uncertainty measure is the
expected 0/1-loss, i.e., the model’s belief that it will mislabel x. This sort of strat-
egy has been popular, for example, with statistical sequence models in information
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extraction tasks (Culotta and McCallum, 2005; Settles and Craven, 2008). This
is because the most likely label sequence (and its associated likelihood) can be
efficiently computed using dynamic programming.

However, the criterion for the least confident strategy only considers informa-
tion about the most probable label. Thus, it effectively “throws away” information
about the remaining label distribution. To correct for this, some researchers use a
different multi-class uncertainty sampling variant called margin sampling (Schef-
fer et al., 2001):

x∗M = argmin
x

Pθ(ŷ1|x)− Pθ(ŷ2|x),

where ŷ1 and ŷ2 are the first and second most probable class labels under the
model, respectively. Margin sampling aims to correct for a shortcoming in least
confident strategy, by incorporating the posterior of the second most likely la-
bel. Intuitively, instances with large margins are easy, since the classifier has little
doubt in differentiating between the two most likely class labels. Instances with
small margins are more ambiguous, thus knowing the true label would help the
model discriminate more effectively between them. However, for problems with
very large label sets, the margin approach still ignores much of the output distri-
bution for the remaining classes.

A more general uncertainty sampling strategy (and possibly the most popular)
uses entropy (Shannon, 1948) as an uncertainty measure:

x∗H = argmax
x
−
∑
i

Pθ(yi|x) logPθ(yi|x),

where yi ranges over all possible labelings. Entropy is an information-theoretic
measure that represents the amount of information needed to “encode” a distri-
bution. As such, it is often thought of as a measure of uncertainty or impurity in
machine learning. For binary classification, entropy-based sampling reduces to
the margin and least confident strategies above; in fact all three are equivalent to
querying the instance with a class posterior closest to 0.5. However, the entropy-
based approach generalizes easily to probabilistic multi-label classifiers and prob-
abilistic models for more complex structured instances, such as sequences (Settles
and Craven, 2008) and trees (Hwa, 2004).

Figure 5 visualizes the implicit relationship among these uncertainty mea-
sures. In all cases, the most informative instance would lie at the center of the
triangle, because this represents where the posterior label distribution is most uni-
form (and thus least certain under the model). Similarly, the least informative
instances are at the three corners, where one of the classes has extremely high
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(a) least confident (b) margin (c) entropy

Figure 5: Heatmaps illustrating the query behavior of common uncertainty measures in
a three-label classification problem. Simplex corners indicate where one label
has very high probability, with the opposite edge showing the probability range
for the other two classes when that label has very low probability. Simplex
centers represent a uniform posterior distribution. The most informative query
region for each strategy is shown in dark red, radiating from the centers.

probability (and thus little model uncertainty). The main differences lie in the
rest of the probability space. For example, the entropy measure does not favor
instances where only one of the labels is highly unlikely (i.e., along the outer
side edges), because the model is fairly certain that it is not the true label. The
least confident and margin measures, on the other hand, consider such instances
to be useful if the model cannot distinguish between the remaining two classes.
Empirical comparisons of these measures (e.g., Körner and Wrobel, 2006; Schein
and Ungar, 2007; Settles and Craven, 2008) have yielded mixed results, suggest-
ing that the best strategy may be application-dependent (note that all strategies
still generally outperform passive baselines). Intuitively, though, entropy seems
appropriate if the objective function is to minimize log-loss, while the other two
(particularly margin) are more appropriate if we aim to reduce classification error,
since they prefer instances that would help the model better discriminate among
specific classes.

Uncertainty sampling strategies may also be employed with non-probabilistic
classifiers. One of the first works to explore uncertainty sampling used a decision
tree classifier (Lewis and Catlett, 1994). Similar approaches have been applied
to active learning with nearest-neighbor (a.k.a. “memory-based” or “instance-
based”) classifiers (Fujii et al., 1998; Lindenbaum et al., 2004), by allowing each
neighbor to vote on the class label of x, with the proportion of these votes rep-
resenting the posterior label probability. Tong and Koller (2000) also experiment
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with an uncertainty sampling strategy for support vector machines—or SVMs—
that involves querying the instance closest to the linear decision boundary. This
last approach is analogous to uncertainty sampling with a probabilistic binary lin-
ear classifier, such as logistic regression or naı̈ve Bayes.

So far we have only discussed classification tasks, but uncertainty sampling
is also applicable in regression problems (i.e., learning tasks where the output
variable is a continuous value rather than a set of discrete class labels). In this
setting, the learner simply queries the unlabeled instance for which the model has
the highest output variance in its prediction. Under a Gaussian assumption, the
entropy of a random variable is a monotonic function of its variance, so this ap-
proach is very much in same the spirit as entropy-based uncertainty sampling for
classification. Closed-form approximations of output variance can be computed
for a variety of models, including Gaussian random fields (Cressie, 1991) and neu-
ral networks (MacKay, 1992). Active learning for regression problems has a long
history in the statistics literature, generally referred to as optimal experimental
design (Federov, 1972). Such approaches shy away from uncertainty sampling in
lieu of more sophisticated strategies, which we will explore further in Section 3.5.

3.2 Query-By-Committee
Another, more theoretically-motivated query selection framework is the query-
by-committee (QBC) algorithm (Seung et al., 1992). The QBC approach involves
maintaining a committee C = {θ(1), . . . , θ(C)} of models which are all trained on
the current labeled set L, but represent competing hypotheses. Each committee
member is then allowed to vote on the labelings of query candidates. The most
informative query is considered to be the instance about which they most disagree.

The fundamental premise behind the QBC framework is minimizing the ver-
sion space, which is (as described in Section 2.2) the set of hypotheses that are
consistent with the current labeled training data L. Figure 6 illustrates the con-
cept of version spaces for (a) linear functions and (b) axis-parallel box classifiers
in different binary classification tasks. If we view machine learning as a search
for the “best” model within the version space, then our goal in active learning is
to constrain the size of this space as much as possible (so that the search can be
more precise) with as few labeled instances as possible. This is exactly what QBC
aims to do, by querying in controversial regions of the input space. In order to
implement a QBC selection algorithm, one must:
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(a) (b)

Figure 6: Version space examples for (a) linear and (b) axis-parallel box classifiers. All
hypotheses are consistent with the labeled training data in L (as indicated by
shaded polygons), but each represents a different model in the version space.

i. be able to construct a committee of models that represent different regions
of the version space, and

ii. have some measure of disagreement among committee members.

Seung et al. (1992) accomplish the first task simply by sampling a commit-
tee of two random hypotheses that are consistent with L. For generative model
classes, this can be done more generally by randomly sampling an arbitrary num-
ber of models from some posterior distribution P (θ|L). For example, McCallum
and Nigam (1998) do this for naı̈ve Bayes by using the Dirichlet distribution over
model parameters, whereas Dagan and Engelson (1995) sample hidden Markov
models—or HMMs—by using the Normal distribution. For other model classes,
such as discriminative or non-probabilistic models, Abe and Mamitsuka (1998)
have proposed query-by-boosting and query-by-bagging, which employ the well-
known ensemble learning methods boosting (Freund and Schapire, 1997) and bag-
ging (Breiman, 1996) to construct committees. Melville and Mooney (2004) pro-
pose another ensemble-based method that explicitly encourages diversity among
committee members. Muslea et al. (2000) construct a committee of two models
by partitioning the feature space. There is no general agreement in the literature
on the appropriate committee size to use, which may in fact vary by model class or
application. However, even small committee sizes (e.g., two or three) have been
shown to work well in practice (Seung et al., 1992; McCallum and Nigam, 1998;
Settles and Craven, 2008).
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For measuring the level of disagreement, two main approaches have been pro-
posed. The first is vote entropy (Dagan and Engelson, 1995):

x∗V E = argmax
x
−
∑
i

V (yi)

C
log

V (yi)

C
,

where yi again ranges over all possible labelings, and V (yi) is the number of
“votes” that a label receives from among the committee members’ predictions,
and C is the committee size. This can be thought of as a QBC generalization of
entropy-based uncertainty sampling. Another disagreement measure that has been
proposed is average Kullback-Leibler (KL) divergence (McCallum and Nigam,
1998):

x∗KL = argmax
x

1

C

C∑
c=1

D(Pθ(c)‖PC),

where:

D(Pθ(c)‖PC) =
∑
i

Pθ(c)(yi|x) log
Pθ(c)(yi|x)
PC(yi|x)

.

Here θ(c) represents a particular model in the committee, and C represents the com-
mittee as a whole, thus PC(yi|x) = 1

C

∑C
c=1 Pθ(c)(yi|x) is the “consensus” proba-

bility that yi is the correct label. KL divergence (Kullback and Leibler, 1951) is
an information-theoretic measure of the difference between two probability dis-
tributions. So this disagreement measure considers the most informative query
to be the one with the largest average difference between the label distributions
of any one committee member and the consensus. Other information-theoretic
approaches like Jensen-Shannon divergence have also been used to measure dis-
agreement (Melville et al., 2005), as well as the other uncertainty sampling mea-
sures discussed in Section 3.1, by pooling the model predictions to estimate class
posteriors (Körner and Wrobel, 2006). Note also that in the equations above, such
posterior estimates are based on committee members that cast “hard” votes for
their respective label predictions. They might also cast “soft” votes using their
posterior label probabilities, which in turn could be weighted by an estimate of
each committee member’s accuracy.

Aside from the QBC framework, several other query strategies attempt to min-
imize the version space as well. For example, Cohn et al. (1994) describe a selec-
tive sampling algorithm that uses a committee of two neural networks, the “most
specific” and “most general” models, which lie at two extremes the version space
given the current training set L. Tong and Koller (2000) propose a pool-based
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margin strategy for SVMs which, as it turns out, attempts to minimize the version
space directly. The membership query algorithms of Angluin (1988) and King
et al. (2004) can also be interpreted as synthesizing instances de novo that most
constrain the size of the version space. However, Haussler (1994) shows that the
size of the version space can grow exponentially with the size of L. This means
that, in general, the version space of an arbitrary model class cannot be explicitly
represented in practice. The QBC framework, rather, uses a committee to serve as
a subset approximation.

QBC can also be employed in regression settings, i.e., by measuring disagree-
ment as the variance among the committee members’ output predictions (Bur-
bidge et al., 2007). Note, however, that there is no notion of “version space” for
models that produce continuous outputs, so the interpretation of QBC in regres-
sion settings is a bit different. We can think of L as constraining the posterior joint
probability of predicted output variables and the model parameters, P (Y, θ|L)
(note that this applies for both regression and classification tasks). By integrating
over a set of hypotheses and identifying queries that lie in controversial regions of
the instance space, the learner attempts to collect data that reduces variance over
both the output predictions and the parameters of the model itself (as opposed
to uncertainty sampling, which focuses only on the output variance of a single
hypothesis).

3.3 Expected Model Change
Another general active learning framework uses a decision-theoretic approach, se-
lecting the instance that would impart the greatest change to the current model if
we knew its label. An example query strategy in this framework is the “expected
gradient length” (EGL) approach for discriminative probabilistic model classes.
This strategy was introduced by Settles et al. (2008b) for active learning in the
multiple-instance setting (see Section 6.4), and has also been applied to proba-
bilistic sequence models like CRFs (Settles and Craven, 2008).

In theory, the EGL strategy can be applied to any learning problem where
gradient-based training is used. Since discriminative probabilistic models are
usually trained using gradient-based optimization, the “change” imparted to the
model can be measured by the length of the training gradient (i.e., the vector
used to re-estimate parameter values). In other words, the learner should query
the instance x which, if labeled and added to L, would result in the new training
gradient of the largest magnitude. Let ∇`θ(L) be the gradient of the objective
function ` with respect to the model parameters θ. Now let ∇`θ(L ∪ 〈x, y〉) be
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the new gradient that would be obtained by adding the training tuple 〈x, y〉 to L.
Since the query algorithm does not know the true label y in advance, we must
instead calculate the length as an expectation over the possible labelings:

x∗EGL = argmax
x

∑
i

Pθ(yi|x)
∥∥∥∇`θ(L ∪ 〈x, yi〉)∥∥∥,

where ‖ · ‖ is, in this case, the Euclidean norm of each resulting gradient vector.
Note that, at query time, ‖∇`θ(L)‖ should be nearly zero since ` converged at
the previous round of training. Thus, we can approximate ∇`θ(L ∪ 〈x, yi〉) ≈
∇`θ(〈x, yi〉) for computational efficiency, because training instances are usually
assumed to be independent.

The intuition behind this framework is that it prefers instances that are likely
to most influence the model (i.e., have greatest impact on its parameters), regard-
less of the resulting query label. This approach has been shown to work well in
empirical studies, but can be computationally expensive if both the feature space
and set of labelings are very large. Furthermore, the EGL approach can be led
astray if features are not properly scaled. That is, the informativeness of a given
instance may be over-estimated simply because one of its feature values is unusu-
ally large, or the corresponding parameter estimate is larger, both resulting in a
gradient of high magnitude. Parameter regularization (Chen and Rosenfeld, 2000;
Goodman, 2004) can help control this effect somewhat, and it doesn’t appear to
be a significant problem in practice.

3.4 Expected Error Reduction
Another decision-theoretic approach aims to measure not how much the model is
likely to change, but how much its generalization error is likely to be reduced. The
idea it to estimate the expected future error of a model trained using L∪ 〈x, y〉 on
the remaining unlabeled instances in U (which is assumed to be representative of
the test distribution, and used as a sort of validation set), and query the instance
with minimal expected future error (sometimes called risk). One approach is to
minimize the expected 0/1-loss:

x∗0/1 = argmin
x

∑
i

Pθ(yi|x)

(
U∑
u=1

1− Pθ+〈x,yi〉(ŷ|x(u))

)
,

where θ+〈x,yi〉 refers to the the new model after it has been re-trained with the
training tuple 〈x, yi〉 added to L. Note that, as with EGL in the previous section,
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we do not know the true label for each query instance, so we approximate using
expectation over all possible labels under the current model θ. The objective here
is to reduce the expected total number of incorrect predictions. Another, less
stringent objective is to minimize the expected log-loss:

x∗log = argmin
x

∑
i

Pθ(yi|x)

(
−

U∑
u=1

∑
j

Pθ+〈x,yi〉(yj|x(u)) logPθ+〈x,yi〉(yj|x(u))

)
,

which is equivalent to reducing the expected entropy over U . Another interpreta-
tion of this strategy is maximizing the expected information gain of the query x,
or (equivalently) the mutual information of the output variables over x and U .

Roy and McCallum (2001) first proposed the expected error reduction frame-
work for text classification using naı̈ve Bayes. Zhu et al. (2003) combined this
framework with a semi-supervised learning approach (Section 7.1), resulting in
a dramatic improvement over random or uncertainty sampling. Guo and Greiner
(2007) employ an “optimistic” variant that biases the expectation toward the most
likely label for computational convenience, using uncertainty sampling as a fall-
back strategy when the oracle provides an unexpected labeling. This framework
has the dual advantage of being near-optimal and not being dependent on the
model class. All that is required is an appropriate objective function and a way to
estimate posterior label probabilities. For example, strategies in this framework
have been successfully used with a variety of models including naı̈ve Bayes (Roy
and McCallum, 2001), Gaussian random fields (Zhu et al., 2003), logistic regres-
sion (Guo and Greiner, 2007), and support vector machines (Moskovitch et al.,
2007). In theory, the general approach can be employed not only to minimize loss
functions, but to optimize any generic performance measure of interest, such as
maximizing precision, recall, F1-measure, or area under the ROC curve.

In most cases, unfortunately, expected error reduction is also the most com-
putationally expensive query framework. Not only does it require estimating the
expected future error over U for each query, but a new model must be incre-
mentally re-trained for each possible query labeling, which in turn iterates over
the entire pool. This leads to a drastic increase in computational cost. For non-
parametric model classes such as Gaussian random fields (Zhu et al., 2003), the
incremental training procedure is efficient and exact, making this approach fairly
practical1. For a many other model classes, this is not the case. For example, a
binary logistic regression model would require O(ULG) time complexity simply

1The bottleneck in non-parametric models generally not re-training, but inference.
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to choose the next query, where U is the size of the unlabeled pool U , L is the
size of the current training set L, and G is the number of gradient computations
required by the by optimization procedure until convergence. A classification task
with three or more labels using a MaxEnt model (Berger et al., 1996) would re-
quire O(M2ULG) time complexity, where M is the number of class labels. For a
sequence labeling task using CRFs, the complexity explodes to O(TMT+2ULG),
where T is the length of an input sequence. Because of this, the applications of
the expected error reduction framework have mostly only considered simple bi-
nary classification tasks. Moreover, because the approach is often still impractical,
researchers must resort to Monte Carlo sampling from the pool (Roy and McCal-
lum, 2001) to reduce the U term in the previous analysis, or use approximate
training techniques (Guo and Greiner, 2007) to reduce the G term.

3.5 Variance Reduction
Minimizing the expectation of a loss function directly is expensive, and in general
this cannot be done in closed form. However, we can still reduce generaliza-
tion error indirectly by minimizing output variance, which sometimes does have
a closed-form solution. Consider a regression problem, where the learning objec-
tive is to minimize standard error (i.e., squared-loss). We can take advantage of
the result of Geman et al. (1992), showing that a learner’s expected future error
can be decomposed in the following way:

ET
[
(ŷ − y)2|x

]
= E

[
(y − E[y|x])2

]
+ (EL[ŷ]− E[y|x])2

+ EL
[
(ŷ − EL[ŷ])2

]
,

where EL[·] is an expectation over the labeled set L, E[·] is an expectation over
the conditional density P (y|x), and ET is an expectation over both. Here also
ŷ is shorthand for the model’s predicted output for a given instance x, while y
indicates the true label for that instance.

The first term on the right-hand side of this equation is noise, i.e., the variance
of the true label y given only x, which does not depend on the model or training
data. Such noise may result from stochastic effects of the method used to obtain
the labels, for example, or because the feature representation is inadequate. The
second term is the bias, which represents the error due to the model class itself,
e.g., if a linear model is used to learn a function that is only approximately lin-
ear. This component of the overall error is invariant given a fixed model class.
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The third term is the model’s variance, which is the remaining component of the
learner’s squared-loss with respect to the target function. Minimizing the vari-
ance, then, is guaranteed to minimize the future generalization error of the model
(since the learner itself can do nothing about the noise or bias components).

Cohn (1994) and Cohn et al. (1996) present the first statistical analyses of
active learning for regression in the context of a robot arm kinematics problem,
using the estimated distribution of the model’s output σ2

ŷ . They show that this
can be done in closed-form for neural networks, Gaussian mixture models, and
locally-weighted linear regression. In particular, for neural networks the output
variance for some instance x can be approximated by (MacKay, 1992):

σ2
ŷ(x) ≈

[
∂ŷ

∂θ

]T [
∂2

∂θ2
Sθ(L)

]−1 [
∂ŷ

∂θ

]
≈ ∇xTF−1∇x,

where Sθ(L) is the squared error of the current model θ on the training set L.
In the equation above, the first and last terms are computed using the gradient of
the model’s predicted output with respect to model parameters, written in short-
hand as ∇x. The middle term is the inverse of a covariance matrix representing a
second-order expansion around the objective function S with respect to θ, written
in shorthand as F . This is also known as the Fisher information matrix (Schervish,
1995), and will be discussed in more detail later. An expression for 〈σ̃2

ŷ〉+x can
then be derived, which is the estimated mean output variance across the input
distribution after the model has been re-trained on query x and its correspond-
ing label. Given the assumptions that the model’s prediction for x is fairly good,
that ∇x is locally linear (true for most network configurations), and that variance
is Gaussian, variance can be estimated efficiently in closed form so that actual
model re-training is not required; more gory details are given by Cohn (1994).
The variance reduction query selection strategy then becomes:

x∗V R = argmin
x

〈σ̃2
ŷ〉+x.

Because this equation represents a smooth function that is differentiable with
respect to any query instance x in the input space, gradient methods can be used
to search for the best possible query that minimizes output variance, and there-
fore generalization error. Hence, their approach is an example of query synthesis
(Section 2.1), rather than stream-based or pool-based active learning.

This sort of approach is derived from statistical theories of optimal experi-
mental design, or OED (Federov, 1972; Chaloner and Verdinelli, 1995). A key
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ingredient of these approaches is Fisher information, which is sometimes written
I(θ) to make its relationship with model parameters explicit. Formally, Fisher
information is the variance of the score, which is the partial derivative of the log-
likelihood function with respect to the model parameters:

I(θ) = N

∫
x

P (x)

∫
y

Pθ(y|x)
∂2

∂θ2
logPθ(y|x),

where there are N independent samples drawn from the input distribution. This
measure is convenient because its inverse sets a lower bound on the variance of the
model’s parameter estimates; this result is known as the Cramér-Rao inequality
(Cover and Thomas, 2006). In other words, to minimize the variance over its
parameter estimates, an active learner should select data that maximizes its Fisher
information (or minimizes the inverse thereof). When there is only one parameter
in the model, this strategy is straightforward. But for models of K parameters,
Fisher information takes the form of a K ×K covariance matrix (denoted earlier
as F ), and deciding what exactly to optimize is a bit tricky. In the OED literature,
there are three types of optimal designs in such cases:

• A-optimality minimizes the trace of the inverse information matrix,

• D-optimality minimizes the determinant of the inverse matrix, and

• E-optimality minimizes the maximum eigenvalue of the inverse matrix.

E-optimality doesn’t seem to correspond to an obvious utility function, and
is not often used in the machine learning literature, though there are some excep-
tions (Flaherty et al., 2006). D-optimality, it turns out, is related to minimizing
the expected posterior entropy (Chaloner and Verdinelli, 1995). Since the deter-
minant can be thought of as a measure of volume, the D-optimal design criterion
essentially aims to minimize the volume of the (noisy) version space, with bound-
aries estimated via entropy, which makes it somewhat analogous to the query-by-
committee algorithm (Section 3.2).

A-optimal designs are considerably more popular, and aim to reduce the av-
erage variance of parameter estimates by focusing on values along the diagonal
of the information matrix. A common variant of A-optimal design is to mini-
mize tr(AF−1)—the trace of the product of A and the inverse of the informa-
tion matrix F—where A is a square, symmetric “reference” matrix. As a special
case, consider a matrix of rank one: A = ccT, where c is some vector of length
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K (i.e., the same length as the model’s parameter vector). In this case we have
tr(AF−1) = cTF−1c, and minimizing this value is sometimes called c-optimality.
Note that, if we let c = ∇x, this criterion results in the equation for output vari-
ance σ2

ŷ(x) in neural networks defined earlier. Minimizing this variance measure
can be achieved by simply querying on instance x, so the c-optimal criterion can
be viewed as a formalism for uncertainty sampling (Section 3.1).

Recall that we are interested in reducing variance across the input distribution
(not merely for a single point in the instance space), thus the A matrix should en-
code the whole instance space. MacKay (1992) derived such solutions for regres-
sion with neural networks, while Zhang and Oles (2000) and Schein and Ungar
(2007) derived similar methods for classification with logistic regression. Con-
sider letting the reference matrix A = IU(θ), i.e., the Fisher information of the
unlabeled pool of instances U , and letting F = Ix(θ), i.e., the Fisher informa-
tion of some query instance x. Using A-optimal design, we can derive the Fisher
information ratio (Zhang and Oles, 2000):

x∗FIR = argmin
x

tr
(
IU(θ)Ix(θ)−1

)
.

The equation above provides us with a ratio given by the inner product of the two
matrices, which can be interpreted as the model’s output variance across the input
distribution (as approximated by U) that is not accounted for by x. Querying the
instance which minimizes this ratio is then analogous to minimizing the future
output variance once x has been labeled, thus indirectly reducing generalization
error (with respect to U). The advantage here over error reduction (Section 3.4) is
that the model need not be retrained: the information matrices give us an approx-
imation of output variance that simulates retraining. Zhang and Oles (2000) and
Schein and Ungar (2007) applied this sort of approach to text classification using
binary logistic regression. Hoi et al. (2006a) extended this to active text classifica-
tion in the batch-mode setting (Section 6.1) in which a set of queriesQ is selected
all at once in an attempt to minimize the ratio between IU(θ) and IQ(θ). Settles
and Craven (2008) have also generalized the Fisher information ratio approach to
probabilistic sequence models such as CRFs.

There are some practical disadvantages to these variance-reduction methods,
however, in terms of computational complexity. Estimating output variance re-
quires inverting a K × K matrix for each new instance, where K is the number
of parameters in the model θ, resulting in a time complexity of O(UK3), where
U is the size of the query pool U . This quickly becomes intractable for large K,
which is a common occurrence in, say, natural language processing tasks. Paass
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and Kindermann (1995) propose a sampling approach based on Markov chains to
reduce the U term in this analysis. For inverting the Fisher information matrix and
reducing the K3 term, Hoi et al. (2006a) use principal component analysis to re-
duce the dimensionality of the parameter space. Alternatively, Settles and Craven
(2008) approximate the matrix with its diagonal vector, which can be inverted in
only O(K) time. However, these methods are still empirically much slower than
simpler query strategies like uncertainty sampling.

3.6 Density-Weighted Methods
A central idea of the estimated error and variance reduction frameworks is that
they focus on the entire input space rather than individual instances. Thus, they
are less prone to querying outliers than simpler query strategies like uncertainty
sampling, QBC, and EGL. Figure 7 illustrates this problem for a binary linear
classifier using uncertainty sampling. The least certain instance lies on the classi-
fication boundary, but is not “representative” of other instances in the distribution,
so knowing its label is unlikely to improve accuracy on the data as a whole. QBC
and EGL may exhibit similar behavior, by spending time querying possible out-
liers simply because they are controversial, or are expected to impart significant
change in the model. By utilizing the unlabeled pool U when estimating future
errors and output variances, the estimated error and variance reduction strategies
implicitly avoid these problems. We can also overcome these problems by mod-
eling the input distribution explicitly during query selection.

The information density framework described by Settles and Craven (2008),
and further analyzed in Chapter 4 of Settles (2008), is a general density-weighting
technique. The main idea is that informative instances should not only be those
which are uncertain, but also those which are “representative” of the underlying
distribution (i.e., inhabit dense regions of the input space). Therefore, we wish to
query instances as follows:

x∗ID = argmax
x

φA(x)×

(
1

U

U∑
u=1

sim(x, x(u))

)β

.

Here, φA(x) represents the informativeness of x according to some “base” query
strategy A, such as an uncertainty sampling or QBC approach. The second term
weights the informativeness of x by its average similarity to all other instances
in the input distribution (as approximated by U), subject to a parameter β that
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A

B

Figure 7: An illustration of when uncertainty sampling can be a poor strategy for classifi-
cation. Shaded polygons represent labeled instances in L, and circles represent
unlabeled instances in U . Since A is on the decision boundary, it would be
queried as the most uncertain. However, querying B is likely to result in more
information about the data distribution as a whole.

controls the relative importance of the density term. A variant of this might first
cluster U and compute average similarity to instances in the same cluster.

This formulation was presented by Settles and Craven (2008), however it is
not the only strategy to consider density and representativeness in the literature.
McCallum and Nigam (1998) also developed a density-weighted QBC approach
for text classification with naı̈ve Bayes, which is a special case of information
density. Fujii et al. (1998) considered a query strategy for nearest-neighbor meth-
ods that selects queries that are (i) least similar to the labeled instances in L,
and (ii) most similar to the unlabeled instances in U . Nguyen and Smeulders
(2004) proposed a density-based approach that first clusters instances and tries to
avoid querying outliers by propagating label information to instances in the same
cluster. Similarly, Xu et al. (2007) use clustering to construct sets of queries for
batch-mode active learning (Section 6.1) with SVMs. Reported results in all these
approaches are superior to methods that do not consider density or representative-
ness measures. Furthermore, Settles and Craven (2008) show that if densities can
be pre-computed efficiently and cached for later use, the time required to select
the next query is essentially no different than the base informativeness measure
(e.g., uncertainty sampling). This is advantageous for conducting active learning
interactively with oracles in real-time.

4 Analysis of Active Learning
This section discusses some of the empirical and theoretical evidence for how and
when active learning approaches can be successful.
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4.1 Empirical Analysis
An important question is: “does active learning work?” Most of the empirical
results in the published literature suggest that it does (e.g., the majority of papers
in the bibliography of this survey). Furthermore, consider that software companies
and large-scale research projects such as CiteSeer, Google, IBM, Microsoft, and
Siemens are increasingly using active learning technologies in a variety of real-
world applications2. Numerous published results and increased industry adoption
seem to indicate that active learning methods have matured to the point of practical
use in many situations.

As usual, however, there are caveats. In particular, consider that a training set
built in cooperation with an active learner is inherently tied to the model that was
used to generate it (i.e., the class of the model selecting the queries). Therefore,
the labeled instances are a biased distribution, not drawn i.i.d. from the underlying
natural density. If one were to change model classes—as we often do in machine
learning when the state of the art advances—this training set may no longer be as
useful to the new model class (see Section 6.6 for more discussion on this topic).
Somewhat surprisingly, Schein and Ungar (2007) showed that active learning can
sometimes require more labeled instances than passive learning even when us-
ing the same model class, in their case logistic regression. Guo and Schuurmans
(2008) found that off-the-shelf query strategies, when myopically employed in a
batch-mode setting (Section 6.1) are often much worse than random sampling.
Gasperin (2009) reported negative results for active learning in an anaphora res-
olution task. Baldridge and Palmer (2009) found a curious inconsistency in how
well active learning helps that seems to be correlated with the proficiency of the
annotator (specifically, a domain expert was better utilized by an active learner
than a domain novice, who was better suited to a passive learner).

Nevertheless, active learning does reduce the number of labeled instances re-
quired to achieve a given level of accuracy in the majority of reported results
(though, admittedly, this may be due to the publication bias). This is often true
even for simple query strategies like uncertainty sampling. Tomanek and Ols-
son (2009) report in a survey that 91% of researchers who used active learning
in large-scale annotation projects had their expectations fully or partially met.
Despite these findings, the survey also states that 20% of respondents opted not
to use active learning in such projects, specifically because they were “not con-
vinced that [it] would work well in their scenario.” This is likely because other

2Based on personal communication with (respectively): C. Lee Giles, David “Pablo” Cohn,
Prem Melville, Eric Horvitz, and Balaji Krishnapuram.
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subtleties arise when using active learning in practice (implementation overhead
among them). Section 6 discusses some of the more problematic issues for real-
world active learning.

4.2 Theoretical Analysis
A strong theoretical case for why and when active learning should work remains
somewhat elusive, although there have been some recent advances. In particular,
it would be nice to have some sort of bound on the number of queries required
to learn a sufficiently accurate model for a given task, and theoretical guarantees
that this number is less than in the passive supervised setting. Consider the fol-
lowing toy learning task to illustrate the potential of active learning. Suppose that
instances are points lying on a one-dimensional line, and our model class is a
simple binary thresholding function g parameterized by θ:

g(x; θ) =

{
1 if x > θ, and
0 otherwise.

According to the probably approximately correct (PAC) learning model (Valiant,
1984), if the underlying data distribution can be perfectly classified by some hy-
pothesis θ, then it is enough to draw O(1/ε) random labeled instances, where ε
is the maximum desired error rate. Now consider a pool-based active learning
setting, in which we can acquire the same number of unlabeled instances from
this distribution for free (or very inexpensively), and only labels incur a cost. If
we arrange these points on the real line, their (unknown) labels are a sequence of
zeros followed by ones, and our goal is to discover the location at which the tran-
sition occurs while paying for as few labels as possible. By conducting a simple
binary search through these unlabeled instances, a classifier with error less than
ε can be achieved with a mere O(log 1/ε) queries—since all other labels can be
inferred—resulting in an exponential reduction in the number of labeled instances.
Of course, this is a simple, one-dimensional, noiseless, binary toy learning task.
Generalizing this phenomenon to more interesting and realistic problem settings
is the focus of much theoretical work in active learning.

There have been some fairly strong results for the membership query scenario,
in which the learner is allowed to create query instances de novo and acquire their
labels (Angluin, 1988, 2001). However, such instances can be difficult for humans
to annotate (Lang and Baum, 1992) and may result in querying outliers, since they
are not created according to the data’s underlying natural density. A great many
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applications for active learning assume that unlabeled data (drawn from a real
distribution) are available, so these results also have limited practical impact.

A stronger early theoretical result in the stream-based and pool-based scenar-
ios is an analysis of the query-by-committee (QBC) algorithm by Freund et al.
(1997). They show that, under a Bayesian assumption, it is possible to achieve
generalization error ε after seeing O(d/ε) unlabeled instances, where d is the
Vapnik-Chervonenkis (VC) dimension (Vapnik and Chervonenkis, 1971) of the
model space, and requesting only O(d log 1/ε) labels. This, like the toy example
above, is an exponential improvement over the typical O(d/ε) sample complexity
of the supervised setting. This result can tempered somewhat by the computa-
tional complexity of the QBC algorithm in certain practical situations, but Gilad-
Bachrach et al. (2006) offer some improvements by limiting the version space via
kernel functions.

Dasgupta et al. (2005) propose a variant of the perceptron update rule which
can achieve the same label complexity bounds as reported for QBC. Interestingly,
they show that a standard perceptron makes a poor active learner in general, re-
quiring O(1/ε2) labels as a lower bound. The modified training update rule—
originally proposed in a non-active setting by Blum et al. (1996)—is key in achiev-
ing the exponential savings. The two main differences between QBC and their
approach are that (i) QBC is more limited, requiring a Bayesian assumption for
the theoretical analysis, and (ii) QBC can be computationally prohibitive, whereas
the modified perceptron algorithm is much more lightweight and efficient, even
suitable for online learning.

In earlier work, Dasgupta (2004) also provided a variety of theoretical upper
and lower bounds for active learning in the more general pool-based setting. In
particular, if using linear classifiers the sample complexity can grow to O(1/ε) in
the worst case, which offers no improvement over standard supervised learning,
but is also no worse. Encouragingly, Balcan et al. (2008) also show that, asymp-
totically, certain active learning strategies should always better than supervised
learning in the limit.

Most of these results have used theoretical frameworks similar to the standard
PAC model, and necessarily assume that the learner knows the correct concept
class in advance. Put another way, they assume that some model in our hypothe-
sis class can perfectly classify the instances, and that the data are also noise-free.
To address these limitations, there has been some recent theoretical work in ag-
nostic active learning (Balcan et al., 2006), which only requires that unlabeled
instances are drawn i.i.d. from a fixed distribution, and even noisy distributions
are allowed. Hanneke (2007) extends this work by providing upper bounds on
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query complexity for the agnostic setting. Dasgupta et al. (2008) propose a some-
what more efficient query selection algorithm, by presenting a polynomial-time
reduction from active learning to supervised learning for arbitrary input distribu-
tions and model classes. These agnostic active learning approaches explicitly use
complexity bounds to determine which hypotheses still “look viable,” so to speak,
and queries can be assessed by how valuable they are in distinguishing among
these viable hypotheses. Methods such as these have attractive PAC-style con-
vergence guarantees and complexity bounds that are, in many cases, significantly
better than passive learning.

However, most positive theoretical results to date have been based on in-
tractable algorithms, or methods otherwise too prohibitively complex and par-
ticular to be used in practice. The few analyses performed on efficient algorithms
have assumed uniform or near-uniform input distributions (Balcan et al., 2006;
Dasgupta et al., 2005), or severely restricted hypothesis spaces. Furthermore,
these studies have largely only been for simple classification problems. In fact,
most are limited to binary classification with the goal of minimizing 0/1-loss, and
are not easily adapted to other objective functions that may be more appropriate
for many applications. Furthermore, some of these methods require an explicit
enumeration over the version space, which is not only often intractable (see the
discussion at the end of Section 3.2), but difficult to even consider for complex
learning models (e.g., heterogeneous ensembles or structured prediction models
for sequences, trees, and graphs). However, some recent theoretical work has be-
gun to address these issues, coupled with promising empirical results (Dasgupta
and Hsu, 2008; Beygelzimer et al., 2009).

5 Problem Setting Variants
This section discusses some of the generalizations and extensions of traditional
active learning work into different problem settings.

5.1 Active Learning for Structured Outputs
Active learning for classification tasks has been widely studied (e.g., Cohn et al.,
1994; Zhang and Oles, 2000; Guo and Greiner, 2007). However, many impor-
tant learning problems involve predicting structured outputs on instances, such as
sequences and trees. Figure 8 illustrates how, for example, an information extrac-
tion problem can be viewed as a sequence labeling task. Let x = 〈x1, . . . , xT 〉
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Figure 8: An information extraction example viewed as a sequence labeling task.
(a) A sample input sequence x and corresponding label sequence y. (b) A se-
quence model represented as a finite state machine, illustrating the path of
〈x,y〉 through the model.

be an observation sequence of length T with a corresponding label sequence
y = 〈y1, . . . , yT 〉. Words in a sentence correspond to tokens in the input sequence
x, which are mapped to labels in y. Figure 8(a) presents an example 〈x,y〉 pair.
The labels indicate whether a given word belongs to a particular entity class of
interest (org and loc in this case, for “organization” and “location,” respectively)
or not (null).

Unlike simpler classification tasks, each instance x in this setting is not rep-
resented by a single feature vector, but rather a structured sequence of feature
vectors: one for each token (i.e., word). For example, the word “Madison” might
be described by the features WORD=Madison and CAPITALIZED. However, it
can variously correspond to the labels person (“The fourth U.S. President James
Madison...”), loc (“The city of Madison, Wisconsin...”), and org (“Madison de-
feated St. Cloud in yesterday’s hockey match...”). The appropriate label for a to-
ken often depends on its context in the sequence. For sequence-labeling problems
like information extraction, labels are typically predicted by a sequence model
based on a probabilistic finite state machine, such as CRFs or HMMs. An exam-
ple sequence model is shown in Figure 8(b).

Settles and Craven (2008) present and evaluate a large number of active learn-
ing algorithms for sequence labeling tasks using probabilistic sequence models
like CRFs. Most of these algorithms can be generalized to other probabilistic
sequence models, such as HMMs (Dagan and Engelson, 1995; Scheffer et al.,
2001) and probabilistic context-free grammars (Baldridge and Osborne, 2004;
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Hwa, 2004). Thompson et al. (1999) also propose query strategies for structured
output tasks like semantic parsing and information extraction using inductive logic
programming methods.

5.2 Active Feature Acquisition and Classification
In some learning domains, instances may have incomplete feature descriptions.
For example, many data mining tasks in modern business are characterized by nat-
urally incomplete customer data, due to reasons such as data ownership, client dis-
closure, or technological limitations. Consider a credit card company that wishes
to model its most profitable customers; the company has access to data on client
transactions using their own cards, but no data on transactions using cards from
other companies. Here, the task of the model is to classify a customer using in-
complete purchase information as the feature set. Similarly, consider a learning
model used in medical diagnosis which has access to some patient symptom in-
formation, but not other data that require complex, expensive, or risky medical
procedures. Here, the task of the model is to suggest a diagnosis using incomplete
patient information as the feature set.

In these domains, active feature acquisition seeks to alleviate these problems
by allowing the learner to request more complete feature information. The as-
sumption is that additional features can be obtained at a cost, such as leasing trans-
action records from other credit card companies, or running additional diagnostic
procedures. The goal in active feature acquisition is to select the most informative
features to obtain during training, rather than randomly or exhaustively acquiring
all new features for all training instances. Zheng and Padmanabhan (2002) pro-
posed two “single-pass” approaches for this problem. In the first approach, they
attempt to impute the missing values, and then acquire the ones about which the
model has least confidence. As an alternative, they also consider imputing these
values, training a classifiers on the imputed training instances, and only acquiring
feature values for the instances which are misclassified. In contrast, incremental
active feature acquisition may acquire values for a few salient features at a time,
either by selecting a small batch of misclassified examples (Melville et al., 2004),
or by taking a decision-theoretic approach and acquiring the feature values which
are expected to maximize some utility function (Saar-Tsechansky et al., 2009).

Similarly, work in active classification considers the case in which missing
feature values may be obtained during classification (test time) rather than during
training. Greiner et al. (2002) introduced this setting and provided a PAC-style
theoretical analysis of learning such classifiers given a fixed budget. Variants of
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naı̈ve Bayes (Ling et al., 2004) and decision tree classifiers (Chai et al., 2004;
Esmeir and Markovitch, 2008) have also been proposed to minimize costs at clas-
sification time. Typically, these are evaluated in terms of their total cost (feature
acquisition plus misclassification, which must be converted into the same cur-
rency) as a function of the number of missing values. This is often flexible enough
to incorporate other types of costs, such as delays between query time and value
acquisition (Sheng and Ling, 2006). Another approach is to model the feature
acquisition task as a sequence of decisions to either acquire more information or
to terminate and make a prediction, using an HMM (Ji and Carin, 2007).

The difference between these learning settings and typical active learning is
that the “oracle” provides salient feature values rather than training labels. Since
feature values can be highly variable in their acquisition costs (e.g., running two
different medical tests might provide roughly the same predictive power, while
one is half the cost of the other), some of these approaches are related in spirit to
cost-sensitive active learning (see Section 6.3).

5.3 Active Class Selection
Active learning assumes that instances are freely or inexpensively obtained, and
it is the labeling process that incurs a cost. Imagine the opposite scenario, how-
ever, where a learner is allowed to query a known class label, and obtaining each
instance incurs a cost. This fairly new problem setting is known as active class
selection. Lomasky et al. (2007) propose several active class selection query al-
gorithms for an “artificial nose” task, in which a machine learns to discriminate
between different vapor types (the class labels) which must be chemically synthe-
sized (to generate the instances). Some of their approaches show significant gains
over uniform class sampling, the “passive” learning equivalent.

5.4 Active Clustering
For most of this survey, we assume that the learner to be “activized” is supervised,
i.e., the task of the learner is to induce a function that accurately predicts a label y
for some new instance x. In contrast, a learning algorithm is called unsupervised if
its job is simply to organize a large amount of unlabeled data in a meaningful way.
The main difference is that supervised learners try to map instances into a pre-
defined vocabulary of labels, while unsupervised learners exploit latent structure
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in the data alone to find meaningful patterns3. Clustering algorithms are probably
the most common examples of unsupervised learning (e.g., see Chapter 10 of
Duda et al., 2001).

Since active learning generally aims to select data that will reduce the model’s
classification error or label uncertainty, unsupervised active learning may seem a
bit counter-intuitive. Nevertheless, Hofmann and Buhmann (1998) have proposed
an active clustering algorithm for proximity data, based on an expected value of
information criterion. The idea is to generate (or subsample) the unlabeled in-
stances in such a way that they self-organize into groupings with less overlap or
noise than for clusters induced using random sampling. The authors demonstrate
improved clusterings in computer vision and text retrieval tasks.

Some clustering algorithms operate under certain constraints, e.g., a user can
specify a priori that two instances must belong to the same cluster, or that two oth-
ers cannot. Grira et al. (2005) Have explored an active variant of this approach for
image databases, where queries take the form of such “must-link” and “cannot-
link” constraints on similar or dissimilar images. Huang and Mitchell (2006) ex-
periment with interactively-obtained clustering constraints on both instances and
features, and Andrzejewski et al. (2009) address the analogous problem of incor-
porating constraints on features in topic modeling (Steyvers and Griffiths, 2007),
another popular unsupervised learning technique. Although these last two works
do not solicit constraints in an active manner, one can easily imagine extending
them to do so. Active variants for these unsupervised methods are akin to the
work on active learning by labeling features discussed in Section 6.4, with the
subtle difference that constraints in the (semi-)supervised case are links between
features and labels, rather than features (or instances) with one another.

6 Practical Considerations
Until very recently, most active learning research has focused on mechanisms for
choosing queries from the learner’s perspective. In essence, this body of work
addressed the question, “can machines learn with fewer training instances if they
ask questions?” By and large, the answer to this question is “yes,” subject to some
assumptions. For example, we often assume that there is a single oracle, or that
the oracle is always correct, or that the cost for labeling queries is either free or
uniformly expensive.

3Note that semi-supervised learning (Section 7.1) also tries to exploit the latent structure of
unlabeled data, but with the specific goal of improving label predictions.
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In many real-world situations these assumptions do not hold. As a result, the
research question for active learning has shifted in recent years to “can machines
learn more economically if they ask questions?” This section describes several of
the challenges for active learning in practice, and summarizes some the research
that has addressed these issues to date.

6.1 Batch-Mode Active Learning
In most active learning research, queries are selected in serial, i.e., one at a time.
However, sometimes the time required to induce a model is slow or expensive,
as with large ensemble methods and many structured prediction tasks (see Sec-
tion 5.1). Consider also that sometimes a distributed, parallel labeling environ-
ment may be available, e.g., multiple annotators working on different labeling
workstations at the same time on a network. In both of these cases, selecting
queries in serial may be inefficient. By contrast, batch-mode active learning al-
lows the learner to query instances in groups, which is better suited to parallel
labeling environments or models with slow training procedures.

The challenge in batch-mode active learning is how to properly assemble the
optimal query setQ. Myopically querying the “Q-best” queries according to some
instance-level query strategy often does not work well, since it fails to consider
the overlap in information content among the “best” instances. To address this, a
few batch-mode active learning algorithms have been proposed. Brinker (2003)
considers an approach for SVMs that explicitly incorporates diversity among in-
stances in the batch. Xu et al. (2007) propose a similar approach for SVM active
learning, which also incorporates a density measure (Section 3.6). Specifically,
they query the centroids of clusters of instances that lie closest to the decision
boundary. Hoi et al. (2006a,b) extend the Fisher information framework (Sec-
tion 3.5) to the batch-mode setting for binary logistic regression. Most of these
approaches use greedy heuristics to ensure that instances in the batch are both
diverse and informative, although Hoi et al. (2006b) exploit the properties of sub-
modular functions (see Section 7.3) to find batches that are guaranteed to be near-
optimal. Alternatively, Guo and Schuurmans (2008) treat batch construction for
logistic regression as a discriminative optimization problem, and attempt to con-
struct the most informative batch directly. For the most part, these approaches
show improvements over random batch sampling, which in turn is generally bet-
ter than simple “Q-best” batch construction.
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6.2 Noisy Oracles
Another strong assumption in most active learning work is that the quality of
labeled data is high. If labels come from an empirical experiment (e.g., in biologi-
cal, chemical, or clinical studies), then one can usually expect some noise to result
from the instrumentation of experimental setting. Even if labels come from human
experts, they may not always be reliable, for several reasons. First, some instances
are implicitly difficult for people and machines, and second, people can become
distracted or fatigued over time, introducing variability in the quality of their an-
notations. The recent introduction of Internet-based “crowdsourcing” tools such
as Amazon’s Mechanical Turk4 and the clever use of online annotation games5

have enabled some researchers to attempt to “average out” some of this noise by
cheaply obtaining labels from multiple non-experts. Such approaches have been
used to produce gold-standard quality training sets (Snow et al., 2008) and also
to evaluate learning algorithms on data for which no gold-standard labelings exist
(Mintz et al., 2009; Carlson et al., 2010).

The question remains about how to use non-experts (or even noisy experts) as
oracles in active learning. In particular, when should the learner decide to query
for the (potentially noisy) label of a new unlabeled instance, versus querying for
repeated labels to de-noise an existing training instance that seems a bit off? Sheng
et al. (2008) study this problem using several heuristics that take into account es-
timates of both oracle and model uncertainty, and show that data can be improved
by selective repeated labeling. However, their analysis assumes that (i) all oracles
are equally and consistently noisy, and (ii) annotation is a noisy process over some
underlying true label. Donmez et al. (2009) address the first issue by allowing an-
notators to have different noise levels, and show that both true instance labels and
individual oracle qualities can be estimated (so long as they do not change over
time). They take advantage of these estimates by querying only the more reliable
annotators in subsequent iterations active learning.

There are still many open research questions along these lines. For example,
how can active learners deal with noisy oracles whose quality varies over time
(e.g., after becoming more familiar with the task, or after becoming fatigued)?
How might the effect of payment influence annotation quality (i.e., if you pay a
non-expert twice as much, are they likely to try and be more accurate)? What
if some instances are inherently noisy regardless of which oracle is used, and
repeated labeling is not likely to improve matters? Finally, in most crowdsourcing

4http://www.mturk.com
5http://www.gwap.com
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environments the users are not necessarily available “on demand,” thus accurate
estimates of annotator quality may be difficult to achieve in the first place, and
might possibly never be applicable again, since the model has no real choice over
which oracles to use. How might the learner continue to make progress?

6.3 Variable Labeling Costs
Continuing in the spirit of the previous section, in many applications there is vari-
ance not only in label quality from one instance to the next, but also in the cost of
obtaining that label. If our goal in active learning is to minimize the overall cost of
training an accurate model, then simply reducing the number of labeled instances
does not necessarily guarantee a reduction in overall labeling cost. One proposed
approach for reducing annotation effort in active learning involves using the cur-
rent trained model to assist in the labeling of query instances by pre-labeling them
in structured learning tasks like parsing (Baldridge and Osborne, 2004) or infor-
mation extraction (Culotta and McCallum, 2005). However, such methods do not
actually represent or reason about labeling costs. Instead, they attempt to reduce
cost indirectly by minimizing the number of annotation actions required for a
query that has already been selected.

Another group of cost-sensitive active learning approaches explicitly accounts
for varying label costs while selecting queries. Kapoor et al. (2007) propose a
decision-theoretic approach that takes into account both labeling costs and mis-
classification costs. In this setting, each candidate query is evaluated by summing
its labeling cost with the future misclassification costs that are expected to be in-
curred if the instance were added to the training set. Instead of using real costs,
however, their experiments make the simplifying assumption that the cost of la-
beling an instances is a linear function of its length (e.g., one cent per second for
voicemail messages). Furthermore, labeling and misclassification costs must be
mapped into the same currency (e.g., $0.01 per second of annotation and $10 per
misclassification), which may not be appropriate or straightforward for some ap-
plications. King et al. (2004) use a similar decision-theoretic approach to reduce
actual labeling costs. They describe a “robot scientist” which can execute a series
of autonomous biological experiments to discover metabolic pathways, with the
objective of minimizing the cost of materials used (i.e., the cost of an experiment
plus the expected total cost of future experiments until the correct hypothesis is
found). But here again, the cost of materials is fixed and known at the time of
experiment (query) selection.
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In all the settings above, and indeed in most of the cost-sensitive active learn-
ing literature (e.g., Margineantu, 2005; Tomanek et al., 2007), the cost of anno-
tating an instance is still assumed to be fixed and known to the learner before
querying. Settles et al. (2008a) propose a novel approach to cost-sensitive active
learning in settings where annotation costs are variable and not known, for exam-
ple, when the labeling cost is a function of elapsed annotation time. They learn
a regression cost-model (alongside the active task-model) which tries to predict
the real, unknown annotation cost based on a few simple “meta features” on the
instances. An analysis of four data sets using real-world human annotation costs
reveals the following (Settles et al., 2008a):

• In some domains, annotation costs are not (approximately) constant across
instances, and can vary considerably. This result is also supported by the
subsequent findings of others, working on different learning tasks (Arora
et al., 2009; Vijayanarasimhan and Grauman, 2009a).

• Consequently, active learning approaches which ignore cost may perform
no better than random selection (i.e., passive learning).

• The cost of annotating an instance may not be intrinsic, but may instead
vary based on the person doing the annotation. This result is also supported
by the findings of Ringger et al. (2008) and Arora et al. (2009).

• The measured cost for an annotation may include stochastic components.
In particular, there are at least two types of noise which affect annotation
speed: jitter (minor variations due to annotator fatigue, latency, etc.) and
pause (major variations that should be shorter under normal circumstances).

• Unknown annotation costs can sometimes be accurately predicted, even af-
ter seeing only a few training instances. This result is also supported by
the findings of Vijayanarasimhan and Grauman (2009a). Moreover, these
learned cost-models are significantly more accurate than simple cost heuris-
tics (e.g., a linear function of document length).

While empirical experiments show that learned cost-models can be trained to
predict accurate annotation times, further work is warranted to determine how
such approximate, predicted labeling costs can be utilized effectively by cost-
sensitive active learning systems. Settles et al. show that simply dividing the
informativeness measure (e.g., entropy) by the cost is not necessarily an effective
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cost-reducing strategy for several natural language tasks when compared to ran-
dom sampling (even if true costs are known). However, results from Haertel et al.
(2008) suggest that this heuristic, which they call return on investment (ROI),
is sometimes effective for part-of-speech tagging, although like most work they
use a fixed heuristic cost model. Vijayanarasimhan and Grauman (2009a) also
demonstrate potential cost savings in active learning using predicted annotation
costs in a computer vision task using a decision-theoretic approach. It is unclear
whether these disparities are intrinsic, task-specific, or simply a result of differing
experimental assumptions.

Even among methods that do not explicitly reason about annotation cost, sev-
eral authors have found that alternative query types (such as labeling features
rather than instances, see Section 6.4) can lead to reduced annotation costs for
human oracles (Raghavan et al., 2006; Druck et al., 2009; Vijayanarasimhan and
Grauman, 2009a). Interestingly, Baldridge and Palmer (2009) used active learn-
ing for morpheme annotation in a rare-language documentation study, using two
live human oracles (one expert and one novice) interactively “in the loop.” They
found that the best query strategy differed between the two annotators, in terms of
reducing both labeled corpus size and annotation costs. The domain expert was a
more efficient oracle with an uncertainty-based active learner, but semi-automated
annotations—intended to assist in the labeling process—were of little help. The
novice, however, was more efficient with a passive learner (selecting passages at
random), but semi-automated annotations were in this case beneficial.

6.4 Alternative Query Types
Most work in active learning assumes that a “query unit” is of the same type as
the target concept to be learned. In other words, if the task is to assign class labels
to text documents, the learner must query a document and the oracle provides its
label. What other forms might a query take?

Settles et al. (2008b) introduce an alternative query scenario in the context of
multiple-instance active learning. In multiple-instance (MI) learning, instances
are grouped into bags (i.e., multi-sets), and it is the bags, rather than instances,
that are labeled for training. A bag is labeled negative if and only if all of its
instances are negative. A bag is labeled positive, however, if at least one of its
instances is positive (note that positive bags may also contain negative instances).
A naı̈ve approach to MI learning is to view it as supervised learning with one-
sided noise (i.e., all negative instances are truly negative, but some positives are
actually negative). However, special MI learning algorithms have been developed
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bag: image = { instances: segments } bag: document = { instances: passages }

(a) (b)

Figure 9: Multiple-instance active learning. (a) In content-based image retrieval, images
are represented as bags and instances correspond to segmented image regions.
An active MI learner may query which segments belong to the object of in-
terest, such as the gold medal shown in this image. (b) In text classification,
documents are bags and the instances represent passages of text. In MI ac-
tive learning, the learner may query specific passages to determine if they are
representative of the positive class at hand.

to learn from labeled bags despite this ambiguity. The MI setting was formalized
by Dietterich et al. (1997) in the context of drug activity prediction, and has since
been applied to a wide variety of tasks including content-based image retrieval
(Maron and Lozano-Perez, 1998; Andrews et al., 2003; Rahmani and Goldman,
2006) and text classification (Andrews et al., 2003; Ray and Craven, 2005).

Figure 9 illustrates how the MI representation can be applied to (a) content-
based image retrieval (CBIR) and to (b) text classification. For the CBIR task,
images are represented as bags and instances correspond to segmented regions of
the image. A bag representing a given image is labeled positive if the image con-
tains some object of interest. The MI paradigm is well-suited to this task because
only a few regions of an image may represent the object of interest, such as the
gold medal in Figure 9(a). An advantage of the MI representation here is that it is
significantly easier to label an entire image than it is to label each segment, or even
a subset of the image segments. For the text classification task, documents can be
represented as bags and instances correspond to short passages (e.g., paragraphs)
that comprise each document. The MI representation is compelling for classifi-
cation tasks for which document labels are freely available or cheaply obtained
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(e.g., from online indexes and databases), but the target concept is represented by
only a few passages.

For MI learning tasks such as these, it is possible to obtain labels both at the
bag level and directly at the instance level. Fully labeling all instances, how-
ever, is expensive. Often the rationale for formulating the learning task as an
MI problem is that it allows us to take advantage of coarse labelings that may
be available at low cost, or even for free. In MI active learning, however, the
learner is sometimes allowed to query for labels at a finer granularity than the tar-
get concept, e.g., querying passages rather than entire documents, or segmented
image regions rather than entire images. Settles et al. (2008b) focus on this type of
mixed-granularity active learning with a multiple-instance generalization of logis-
tic regression. Vijayanarasimhan and Grauman (2009a,b) have extended the idea
to SVMs for the image retrieval task, and also explore an approach that interleaves
queries at varying levels of granularity and cost.

Another alternative setting is to query on features rather than (or in addition
to) instances. Raghavan et al. (2006) have proposed one such approach, tandem
learning, which can incorporate feature feedback in traditional classification prob-
lems. In their work, a text classifier may interleave instance-label queries with
feature-salience queries (e.g., “is the word puck a discriminative feature for clas-
sifying sports documents?”). Values for the salient features are then amplified in
instance feature vectors to reflect their relative importance. Raghavan et al. re-
ported that interleaving such queries is very effective for text classification, and
also found that words (or features) are often much easier for human annotators
to label in empirical user studies. Note, however, that these “feature labels” only
imply their discriminative value and do not tie features to class labels directly.

In recent years, several new methods have been developed for incorporating
feature-based domain knowledge into supervised and semi-supervised learning
(e.g., Haghighi and Klein, 2006; Druck et al., 2008). In this line of work, users
may specify a set of constraints between features and labels, e.g., “95% of the
time, when the word puck is observed in a document, the class label is hockey.”
The learning algorithm then tries to find a set of model parameters that match ex-
pected label distributions over the unlabeled pool U against these user-specified
priors (for details, see Druck et al., 2008; Mann and McCallum, 2008). Inter-
estingly, Mann and McCallum found that specifying many imprecise constraints
is more effective than fewer more precise ones, suggesting that human-specified
feature labels (however noisy) are useful if there are enough of them. This begs
the question of how to actively solicit these constraints.
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Druck et al. (2009) propose and evaluate a variety of active query strategies
aimed at gathering useful feature-label constraints. They show that active feature
labeling is more effective than either “passive” feature labeling (using a variety
of strong baselines) or instance-labeling (both passive and active) for two infor-
mation extraction tasks. These results held true for both simulated and interac-
tive human-annotator experiments. Liang et al. (2009) present a more principled
approach to the problem, grounded in Bayesian experimental design (see Sec-
tion 3.5). However, this method is intractable for most real-world problems, and
they also resort to heuristics in practice. Sindhwani et al. (2009) have also ex-
plored interleaving class-label queries for both instances and features, which they
refer to as active dual supervision, in a semi-supervised graphical model.

6.5 Multi-Task Active Learning
The typical active learning setting assumes that there is only one learner trying
to solve a single task. In many real-world problems, however, the same data
instances may be labeled in multiple ways for different subtasks. In such cases, it
is likely most economical to label a single instance for all subtasks simultaneously.
Therefore, multi-task active learning algorithms assume that a single query will
be labeled for multiple tasks, and attempt to assess the informativeness of a query
with respect to all the learners involved.

Reichart et al. (2008) study a two-task active learning scenario for natural
language parsing and named entity recognition (NER), a form of information ex-
traction. They propose two methods for actively learning both tasks in tandem.
The first is alternating selection, which allows the parser to query sentences in
one iteration, and then the NER system to query instances in the next. The second
is rank combination, in which both learners rank the query candidates in the pool
independently, and instances with the highest combined rank are selected for la-
beling. In both cases, uncertainty sampling is used as the base selection strategy
for each learner. As one might expect, these methods outperform passive learn-
ing for both subtasks, while learning curves for each individual subtask are not as
good as they would have been in the single-task active setting.

Qi et al. (2008) study a different multi-task active learning scenario, in which
images may be labeled for several binary classification tasks in parallel. For ex-
ample, an image might be labeled as containing a beach, sunset, mountain,
field, etc., which are not all mutually exclusive; however, they are not entirely
independent, either. The beach and sunset labels may be highly correlated, for
example, so a simple rank combination might over-estimate the informativeness
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of some instances. They propose and evaluate a novel Bayesian approach, which
takes into account the mutual information among labels.

6.6 Changing (or Unknown) Model Classes
As mentioned in Section 4.1, a training set built via active learning comes from a
biased distribution, which is implicitly tied to the class of the model used in se-
lecting the queries. This can be an issue if we wish to re-use this training data with
models of a different type, or if we do not even know the appropriate model class
(or feature set) for the task to begin with. Fortunately, this is not always a problem.
For example, Lewis and Catlett (1994) showed that decision tree classifiers can
still benefit significantly from a training set constructed by an active naı̈ve Bayes
learner using uncertainty sampling. Tomanek et al. (2007) also showed that infor-
mation extraction data gathered by a MaxEnt model using QBC can be effectively
re-used to train CRFs, maintaining cost savings compared with random sampling.
Hwa (2001) successfully re-used natural language parsing data selected by one
type of parser to train other types of parsers.

However, Baldridge and Osborne (2004) encountered the exact opposite prob-
lem when re-using data selected by one parsing model to train a variety of other
parsers. As an alternative, they perform active learning using a heterogeneous
ensemble composed of different parser types, and also use semi-automated label-
ing to cut down on human annotation effort. This approach helped to reduce the
number of training examples required for each parser type compared with pas-
sive learning. Similarly, Lu and Bongard (2009) employed active learning with
a heterogeneous ensemble of neural networks and decision trees, when the more
appropriate model was not known in advance. Their ensemble approach is able
to simultaneously select informative instances for the overall model, as well as
bias the constituent weak learners toward the more appropriate model class as
it learns. Sugiyama and Rubens (2008) have experimented with an ensemble of
linear regression models using different feature sets, to study cases in which the
appropriate feature set is not yet decided upon.

This section brings up a very important issue for active learning in practice. If
the best model class and feature set happen to be known in advance—or if these
are not likely to change much in the future—then active learning can probably be
safely used. Otherwise, random sampling (at least for pilot studies, until the task
can be better understood) may be more advisable than taking one’s chances on
active learning with an inappropriate learning model. One viable active approach
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seems to be the use of heterogeneous ensembles in selecting queries, but there is
still much work to be done in this direction.

6.7 Stopping Criteria
A potentially important element of interactive learning applications in general is
knowing when to stop learning. One way to think about this is the point at which
the cost of acquiring new training data is greater than the cost of the errors made
by the current model. Another view is how to recognize when the accuracy of
a learner has reached a plateau, and acquiring more data is likely a waste of re-
sources. Since active learning is concerned with improving accuracy while re-
maining sensitive to data acquisition costs, it is natural to think about devising a
“stopping criterion” for active learning, i.e., a method by which an active learner
may decide to stop asking questions in order to conserve resources.

Several such stopping criteria for active learning have been proposed (Vla-
chos, 2008; Bloodgood and Shanker, 2009; Olsson and Tomanek, 2009). These
methods are all fairly similar, generally based on the notion that there is an intrin-
sic measure of stability or self-confidence within the learner, and active learning
ceases to be useful once that measure begins to level-off or degrade. Such self-
stopping methods seem like a good idea, and may be applicable in certain situ-
ations. However, in my own experience, the real stopping criterion for practical
applications is based on economic or other external factors, which likely come
well before an intrinsic learner-decided threshold.

7 Related Research Areas
Research in active learning is driven by two key ideas: (i) the learner should not
be strictly passive, and (ii) unlabeled data are often readily available or easily
obtained. There are a few related research areas with rich literature as well.

7.1 Semi-Supervised Learning
Active learning and semi-supervised learning (for a good introduction, see Zhu,
2005b) both traffic in making the most out of unlabeled data. As a result, there
are a few conceptual overlaps between the two areas that are worth considering.
For example, a very basic semi-supervised technique is self-training (Yarowsky,
1995), in which the learner is first trained with a small amount of labeled data, and
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then used to classify the unlabeled data. Typically the most confident unlabeled
instances, together with their predicted labels, are added to the training set, and
the process repeats. A complementary technique in active learning is uncertainty
sampling (see Section 3.1), where the instances about which the model is least
confident are selected for querying.

Similarly, co-training (Blum and Mitchell, 1998) and multi-view learning (de
Sa, 1994) use ensemble methods for semi-supervised learning. Initially, separate
models are trained with the labeled data (usually using separate, conditionally
independent feature sets), which then classify the unlabeled data, and “teach”
the other models with a few unlabeled examples (using predicted labels) about
which they are most confident. This helps to reduce the size of the version space,
i.e., the models must agree on the unlabeled data as well as the labeled data.
Query-by-committee (see Section 3.2) is an active learning compliment here, as
the committee represents different parts of the version space, and is used to query
the unlabeled instances about which they do not agree.

Through these illustrations, we see that active learning and semi-supervised
learning attack the same problem from opposite directions. While semi-supervised
methods exploit what the learner thinks it knows about the unlabeled data, active
methods attempt to explore the unknown aspects6. It is therefore natural to think
about combining the two. Some example formulations of semi-supervised active
learning include McCallum and Nigam (1998), Muslea et al. (2000), Zhu et al.
(2003), Zhou et al. (2004), Tür et al. (2005), Yu et al. (2006), and Tomanek and
Hahn (2009).

7.2 Reinforcement Learning
In reinforcement learning (Sutton and Barto, 1998), the learner interacts with the
world via “actions,” and tries to find an optimal policy of behavior with respect
to “rewards” it receives from the environment. For example, consider a machine
that is learning how to play chess. In a supervised setting, one might provide
the learner with board configurations from a database of chess games along with
labels indicating which moves ultimately resulted in a win or loss. In a rein-
forcement setting, however, the machine actually plays the game against real or
simulated opponents (Baxter et al., 2001). Each board configuration (state) allows
for certain moves (actions), which result in rewards that are positive (e.g., cap-

6One might make the argument that active methods also “exploit” what is known rather than
“exploring,” by querying about what isn’t known. This is a minor semantic issue.
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turing the opponent’s queen) or negative (e.g., having its own queen taken). The
learner aims to improve as it plays more games.

The relationship with active learning is that, in order to perform well, the
learner must be proactive. It is easy to converge on a policy of actions that have
worked well in the past but are sub-optimal or inflexible. In order to improve,
a reinforcement learner must take risks and try out actions for which it is uncer-
tain about the outcome, just as an active learner requests labels for instances it is
uncertain how to label. This is often called the “exploration-exploitation” trade-
off in the reinforcement learning literature. Furthermore, Mihalkova and Mooney
(2006) consider an explicitly active reinforcement learning approach which aims
to reduce the number of actions required to find an optimal policy.

7.3 Submodular Optimization
Recently, there has been a growing interest in submodular functions (Nemhauser
et al., 1978) in machine learning research. Submodularity is a property of set
functions that intuitively formalizes the idea of “diminishing returns.” That is,
adding some instance x to the set A provides more gain in terms of the target
function than adding x to a larger set A′, where A ⊆ A′. Informally, since A′ is
a superset of A and already contains more information, adding x will not help as
much. More formally, a set function F is submodular if it satisfies the property:

F (A ∪ {x})− F (A) ≥ F (A′ ∪ {x})− F (A′),

or, equivalently:

F (A) + F (B) ≥ F (A ∪ B) + F (A ∩ B),

for any two sets A and B. The key advantage of submodularity is that, for mono-
tonically non-decreasing submodular functions where F (∅) = 0, a greedy algo-
rithm for selecting N instances guarantees a performance of (1− 1/e)× F (S∗N),
where F (S∗N) is the value of the optimal set of size N . In other words, using a
greedy algorithm to optimize a submodular function gives us a lower-bound per-
formance guarantee of around 63% of optimal; in practice these greedy solutions
are often within 90% of optimal (Krause, 2008).

In learning settings where there is a fixed budget on gathering data, it is ad-
vantageous to formulate (or approximate) the objective function for data selection
as a submodular function, because it guarantees near-optimal results with signif-

46



icantly less computational effort7. The relationship to active learning is simple:
both aim to maximize some objective function while minimizing data acquisition
costs (or remaining within a budget). Active learning strategies do not optimize to
submodular functions in general, but Guestrin et al. (2005) show that maximizing
mutual information among sensor locations using Gaussian processes (analogous
to active learning by expected error reduction, see Section 3.4) can be approxi-
mated with a submodular function. Similarly, Hoi et al. (2006b) formulate the
Fisher information ratio criterion (Section 3.5) for binary logistic regression as a
submodular function, for use with batch-mode active learning (Section 6.1).

7.4 Equivalence Query Learning
An area closely related to active learning is learning with equivalence queries
(Angluin, 1988). Similar to membership query learning (Section 2.1), here the
learner is allowed to synthesize queries de novo. However, instead of generating
an instance to be labeled by the oracle (or any other kind of learning constraint),
the learner instead generates a hypothesis of the target concept class, and the or-
acle either confirms or denies that the hypothesis is correct. If it is incorrect, the
oracle should provide a counter-example, i.e., an instance that would be labeled
differently by the true concept and the query hypothesis.

There seem to be few practical applications of equivalence query learning,
because an oracle often does not know (or cannot provide) an exact description
of the concept class for most real-world problems. Otherwise, it would be suffi-
cient to create an “expert system” by hand and machine learning is not required.
However, it is an interesting intellectual exercise, and learning from combined
membership and equivalence queries is in fact the basis of a popular inductive
logic game called Zendo8.

7.5 Model Parroting and Compression
Different machine learning algorithms possess different properties. In some cases,
it is desirable to induce a model using one type of model class, and then “trans-
fer” that model’s knowledge to a model of a different class with another set of
properties. For example, artificial neural networks have been shown to achieve

7Many interesting set optimization problems are NP-hard, and can thus scale exponentially. So
greedy approaches are usually more efficient.

8http://www.wunderland.com/icehouse/Zendo/
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better generalization accuracy than decision trees for many applications. How-
ever, decision trees represent symbolic hypotheses of the learned concept, and are
therefore much more comprehensible to humans, who can inspect the logical rules
and understand what the model has learned. Craven and Shavlik (1996) proposed
the TREPAN (Trees Parroting Networks) algorithm to extract highly accurate de-
cision trees from trained artificial neural networks (or similarly opaque model
classes, such as ensembles), providing comprehensible, symbolic interpretations.
Several others (Buciluǎ et al., 2006; Liang et al., 2008) have adapted this idea
to “compress” large, computationally expensive model classes (such as complex
ensembles or structured-output models) into smaller, more efficient model classes
(such as neural networks or simple linear classifiers).

These approaches can be thought of as active learning methods where the ora-
cle is in fact another machine learning model (i.e., the one being parroted or com-
pressed) rather than, say, a human annotator. In both cases, the “oracle model” can
be trained using a small set of the available labeled data, and the “parrot model” is
allowed to query the the oracle model for (i) the labels of any unlabeled data that
is available, or (ii) synthesize new instances de novo. These two model parroting
and compression approaches correspond to the pool-based and membership query
scenarios for active learning, respectively.

8 Conclusion and Final Thoughts
Active learning is a growing area of research in machine learning, no doubt fueled
by the reality that data is increasingly easy or inexpensive to obtain but difficult or
costly to label for training. Over the past two decades, there has been much work
in formulating and understanding the various ways in which queries are selected
from the learner’s perspective (Sections 2 and 3). This has generated a lot of
evidence that the number of labeled examples necessary to train accurate models
can be effectively reduced in a variety of applications (Section 4).

Drawing on these foundations, the current surge of research seems to be aimed
at applying active learning methods in practice, which has introduced many im-
portant problem variants and practical concerns (Sections 5 and 6). So this is an
interesting time to be involved in machine learning and active learning in partic-
ular, as some basic questions have been answered but many more still remain.
These issues span interdisciplinary topics from learning to statistics, cognitive
science, and human-computer interaction to name a few. It is my hope that this
survey is an effective summary for researchers (like you) who have an interest
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in active learning, helping to identify novel opportunities and solutions for this
promising area of science and technology.
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