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Abstract

In this paper we study a Bayesian or average�case model of concept learning with
a twofold goal� to provide more precise characterizations of learning curve �sample
complexity� behavior that depend on properties of both the prior distribution over
concepts and the sequence of instances seen by the learner� and to smoothly unite in a
common framework the popular statistical physics and VC dimension theories of learn�
ing curves� To achieve this� we undertake a systematic investigation and comparison of
two fundamental quantities in learning and information theory� the probability of an
incorrect prediction for an optimal learning algorithm� and the Shannon information
gain� This study leads to a new understanding of the sample complexity of learning in
several existing models�

� Introduction

Consider a simple concept learning model in which the learner attempts to infer an unknown
target concept f � chosen from a known concept class F of f�� �g�valued functions over an
instance space X� At each trial i� the learner is given a point xi � X and asked to predict
the value of f�xi�� If the learner predicts f�xi� incorrectly� we say the learner makes a
mistake� After making its prediction� the learner is told the correct value�

Informally speaking� there are at least two natural measures of the performance of a
learning algorithm in this setting�

The probability the algorithm makes a mistake on f�xm���� having already seen the exam�
ples �x�� f�x���� � � � � �xm� f�xm��� Regarded as a function of m� this familiar measure
is known as the algorithm�s learning curve�
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The total number of mistakes made by the algorithm on the 	rst m trials f�x��� � � � � f�xm��
This measure counts the cumulative mistakes of the algorithm�

These measures are clearly closely related to each other� In either measure� we are
interested in the asymptotic behavior of a learning algorithm as m becomes large� Since
the learning curve can be used to determine how large m must be before the probability of
mistake drops below a desired value �� the study of learning curves may also be viewed as
the study of the sample complexity of learning�

The recent and intensive investigation of concept learning undertaken by the research
communities of neural networks� arti	cial intelligence� cognitive science and computational
learning theory has resulted in the development of at least two fairly general and success�
ful viewpoints of the learning process in terms of learning curves and cumulative mistakes�
One of these� arising from the study of Valiant�s distribution�free or probably approximately
correct model 
��
 and having roots in the pattern recognition and minimax decision the�
ory literature� characterizes the distribution�free� worst�case sample complexity of concept
learning in terms of a combinatorial parameter known as the Vapnik�Chervonenkis �VC�
dimension 
��� �
� In contrast� the average�case sample complexity of learning in neural
networks has recently been investigated from a standpoint that is essentially Bayesian�� and
is strongly in�uenced by ideas and tools from statistical physics� as well as by information
theory 
��� ��� ��� ��� ��
� While each of these theories has its own distinct strengths and
drawbacks� there is little understanding of what relationships hold between them�

In this paper� we study an average�case or Bayesian model of learning with two primary
goals� First� we are interested in ultimately developing a general framework that provides
precise characterizations of learning curves and expected cumulative mistakes that extends
and re	nes the VC dimension and statistical physics theories� The results presented here are
a 	rst step in this direction� Second� we would like this framework to smoothly incorporate
both of these previous theories� thus yielding a uni	ed viewpoint that can be used both for
giving realistic estimates of average�case performance in the case that the distributions on
the concept class and instance space are known� and for giving good worst�case estimates in
the case that these distributions are not known�

In a setting where the target concept is drawn at random according to a 	xed but
arbitrary prior distribution P� we undertake a systematic investigation and comparison of
two fundamental quantities in learning and information theory� the probability of mistake
�known as the ��� loss in decision theory� for an optimal learning algorithm� and the Shannon
information gain from the labels of the instance sequence� In doing so� we borrow from and
contribute to the work on weighted majority and aggregating learning strategies 
��� ��� ���
��� �� ��
� as well as to the VC dimension and statistical physics work� This study leads to
a new understanding of the sample complexity of learning in several existing models�

One of our main motivations for this research arises from the frequent claims of machine
learning practitioners that sample complexity bounds derived via the VC dimension are
overly pessimistic in practice 
�� ��
� This pessimism can be traced to three assumptions that
are implicit in results that are based on the VC dimension� The 	rst pessimistic assumption
is that only the worst�case performance over possible target concepts counts� This is the
minimax pessimism� We may think of an adversary choosing the hardest possible concept

�More general Bayesian approaches to learning in neural networks are described in the recent papers
�
�� ���
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for the learner� rather than the Bayesian approach which incorporates prior beliefs regarding
which concepts might be �more likely��

The second pessimistic assumption is that even though VC dimension analysis allows a
distribution D over the instance space X� this distribution is also assumed to be the hardest
possible for learning the class F � Thus� the VC dimension is also based on a worst�case
assumption over instance space distributions� In addition to the VC dimension� Vapnik and
Chervonenkis have a distribution�speci	c formulation that overcomes this limitation 
��
�
but apart from Natarajan�s work 
��
� it has not been used much in computational learning
theory� We extend this idea further in Section ��

The third and perhaps most subtle pessimistic assumption can be seen by noting that
the VC dimension provides upper bounds on the learning curves of any consistent learning
algorithm� Thus� even the hypothetical algorithm that always manages to 	nd a hypothesis
that is consistent with the examples so far but that has the largest possible error with respect
to D is covered by VC dimension analysis� �This is the uniform convergence property of the
VC dimension�� In practice it seems unlikely that one would encounter such algorithms �
reasonable algorithms should manage to 	nd an �average� consistent hypothesis �in terms
of error on D� rather than the �worst� consistent hypothesis�

In this paper we attempt to address each of these pessimistic assumptions in the hopes of
obtaining a more realistic picture of sample complexity� To relax the worst�case assumption
over the concept class F � we adopt a Bayesian framework that places a prior distribution P
over F � If we also assume that the target concept is drawn according to P� then this allows
us to derive bounds on learning curves and cumulative mistakes that depend on properties
of the particular prior P�

Our solution to the worst�case assumption over the instance space distribution D is
twofold� For most of the paper� we in fact do not need to assume that there is a distribution
governing the generation of sample points� and instead �x an arbitrary sequence of instances
x � x�� � � � � xm� xm��� � � � that is seen by the learner� We do not assume that this sequence
is worst�case �distinguishing this setting from the various adversary�based on�line learning
models that count worst�case mistake bounds�� or that it is drawn randomly �distinguishing
this setting from the VC dimension and statistical physics theories�� Thus our bounds on
learning curves and cumulativemistakes also depend on properties of x� Two advantages that
come from allowing x to be a parameter are that we incorporate time�dependent instance
sequences� and we model the fact that a learning algorithm does in fact have the training
data in its possession� and may be able to exploit this knowledge� For some of our later
results� particularly for comparing our bounds with those derived via the VC dimension� we
will need to revert to the assumption that the instances in x are generated independently
at random according to an instance space distribution D �but here again� our bounds will
depend on properties of the particular D in contrast to worst�case bounds��

Finally� to address the pessimism implicit in demanding uniform convergence� we will
study particular learning algorithms of interest rather than giving bounds for any consistent
algorithm� In addition to analyzing the learning curve and cumulative mistakes of the
optimal prediction algorithm �the Bayes algorithm�� we simultaneously study the algorithm
that outputs a random consistent hypothesis �the Gibbs algorithm�� The motivation for
this latter algorithm is exactly that of relaxing the uniform convergence demand while still
making realistic assumptions about practical learning algorithms� since this algorithm will
output a consistent hypothesis whose error with respect to the instance space distribution
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D is the average �over P�� not the worst�
One appealing aspect of our approach is the elementary nature of most of the proofs�

which rest almost entirely on well�known or easily derived algebraic expressions for the
information gain and the probability of mistake� and employ simple inequalities relating
these expressions� The additivity of the Shannon information is invoked repeatedly in order
to obtain easy and useful bounds on otherwise complicated sums� For instance� our results
include a short and transparent derivation of an upper bound on the expected total number
of mistakes in terms of the VC dimension that is tight to within a constant factor�

Perhaps the main strength of this research is the unifying framework it provides for several
previously unrelated theories and results� By beginning in a model that averages over both
the concept class and the instance space� then gradually removing the averaging in favor
of combinatorial parameters that upper bound certain expectations� we can move smoothly
from the information theoretic bounds of the Bayesian and statistical physics theory to
bounds based on the VC dimension� Thus� our bounds can be used both for average�case
analyses of particular distributions� or for worst�case bounds in situations where the prior
or instance space distribution is arbitrary�

The aim of this paper is to demonstrate the applicability of information theory tools in an
average�case learning model� and to show how some important results in the VC dimension
theory can be reconstructed from these simple mechanisms� Towards ease of exposition and
technical simplicity and clarity� we have chosen the simplest concept learning model that is
still of general interest� clearly this model is far from being a perfect model of the real world�
In a later companion paper� we hope to develop our methods further and apply them to
more varied and realistic models� some of this ongoing work is outlined in Section ��� Many
beautiful results on the performance of Bayesian methods are also given in the statistics
literature� see e�g� 
�� �
 and references therein�

� Summary of results

Following a brief introduction of some notation in Section �� our results begin in Section ��
Here we de	ne the Shannon information gain of an example� and introduce the two learning
algorithms we shall study� The primary purpose of this section is to derive expressions for
the information gain and the probabilities of mistake for the two learning algorithms in terms
of an important random variable known as the volume ratio�

In Section � we prove that the probabilities of mistake for our two learning algorithms
can be bounded above and below by simple functions of the expected information gain� As in
the paper of Tishby� Levin and Solla 
��
� we upper bound the probability of mistake by the
information gain� We also provide an information�theoretic lower bound on the probability
of mistake� which can be viewed as a special case of Fano�s inequality 
�� ��
� Together
these bounds provide a general characterization of learning curve behavior that is accurate
to within a logarithmic factor�

In Section � we exploit the learning curve bounds of Section � and the additivity of
information to obtain upper and lower bounds on the cumulative mistakes of our algorithms
that are simple functions of the total information gain� These bounds are again tight to
within a logarithmic factor� The total information gain is naturally expressed here as an
appropriate entropy expression� This entropy forms the crucial link between the Bayesian
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approach and the VC dimension bounds� This link is investigated in detail in Section ��
In Section � we investigate the important variation of the basic Bayesian model in which

the target concept f is drawn according to a true prior Q that may di�er from the learner�s
perceived prior P� We again bound learning curves by information gain and cumulative
mistakes by an entropy depending only on Q plus an additive �penalty term� measuring the
distance between P and Q�

In Section � we prove that if the instances are chosen randomly according to an instance
space distribution D then the instantaneous information gain is a non�increasing function of
m� This result is used in Section �� where we demonstrate that some important results in the
VC dimension theory of learning curves and cumulative mistakes can in fact be recovered
from the simple information�theoretic results in the Bayesian model� This is primarily ac�
complished by gradually removing averaging over the instance space and the target class in
favor of combinatorial parameters that upper bound certain expectations� The main techni�
cal tool required is the Sauer�VC combinatorial lemma� In Section �� we extend these ideas
to show how the VC dimension can be used to obtain improved bounds in the case that the
perceived prior and true prior di�er�

In Section �� we draw some conclusions and mention extensions of the results presented
here�

� Notational conventions

Before presenting our results� we establish a few notational conventions� Let X be the
instance space� A concept class F over X is a �possibly in	nite� collection of subsets of X�
We will 	nd it convenient to view a concept f � F as a function f � X � f�� �g� where we
interpret f�x� � � to mean that x � X is a positive example of f � and f�x� � � to mean x
is a negative example of f �

The symbols P� Q and D are used to denote probability distributions� The distributions
P and Q are over F � and D is over X� When F and X are countable we assume that these
distributions are de	ned as probability mass functions� For uncountable F and X they are
assumed to be probability measures over some appropriate ��algebra� All of our results hold
for both countable and uncountable F and X�

We use the notation Ef�P
��f�
 for the expectation of the random variable � under the
distribution P� and Prf�P
cond�f�
 for the probability under the distribution P of the set of
all f satisfying the predicate cond�f�� Everything that needs to be measurable is assumed
to be measurable�

� Instantaneous information gain and mistake prob�

abilities

In this section we begin the analysis of the three quantities that form the backbone of
the theory developed here� the Shannon information gain from a labeled example� and the
probability of mistake for the Bayes and Gibbs learning algorithms� Our immediate goal is
to de	ne these algorithms and quantities� and to derive expressions for the behavior of each
in terms of an important random variable that we shall call the volume ratio�
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Let F be a concept class over the instance space X� Fix a target concept f � F and an
in	nite sequence of instances x � x�� � � � � xm� xm��� � � � with xm � X for all m� For now we
assume that the 	xed instance sequence x is known in advance to the learner� but that the
target concept f is not� Let P be a probability distribution over the concept class F � We
think of P in the Bayesian sense as representing the prior beliefs of the learner about which
target concept it will be learning�

In our setting� the learner receives information about f incrementally via the label se�
quence f�x��� � � � � f�xm�� f�xm���� � � �� At time m� the learner receives the label f�xm�� For
any m � � we de	ne �with respect to x� f� the mth version space

Fm�x� f� � f �f � F � �f�x�� � f�x��� � � � � �f�xm� � f�xm�g

and the mth volume V P
m �x� f� � P
Fm�x� f�
� We de	ne F��x� f� � F for all x and f � so

V P
� �x� f� � �� The version space at timem is simply the class of all concepts in F consistent

with the 	rst m labels of f �with respect to x�� and the mth volume is the measure of this
class under P� For the 	rst part of the paper� the in	nite instance sequence x and the
prior P are 	xed� thus we simply write Fm�f� and Vm�f�� Later� when we need to discuss
distributions other than P� or when the sequence x is chosen randomly� we will reintroduce
these dependencies explicitly�

For eachm � � let us de	ne themth posterior distribution Pm by restricting P to themth
version space Fm�f�� that is� for all �measurable� S � F � Pm
S
 � P
S � Fm�f�
�P
Fm�f�
 �
P
S � Fm�f�
�Vm�f�� Note that Pm has an implicit dependence on x and f that we have
omitted for notational brevity� The posterior probability distribution Pm can be interpreted
as the subjective probability distribution over various possible target concepts� given the
labels f�x��� � � � � f�xm� of the 	rst m instances�

Digressing momentarily from the problem of learning f � in this setting we may now
ask the following question� Having already seen f�x��� � � � � f�xm�� how much information
�assuming the prior P� does the learner gain by seeing f�xm���� �We think of this as the
instantaneous information gain� since we address the gain only on the m � �st label�� The
classic answer provided by information theory is that the information carried by f�xm��� is
given by the quantity

IPm���x� f� � Im���f�

� � logPr �f�Pm

�f�xm��� � f�xm���j �f�xi� � f�xi�� � � i � m


� � log
Vm���f�

Vm�f�

� � log�m���f�

where we de	ne the m� �st volume ratio by

�Pm���x� f� � �m���f� � Vm���f��Vm�f�

We shall be primarily interested in the expected information gain when f is chosen randomly
according to P� which may now be expressed

Ef�P
Im���f�
 � Ef�P
� log�m���f�
 ���

�



We now return to our learning problem� which we de	ne to be that of predicting the
label f�xm��� given only the previous labels f�x��� � � � � f�xm�� The 	rst learning algorithm
we consider is called the Bayes optimal classi�cation algorithm 
��
� or the Bayes algorithm
for short� It is a special case of the weighted majority algorithm 
��
� For any m and
b � f�� �g� de	ne F b

m�x� f� � F b
m�f� � f �f � Fm�x� f� � �f �xm��� � bg� Then the Bayes

algorithm behaves as follows�

If Pm
F�
m�f�
 � Pm
F�

m�f�
� it predicts that f�xm��� � ��

If Pm
F�
m�f�
 � Pm
F�

m�f�
� it predicts that f�xm��� � ��

If Pm
F�
m�f�
 � Pm
F�

m�f�
� it �ips a fair coin and uses the outcome to predict f�xm����

When the target concept f is drawn at random according to the prior distribution P� then
the Bayes algorithm is optimal in the sense that it minimizes the probability that f�xm���
is predicted incorrectly�

Despite the optimality of the Bayes algorithm� it su�ers the philosophical �and potentially
practical� drawback that its hypothesis at any time m may not be a member of the target
class F � �Here we de	ne the hypothesis of an algorithm at time m to be the �possibly
probabilistic� mapping f � X � f�� �g obtained by letting f�x� be the prediction of the
algorithm when xm�� � x�� This drawback is absent in our second learning algorithm�
which is called the Gibbs algorithm 
��
� and behaves as follows�

Given the labels f�x��� � � � � f�xm�� a hypothesis concept �f is chosen randomly according to
the posterior distribution Pm�

Given xm��� the algorithm then predicts that f�xm��� � �f�xm����

Thus� the Gibbs algorithm simply chooses a hypothesis randomly �according to P� fromF
among those that are consistent with the labels seen so far� The Gibbs algorithm is the �zero�
temperature� limit of the learning algorithm studied in several recent papers 
��� ��� ��� ��
�

It is important to note that both the Bayes and Gibbs algorithms are quite di�erent
from the well�known maximum a posteriori algorithm� which chooses the hypothesis �f that
maximizes the posterior probability Pm
 �f 
� While this algorithm maximizes the probability
of exactly identifying the target concept� it may do quite poorly in the instantaneous mistake
�learning curve� measure� In contrast� the Bayes algorithm has the optimal learning curve�
and we shall see shortly that the Gibbs algorithm has a nearly optimal learning curve�

We now wish to derive expressions for the probability that f�xm��� is predicted incorrectly
by these two algorithms� These are the instantaneous mistake probabilities� since they only
address the probability of a mistake on the m� �st label� As was the case for the expected
information conveyed by f�xm��� with respect to P given by Equation ���� we would like
these probabilities to be expressed in terms of the volume ratio �m���f��

For the Bayes algorithm� note that a mistake in predicting f�xm��� is made with proba�
bility � if Vm���f� �

�
�
Vm�f�� with probability �

�
if Vm���f� �

�
�
Vm�f�� and with probability

� otherwise� Thus we may express the Bayes mistake probability on f�xm��� as

BayesPm���x� f� � Bayesm���f� � �
�
�

�
� �m���f�

�
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where ��x� � � if x � �� ���� � �
�
� and ��x� � � otherwise� The probability of mistake

when f is chosen randomly according to P is thus simply

Ef�P
Bayes
P
m���x� f�
 � Ef�P

�
�
�
�

�
� �m���f�

��
���

For the Gibbs algorithm� note that the prediction of f�xm��� is correct if and only if the
randomly chosen hypothesis �f is in Fm���f�� Since �f is chosen randomly according to the
posterior Pm� and the probability of Fm���f� under Pm is exactly Vm���f��Vm�f� � �m���f��
we may write the probability that f�xm��� is predicted incorrectly for 	xed x� f and P as

GibbsPm���x� f� � Gibbsm���f� � �� �m���f�

In the case that f is drawn according to P we have

Ef�P
Gibbs
P
m���x� f�
 � Ef�P
�� �m���f�
 ���

Note that by the de	nition of the Gibbs algorithm� Equation ��� is exactly the probability
of mistake of a random consistent hypothesis in F � using the distribution on F de	ned by
the prior� Thus if we also average over x� bounds on this expectation provide an interesting
contrast to those obtained via VC dimension analysis� which always gives bounds on the
probability of mistake of the worst consistent hypothesis�

� Bounding the mistake probabilities by the informa�

tion gain

Now that we have obtained expressions for the information gain and mistake probabilities in
terms of the volume ratio� in this section we use these expressions to show that the mistake
probabilities can always be bounded above and below by simple functions of the information
gain�

First we extend our notation Fm�f� and Vm�f� to allow a sequence of bits� y � hy�� � � � � yni
�n � m�� representing labels of x�� � � � � xn� to replace the argument f � Thus� we de	ne
Fm�x�y� � Fm�y� � f �f � F � �f�x�� � y�� � � � � �f�xm� � ymg� Note that in the case
that n � m� the last n � m bits of the sequence are ignored� in the same way that in
the notation Fm�f� only the 	rst m values of f on x are relevant� Similarly� we de	ne
V P
m �x�y� � Vm�y� � P
Fm�y�
 and thus �Pm���x�y� � �m���y� � Vm���y��Vm�y��
Let G be an arbitrary real�valued function of one argument� and let us examine the

expectation Ef�P
G��m���f��
� Note that by Equations ���� ��� and ���� we may write the
expectations �over the random choice of f according to P� of Im���f�� Bayesm���f� and
Gibbsm���f� in this form� Since

Vm���y� � Prf�P
f�x�� � y� � � � � � f�xm��� � ym��


we have

Ef�P
G��m���f��


�
X

y�f���gm��

Vm���y�G��m���y��

�



�
X

y�f���gm


Vm���hy� �i�G��m���hy� �i�� � Vm���hy� �i�G��m���hy� �i��


�
X

y�f���gm

Vm�y� 
�m���hy� �i�G��m���hy� �i�� � �m���hy� �i�G��m���hy� �i��


�
X

y�f���gm��

Vm���y� 
�m���y�G��m���y�� � �m���y
��G��m���y

���


where y� is the vector of labels obtained from y by �ipping the last label� Since �m���y�� �
�� �m���y�� it follows that

Ef�P
G��m���f��


�
X

y�f���gm��

Vm���y� 
�m���y�G��m���y�� � ��� �m���y��G��� �m���y��


� Ef�P
�m���f�G��m���f�� � ��� �m���f��G��� �m���f��
 ���

The form of the expression inside the expectation of Equation ��� is pG�p�����p�G���p�
�using the substitution p � �m���f��� and is suggestive of a binary �entropy�� in which we
interpret p � 
�� �
 as a probability� and G�p� to be the �information� conveyed by the
occurrence of an event whose probability is p�

We now apply Equation ��� to the three forms of G we have been considering� namely
G�p� � � log p �from Equation ����� G�p� � ���

� � p� �from Equation ����� and G�p� � �� p
�from Equation ����� From these three equations and some simple algebra we obtain

Ef�P
Im���f�
 � Ef�P
� log�m���f�
 � Ef�P
H��m���f��
 ���

for the expected information gain from f�xm���� where H is the familiar binary entropy
function

H�p� � �p log p� ��� p� log��� p�

Note that since � � �m���f� � �� this implies that on average� at most � bit of Shannon
information can be obtained from a labeled example�

For the probability of mistake of the Bayes algorithm� we obtain

Ef�P
Bayesm���f�
 � Ef�P

�
�
�
�

�
� �m���f�

��
� Ef�P
min��m���f�� �� �m���f��
 ���

For the probability of mistake of the Gibbs algorithm� we have

Ef�P
Gibbsm���f�
 � Ef�P
�� �m���f�


� Ef�P
��m���f��� � �m���f��
 ���

Now it is easily veri	ed that for any p � 
�� �
�

min�p� � � p� � �p�� � p� �
�

�
H�p� ���

Let us now de	ne an inverse to H by letting H���q�� for q � 
�� �
� be the unique p � 
�� ���

such that H�p� � q� Note that

H���H�p�� � min�p� � � p�

�



Then from Equations ��� ���� and Jensen�s inequality� we may conclude

H���Ef�P
Im���f�
� � H���Ef�P
H��m���f��
�

� Ef�P
H
���H��m���f���


� Ef�P
min��m���f�� �� �m���f��


� Ef�P
Bayesm���f�


� Ef�P
Gibbsm���f�


�
�

�
Ef�P
H��m���f��


�
�

�
Ef�P
Im���f�
 ���

Thus we see that the probabilities of mistake for both the Bayes and the Gibbs al�
gorithms are between H���Ef�P
Im���f�
� and �

�
Ef�P
Im���f�
� These upper and lower

bounds are equal �and therefore tight� at both extremes Ef�P
Im���f�
 � � �maximal infor�
mation gain� and Ef�P
Im���f�
 � � �minimal information gain�� As the information gain
becomes smaller� the di�erence between the upper and lower bounds shrinks� but the ratio of
the two bounds grows logarithmically in the inverse of the information gain� In particular� it
can be shown that there is a constant c� � � such that for all p � �� H���p� � c�p�log���p��
so we may also write the chain of inequalities ending with Equation ��� as

c�Ef�P
Im���f�


log���Ef�P
Im���f�
�
� Ef�P
Bayesm���f�


� Ef�P
Gibbsm���f�


�
�

�
Ef�P
Im���f�
 ����

Note that the upper and lower bounds given in both versions depend on properties of the
particular prior P� and on properties of the particular 	xed sequence x�

Finally� if all that is wanted is a direct comparison of the performances of the Gibbs and
Bayes algorithms� a tighter relationship can be obtained from Equations ���� ���� ���� and
the simple observation p�� � p� � min�p� � � p�� giving

Ef�P
Bayesm���f�
 � Ef�P
Gibbsm���f�
 � �Ef�P
Bayesm���f�
 ����

� Bounding the cumulative mistakes by the partition

entropy

So far we have been primarily interested in analyzing the expectations of Bayesm���f� and
Gibbsm���f�� These expectations may be thought of as the instantaneous mistake proba�
bilities� they are the probabilities a mistake is made in predicting f�xm���� and as such
do not explicitly address what happened on the predictions of f�x��� � � � � f�xm�� Similarly�
Im���f� is the instantaneous information� the information conveyed by f�xm���� without
explicit regard for the information conveyed by the previous labels� A natural alternative
measure is a cumulative bound � namely� the expected total information gained from the
	rst m labels� or the expected number of mistakes made in the 	rst m trials� While direct

��



analysis of the expressions for the expected number of mistakes for the Bayes and Gibbs
algorithms is di!cult due to the lack of a simple closed�form expression� the situation for
the cumulative information gain is quite di�erent due to the additivity of information� More
precisely� we may write

Ef�P

mX
i��

Ii�f�
 � Ef�P

mX
i��

� log�i�f�


� Ef�P

mX
i��

�log Vi���f�� log Vi�f��


� Ef�P
� log Vm�f�
 ����

since V��f� � �� and recalling the de	nition of the volume ratio �i�f��
The 	nal expression obtained in Equation ���� has a natural interpretation� The 	rst

m instances x�� � � � � xm of x induce a partition "F
m�x� of the concept class F de	ned by

"F
m�x� � "F

m � fFm�x� f� � f � Fg� Note that j"F
mj is always at most �m� but may be

considerably smaller� depending on the interaction between F and x�� � � � � xm� It is clear
that

Ef�P
� log Vm�f�
 � �
X

���Fm

P
�
 logP
�


Thus the expected cumulative information gained from the labels of x�� � � � � xm� is simply
the entropy of the partition "F

m under the distribution P� We shall denote this entropy by

HP�"F
m�x�� � HP

m�x� � HP
m

Wemay now use this simple expression for the cumulative information gain in conjunction
with Jensen�s inequality and the chain of inequalities ending with Equation ��� to obtain the
following bounds on the expected total number of mistakes made by the Gibbs and Bayes
algorithms on the 	rst m trials�

c�HP
m

log��m�HP
m�

� mH���
�

m
HP

m�

� mH��

�
�

m

mX
i��

Ef�P
H��i�f��


�

�
mX
i��

Ef�P
H
���H��i�f���


� Ef�P

mX
i��

Bayes i�f�


� Ef�P

mX
i��

Gibbs i�f�


�
�

�
Ef�P
� logVm�f�


�
�

�
HP

m ����

As in the instantaneous case� the upper and lower bounds here depend on properties of
the particular P and x� Also� analogous to the instantaneous case� when the cumulative
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information gain is maximum �HP
m � m�� the upper and lower bounds are tight� and the

ratio of the bounds grows logarithmically as the entropy becomes small�
These bounds on learning performance in terms of a partition entropy are of special

importance to us� since they will form the crucial link between the Bayesian setting and the
Vapnik�Chervonenkis dimension theory�

� Handling incorrect priors

A common criticism of any Bayesian setting is the assumption of the learner�s knowledge of
an accurate prior P� Taken to its logical extreme� this objection leads us back to worst�case
analysis� whose pitfalls and pessimisms we speci	cally seek to avoid� However� there is a
middle ground� namely� we can assume that the learner�s perception of the world �formalized
as a perceived prior� may di�er somewhat from the �truth�� In this section we present
some initial results in this direction that are based on the information�theoretic techniques
developed thus far�

Let us use Q to denote the true prior and P to denote the perceived prior� Then when f
is chosen randomly according to Q but the observer uses the prior P� we obtain the following
analogues of Equations ���� ���� and ����

Ef�Q
I
P
m���f�
 � Ef�Q
� log�Pm���f�


Ef�Q
Bayes
P
m���f�
 � Ef�Q

�
�
�
�

�
� �Pm���f�

��

Ef�Q
Gibbs
P
m���f�
 � Ef�Q
�� �Pm���f�


respectively representing the expected information gain from f�xm���� the probability of
mistake for the Bayes algorithm on f�xm���� and the probability of mistake for the Gibbs
algorithm on f�xm����

Since for any � � p � � we have ���� � p� � � log p� it follows that

Ef�Q
Bayes
P
m���f�
 � Ef�Q
I

P
m���f�


Since for any � � p � � we have �� p � � ln p � � ln��� log p� we have

Ef�Q
Gibbs
P
m���f�
 � ln���Ef�Q
I

P
m���f�


Thus� the probabilities of a mistake on f�xm��� for both algorithms are bounded above by a
small constant times the expected information gain� Note that in this general case in which
the prior may be incorrect� the upper bound we get for the Gibbs algorithm is actually
slightly better than the upper bound we get for the Bayes algorithm�

We now obtain bounds on the cumulative number of mistakes on the 	rst m trials� By
analogy with Equation ����� from the above we may derive

Ef�Q

mX
i��

BayesPi �f�
 � Ef�Q
� log V P
m �f�


and

Ef�Q

mX
i��

GibbsPi �f�
 � ln���Ef�Q
� log V P
m �f�


��



Note that we may write

Ef�Q
� log V P
m �f�
 � Ef�Q
� log V Q

m �f�
 �Ef�Q
log
V Q
m �f�

V P
m �f�




� HQ
m � Im�QjjP�

where HQ
m is the entropy of the partition "F

m�x� induced on F by x�� � � � � xm with respect to
Q� and Im�QjjP� is the Kullback�Leibler divergence between Q and P with respect to this
partition�

Our best lower bounds for both the instantaneous mistake probability and the cumu�
lative number of mistakes for the case of an incorrect prior are obtained by observing
that the mistake probability is minimized by the Bayes algorithm when P � Q� Thus
c�Ef�Q
I

Q
m���f�
� log���Ef�Q
I

Q
m���f�
� is a lower bound on the instantaneous mistake prob�

ability� and c�HQ
m� log��m�HQ

m� is a lower bound on the cumulative number of mistakes for
both the Bayes and Gibbs algorithms� for any perceived prior P� It would be interesting to
obtain lower bounds that incorporate properties of the perceived prior P�

� The average instantaneous information gain is de�

creasing

In all of our discussion so far� we have assumed that the instance sequence x is 	xed in
advance� but that the target concept f is drawn randomly according to P� We now move to
the completely probabilistic model� in which f is drawn according to P� and each instance
xm in the sequence x is drawn randomly and independently according to a distribution D
over the instance space X�

In this model� we now prove a result that will be used in the next section� but is
also of independent interest� namely� that the expected instantaneous information gain
Ef�P�x�D�
Im�x� f�
 is a non�increasing function of m� �Here we have introduced the nota�
tion x � D� to indicate that each element of the in	nite sequence x is drawn independently
according to D��

We begin by showing that the expected information gain from the 	rst label is at least
that of the second� Let us 	x the pair of instances x�� x� � X that are the 	rst two instances
seen� but let the order of their appearance be chosen uniformly at random� Then we may
write

Ef�P�x�f�x��x����x��x��g
I��x� f�
 �
�

�
HP�"F

� �x��� �
�

�
HP�"F

� �x���

where the subscript x � f�x�� x��� �x�� x��g of the expectation indicates that x is chosen
uniformly at random from these two ordered pairs� and we recall the notation HP�"� for the
entropy with respect to P of a partition " on F �

To obtain an expression for the expected value of I� under these same conditions� we use
the additivity of information�

Ef�P�x�f�x��x����x��x��g
I��x� f�


� HP�"F
� �x�� x����Ef�P�x�f�x��x����x��x��g
I��x� f�


� HP�"F
� �x�� x����

�

�
HP�"F

� �x����
�

�
HP�"F

� �x���

��



However� since the partition "F
� �x�� x�� is a re	nement of the partitions "F

� �x�� and "F
� �x���

we have �see e�g� Renyi 
��
�

HP�"F
� �x�� x��� � HP�"F

� �x��� �HP�"F
� �x���

Thus

Ef�P�x�f�x��x����x��x��g
I��x� f�
 �
�

�
HP�"F

� �x��� �
�

�
HP�"F

� �x���

� Ef�P�x�f�x��x����x��x��g
I��x� f�


Since x� and x� were arbitrary� we may write

Ef�P�x�D�
I��x� f�
 � Ef�P�x�D�
I��x� f�


Now for generalm� we can compare terms of Im and Im�� by 	xing the instances x�� � � � � xm��
on this sequence� then applying the above argument to the version space Fm���hx�� � � � � xm��i� f�
and its corresponding posterior Pm��� giving the desired inequality

Ef�P�x�D�
Im���x� f�
 � Ef�P�x�D�
Im�x� f�


We may apply this result to obtain bounds on the average instantaneous mistake prob�
abilities for the Bayes and Gibbs algorithms on the mth random example in terms of the
average entropy of the partition induced by the 	rst m examples� First note that since the
total expected information gained by the 	rst m labels is Ex�D�
H

P�x�
� with the additivity
of information and the above result� we have

Ef�P�x�D�
Im�x� f�
 �
�

m
Ex�D�
H

P�x�


Thus� using the chain of inequalities ending with Equation ����� we have

Ef�P�x�D�
Bayesm�x� f�
 � Ef�P�x�D�
Gibbsm�x� f�


�
�

�m
Ex�D�
H

P�x�
 ����

For the remainder of the paper we shall 	nd it notationally more convenient to discuss the
instantaneous mistake probability at trial m �as is done in Equation ����� rather than at
trial m� ��

	 Bayesian learning and the VC dimension
 correct

priors

Although we have given upper bounds on both the instantaneous probability of mistake and
the expected cumulative number of mistakes for the Bayes and Gibbs algorithms in terms
of HP

m�x�� we are still left with the problem of evaluating this entropy� or at least obtaining
reasonable upper bounds on it� We can intuitively see that the �worst case� for learning
occurs when the partition entropy HP

m�x� is as large as possible� In our context� the entropy
is qualitatively maximized when two conditions hold�

��



The instance sequence x induces a partition of F that is the largest possible�

The prior P gives equal weight to each element of this partition�

In this section� we move from our Bayesian average�case setting to obtain worst�case bounds
by formalizing these two conditions in terms of combinatorial parameters depending only on
the concept class F � In doing so� we form the link between the theory developed so far and
the VC dimension theory�

The second of the two conditions above is easily quanti	ed� Since the entropy of a
partition is at most the logarithm of the number of classes in it� a trivial upper bound on
the entropy which holds for all priors P is

HP
m�x� � log j"F

m�x�j

Now let D be a distribution on the instance space X and assume that instances in x are
drawn independently at random according to D as in the previous section� Then using
Equation ���� we have that for all P�

Ef�P�x�D�
Bayesm�x� f�
 � Ef�P�x�D�
Gibbsm�x� f�
 �
�

�m
Ex�D�
log j"

F
m�x�j
 ����

and using Equation ���� that

Ef�P�x�D�

mX
i��

Bayes i�x� f�
 � Ef�P�x�D�

mX
i��

Gibbs i�x� f�
 �
�

�
Ex�D�
log j"

F
m�x�j
 ����

The expectation
Ex�D�
log j"

F
m�x�j


is the VC entropy de	ned by Vapnik and Chervonenkis in their seminal paper on uniform
convergence 
��
� and plays a central role in their characterization of the uniform conver�
gence of empirical frequencies to probabilities in a class of events� Here we see how simple
information�theoretic arguments can be used to relate the VC entropy to the learning curves
of the Bayes and Gibbs algorithms�

In the remainder of this section we will show how the other combinatorial parameter
introduced in the paper of Vapnik and Chervonenkis� known in the computational learning
theory literature as the Vapnik�Chervonenkis �VC� dimension of the concept class F � can
provide useful bounds on the size of "F

m�x�� and how it can be used directly to give bounds
on the instantaneous probability of mistake that are independent of the prior P and the
distribution D on the instance space X�

We say that the instances x�� � � � � xd � X shatter the concept class F if j"F
m�hx�� � � � � xdi�j �

�d� that is� for every possible labeling of x�� � � � � xd there is some target concept in F that
gives this labeling� For any set S 	 X� the Vapnik�Chervonenkis �VC� dimension of F on S�
denoted dim�F � S�� is the largest d such that there exist instances x�� � � � � xd � S that shat�
ter F � If arbitrarily long sequences of instances from S shatter F then dim�F � S� � 
�
Often S � X� so we abbreviate dim�F �X� by dim�F�� Further� if x � x�� x�� � � � is
an in	nite sequence of instances from X� for each m � � we use dimm�F �x� to denote
dim�F � fx�� � � � � xmg�� Clearly dimm�F �x� � dim�F� for all x and all m�

The VC dimension has been calculated for many of the fundamental concept classes� For
example� if the instance space X � �n and F is the set of all linear threshold functions on

��



X then dim�F� � n��� if the threshold functions are homogeneous �i�e�� the threshold is ��
then dim�F� � n� If F is the set of all indicator functions for axis�parallel rectangles in �n

then dim�F� � �n� also if F is the set of all indicator functions for n�fold unions of intervals
on X � � then dim�F� � �n� These and many other examples are given in the papers of
Dudley 
��
 and Blumer et al� 
�
 and elsewhere�

The following important combinatorial result relating dimm�F �x� and j"F
m�x�j has been

proven independently by Sauer 
��
� Vapnik and Chervonenkis 
��
� and others �see As�
souad 
�
�� for all x�

log j"F
m�x�j � log

dimm�F�x�X
i��

�
m

i

�
� �� � o���� dimm�F �x� log

m

dimm�F �x�
����

where o��� is a quantity that goes to zero as 	 � m�dimm�F �x� goes to in	nity� This result
can be used directly in conjunction with Equations ���� and ���� to get instantaneous and
cumulative mistake bounds� Thus we have that for all P�

Ef�P�x�D�
Bayesm�x� f�
 � Ef�P�x�D�
Gibbsm�x� f�


� �� � o����Ex�D� 

dimm�F �x�

�m
log

m

dimm�F �x�



� �� � o����
dim�F�

�m
log

m

dim�F�
����

and

Ef�P�x�D�

mX
i��

Bayes i�x� f�
 � Ef�P�x�D�

mX
i��

Gibbs i�x� f�


� �� � o����Ex�D�

dimm�F �x�

�
log

m

dimm�F �x�



� �� � o����
dim�F�

�
log

m

dim�F�
����

Haussler� Littlestone and Warmuth 
��
 �Section �� latter part� show that speci	c dis�
tributions D and priors P can be constructed for each of the classes F listed above �i�e��
�homogeneous� linear threshold functions� indicator functions for axis�parallel rectangles and
unions of intervals� for which

Ef�P�x�D�

mX
i��

Bayes i�x� f�
 � ��� o����
dim�F�

�
ln

m

dim�F�
����

This shows that the bound given by Equation ���� is tight to within a factor of �� ln��� � ����
in each of these cases and hence cannot be improved by more than this factor in general� It
also follows that the expected total number of mistakes of the Bayes and the Gibbs algorithms
di�er by a factor of at most about ���� in each of these cases� this was not previously known�
Opper and Haussler 
��
 give a similar comparison between the instantaneous mistake bounds
for the Bayes and Gibbs algorithms for homogeneous linear threshold functions using di�erent
priors and instance space distributions� Finally� note that the simplicity of the derivation of
the bound in Equation ���� makes this a very appealing way to obtain useful average�case
cumulative mistake bounds�

��



Unfortunately the instantaneous mistake bound given in Equation ���� is not as tight as
possible� However� using the results of Haussler� Littlestone and Warmuth 
��
� we can show
that� for all P�

Ef�P�x�D�
Bayesm�x� f�
 � Ex�D�

dimm�F �x�

m

 �

dim�F�

m
����

Ignoring the middle bound for the moment� the proof of this fact is straightforward�
given the results of Haussler� Littlestone and Warmuth 
��
 �which are not straightforward
to prove� as far as we know�� In particular� Theorem ��� of that paper shows that for any
instance space X and any class F of concepts on X� there exists a randomized learning
algorithm A �the ��inclusion graph algorithm� such that for any distribution D on X and
any target concept f in F � when instances x�� � � � � xm are drawn randomly from X according
to D and A is given �x�� f�x���� � � � � �xm��� f�xm���� and xm� the probability that A makes a
mistake predicting f�xm� is at most dim�F��m� It follows that for any prior P on F � when
f is selected at random according to P� the probability that A makes a mistake predicting
f�xm� is at most dim�F��m� Thus the probability of a mistake for Bayes algorithm is also
at most dim�F��m� by the optimality of Bayes algorithm� �From a statistical viewpoint�
here we are just using the fact that the Bayes risk is always less than the maximum risk of
any statistical procedure��

To prove the middle bound of Equation ����� we can generalize the proof of Haussler� Lit�
tlestone and Warmuth�s 
��
 Theorem ��� to obtain this sharper� instance space distribution
dependent form of the bound for the ��inclusion graph algorithm for all target concepts� and
then apply the argument described in the previous paragraph to obtain the desired result�
Alternately� we can also derive the result directly from the lemmas used in establishing their
Theorem ���� This latter approach is outlined in the discussion section of 
��
�

From Equation ���� we can also obtain similar upper bounds for the Gibbs algorithm�
In particular� using Equation ���� and Equation ���� we have for all P�

Ef�P�x�D�
Gibbsm�x� f�
 � Ex�D�

� dimm�F �x�

m

 �

� dim�F�

m
����

Note that in each of Equations ���� and ���� the second inequality gives a bound that is
independent of the distribution D on the instance space� and of the prior P on the concept
class F �

The same speci	c distributions and priors constructed by Haussler� Littlestone and War�
muth 
��
 that we mentioned above also show that for each of the classes F of �homogeneous�
linear threshold functions� indicator functions for axis�parallel rectangles and unions of in�
tervals� there is an instance space distribution D and a prior P such that

Ef�P�x�D�
Bayesm�x� f�
 � �� � o����
dim�F�

�m

This shows that the bound given by Equation ���� is tight to within a factor of ��� in each of
these cases and hence cannot be improved by more than this factor in general� We conjecture
that in fact the lower bound is correct� and thus the upper bounds in Equations ���� and

�Vapnik had obtained the special case of this result for homogeneous linear threshold functions ����� Also�
see ���� for further interesting properties of Ex�D� �dimm�F �x���

��



���� can each be improved by a factor of ���� It should be noted that if this conjecture
holds� then using standard inequalities for partial sums of the harmonic series� the bounds
in Equation ���� could be summed to give bounds similar to those in Equation ����� but
using ln in place of log� As mentioned above� this bound would be best possible as far as
multiplicative constants are concerned�

It is both a strength and a weakness of these bounds that they are given in a form that is
independent of the prior P� and possibly also of the distribution D on the instance space� a
strength because the same upper bounds hold for all P and D� and a weakness because they
may not be tight for speci	c P and D� While it is always possible to construct degenerate P
and D for which these upper bounds are far too high� the real question is how far o� they are
for �typical� or �natural� prior and instance space distributions� as might arise in practice�
The distributions used in the lower bounds from the latter part of Section � of Haussler�
Littlestone and Warmuth 
��
 mentioned above are unfortunately not very natural� However�
in a recent paper 
��
 the natural case in which F is the set of homogeneous linear threshold
functions on �d and both the distribution D and the prior P on possible target concepts
�represented also by vectors in �d� are uniform on the unit sphere in �d is examined� �For
homogeneous linear threshold functions only the directions of the target concept and the
instance matter� so the speci	c choice of the unit sphere is actually immaterial�� In this
case� under certain reasonable assumptions used in statistical mechanics� it is shown that for
m �� d �� ��

Ef�P�x�D�
Bayesm�x� f�
 �
����d

m

�compared with the ���d�m conjectured general upper bound and the d�m proven general
upper bound given for any class of VC dimension d above� and� as was previously shown in

��
�

Ef�P�x�D�
Gibbsm�x� f�
 �
����d

m

�compared with the �d�m general upper bound proven above�� Thus at least in this case�
the bounds are still accurate to within a constant factor�

�� Bayesian learning and the VC dimension
 incor�

rect priors

We now look at how the notion of VC dimension can be used to get better bounds on the
performance of the Bayes and Gibbs algorithms when the prior P is incorrect � that is�
the target concept is actually chosen at random from some di�erent distribution Q on F �
as in Section �� Let us say that the prior P is nondegenerate for F if for any instances
x�� � � � � xm � X and any f � F � we have V P

m �hx�� � � � � xmi� f� � �� that is� P never assigns
zero probability to any legitimate version space from F � Note that by assigning arbitrarily
small probabilities to certain version spaces� the upper bounds given on cumulative mistakes
in Section � can be made arbitrarily high� even for a nondegenerate prior P� The same
holds for the instantaneous mistake bounds� However� the actual probability of mistake� and
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expected total number of mistakes in m trials� are trivially bounded by � and m respectively�
so these bounds cannot be very tight in these extreme cases�

Better�behaved bounds can be obtained using the VC dimension� In particular� in terms
of instantaneous mistake bounds� it can be shown that for any nondegenerate prior P� any
actual distribution Q on F � and any distribution D on the instance space

Ef�Q�x�D�
Gibbs
P
m���x� f�
 � inf

k��

�
lnEx�D�
j"F

m�k�x�� � � � � xm�k�j
 � �

k ln�� �m�k�
�

�

k

�

� �� � o����
dim�F�

m
ln

m

dim�F�
����

where o��� represents a quantity that goes to zero as 	 � m�dim�F� goes to in	nity� A
similar result holds for the Bayes algorithm� but with an additional factor of �� giving

Ef�Q�x�D�
Bayes
P
m���x� f�
 � � inf

k��

�
lnEx�D�
j"F

m�k�x�� � � � � xm�k�j
 � �

k ln�� �m�k�
�

�

k

�

� �� � o����
� dim�F�

m
ln

m

dim�F�
����

The argument required to establish these bounds is fairly lengthy� and hence is given in the
appendix�

Because these bounds do not depend on the distribution Q used to choose the target
concept� they are essentially worst case bounds on the performance of the Bayes and Gibbs
algorithms over all possible target concepts in F � Furthermore� the bounds in the second
inequalities do not depend on the distribution D on the instance space X either� If tighter
versions of these bounds are desired� the distribution�speci	c forms given in the middle
inequalities may be used�

The middle inequalities also have an interesting consequences when F if 	nite� In this
case we note that j"F

m�k�x�� � � � � xm�k�j � jFj for all x�� � � � � xm�k� Hence

Ef�Q�x�D�
Gibbs
P
m���x� f�
 � inf

k��

�
ln jFj� �

k ln�� �m�k�
�

�

k

�
�

ln jFj� �

m
����

since 	 ln�� � ��	� � � for 	 � �� and lim��� 	 ln�� � ��	� � �� A similar result holds for
the Bayes algorithm with an additional factor of two�

A bound similar to that given in Equation ���� is given by Haussler� Littlestone and
Warmuth 
��
� but with a slightly higher constant� As in that paper� it can be shown
that the bound given in Equation ���� holds not only for the Gibbs algorithm but for any
algorithm that always predicts by 	nding a hypothesis in F that is consistent with all the
labels of examples it has seen so far �see the appendix�� This includes the maximum a
posteriori algorithm� which returns the hypothesis with the maximum posterior probability�
mentioned in Section �� Furthermore� a result given in that paper �Theorem ���� shows
that the leading asymptotic constant of � in our bound cannot be improved below � � ��e�
indicating that for bounds of this generality� this is about the best that can be done� It is
unclear how information�theoretic tools� or other VC dimension tools such as those used in
obtaining the results of the previous sections� could be used to give stronger versions of this
result that depend explicitly on the distributions P and Q�

��



�� Learning classes of in�nite VC dimension

One limitation of the basic VC dimension analysis given thus far is the assumption that the
target concept is drawn from a class of 	nite VC dimension� Vapnik has extended the theory
to include the case when F has in	nite VC dimension� but can be decomposed into a sequence
F� � F� � � � � of subclasses with nonzero� 	nite VC dimensions d�� d�� � � �� respectively 
��
�
A typical decomposition might let Fi be all neural networks of a given type with at most i
weights� in which case di � O�i log i� 
�
�

We can also look at this from a Bayesian point of view by letting the prior P be over all
concepts in F � and decomposing it as a linear sum P �

P�
i�� 	iPi� where Pi is an arbitrary

prior over Fi and
P�

i�� 	i � �� We now derive upper bounds on the cumulative number of
mistakes and the instantaneous mistake probabilities for the Bayes and Gibbs algorithms by
bounding the information gain�

Fix the instance sequence x� As in the analysis of Section �� we 	nd it convenient to
replace the random selection of the target concept f � F with a sequence y � f�� �gm� repre�
senting the boolean labels for the 	rst m instances of x� We de	ne Pi�y� � Prf�Pi
f�x�� �
y�� � � � � f�xm� � ym
� This immediately gives P�y� �

P�
i�� 	iPi�y�� Letting HP

m denote
the entropy with respect to P of the partition induced on F by x�� � � � � xm �as was done in
Section ��� we may write

HP
m � �

X
y�f���gm

P�y� logP�y�

� �
X

y�f���gm

�
�X
i��

	iPi�y�

�
log

�
�X
i��

	iPi�y�

�

� �
X

y�f���gm

�X
i��

	iPi�y� log	iPi�y�

� �
X

y�f���gm

�
�X
i��

	iPi�y� log	i �
�X
i��

	iPi�y� logPi�y�

�

� �

�
� �X

i��

	i log	i

X
y�f���gm

Pi�y�

�
A�

�
� �X

i��

	i

X
y�f���gm

Pi�y� logPi�y�

�
A

� �
�X
i��

	i log	i �
�X
i��

	iH
Pi
m

Here we have used the fact � log�x�y� � min�� log x�� log y�� The 	nal expression obtained
shows an interesting decomposition� the sum �

P�
i�� 	i log	i is simply the entropy of the

in	nite sequence of 	 � 	�� 	�� � � �� which we shall denote H�	�� The sum
P�

i�� 	iHPi
m is a

sum of the entropies of the component distributions Pi� weighted by the contribution of each
component to P� Now from Equation ���� we may immediately write

Ef�P

mX
i��

Bayes i�f�
 � Ef�P

mX
i��

Gibbs i�f�


�
�

�

�
H�	� �

�X
i��

	iH
Pi
m

�

��



Recall from Section � that HP
m�x� � log j"F

m�x�j for any F and any prior P on F � By
using a variant of Sauer�s lemma �Equation ���� it can be shown that if the VC dimension
of F is d � �� then

log j"F
m�x�j �

dX
i��

�
m

i

�
� log�md � �� � d log�m� ��

for all m � �� Hence
HPi

m � di log�m� �� for all i�

Combined with the above� this yields	

Ef�P

mX
i��

Bayes i�f�
 � Ef�P

mX
i��

Gibbs i�f�


�
�

�

�
H�	� �

�X
i��

	idi log�m� ��

�

�
�

�

�
H�	� � log�m� ��

�X
i��

	idi

�

We may interpret this 	nal bound as follows� the termH�	� can be regarded as a �penalty�
for our uncertainty as to which Fi the target will be drawn from� Provided the sequence of
	i decreases more rapidly than �

i log i
�roughly�� this penalty will be only a constant number

of mistakes� The term log�m � ��
P�

i�� 	idi is the usual logarithmic bound times a kind
of VC dimension� only now this dimension is actually a kind of �e�ective VC dimension�P�

i�� 	idi� where the contribution of each di is proportional to the weight 	i of Fi� This is
the dominant term in the 	nal bound� and will result in a cumulative mistake bound that is
logarithmic in m provided that

P�
i�� 	idi is 	nite�

Finally� we may obtain bounds on the instantaneous mistake probabilities in the setting
where each instance in x is drawn randomly according to D by applying Equation �����
giving

Ef�P�x�D�
Bayesm�x� f�
 � Ef�P�x�D�
Gibbsm�x� f�


�
H�	�

�m
�

�

�m
Ex�D�

	
�X
i��

	iH
Pi
m �x�




�
H�	�

�m
�

log�m� ��

�m

�X
i��

	idi

�� Conclusions and future research

Perhaps the most important general conclusion to be drawn from the work presented here is
that the various theories of learning curves based on diverse ideas from information theory�
statistical physics and the VC dimension are all in fact closely related� and can be naturally
and bene	cially placed in a common Bayesian framework�

�Somewhat stronger� but more complex upper bounds can be obtained by using more re�ned upper
bounds on

Pd

i��

�
m

i

�
�

��



The focus of our ongoing research is that of making the basic theory presented here
more applicable to the situations encountered by practitioners of machine learning in neural
networks� arti	cial intelligence� and other areas� Below we brie�y mention some extensions
of our model for which we have partial results�

Learning with noise� Here we extend many of our general results relying on information�
theoretic notions to handle the case where the classi	cation labels may be corrupted
by noise�

Learning multi�valued functions� Here we relax the restriction that the target function
have f�� �g�valued output to allow multiple possible output values� These results can
be used to study the learning of real�valued functions� which is often the situation in
empirical neural network research�

Learning with other loss functions� In conjunction with the above extension� here we seek
to generalize the theory by studying measures of a learning algorithm�s performance
other than the f�� �g�loss function studied here� A typical choice is the quadratic loss�
often used to obtain the standard sum�of�squared�errors measure for real�valued or
vector�valued functions�
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Appendix

Here we give the derivation of Equations ���� and ����� First we will need to establish a few
lemmas�

Lemma � Let M be an arbitrary n by m matrix of �s and �s� Suppose that t of the m
columns of M are selected at random without replacement and eliminated� along with all
rows of M that have a � in any of these columns� Let M � be the remaining matrix� Let the
random variable 
 denote the maximum number of �s in any row of M �� or � if M � is empty�
Then

E�
� �
lnn � �

ln�m��m� t��
� �

where the expectation is over the random choice of the t columns�

��



Proof� Let k � m� t� Clearly � � 
 � k� For each j� � � j � k� let pj be the probability
that 
 � j� Then

E�
� �
kX

j��

pj

Now 	x j� and 	x a particular row of M that has r � j �s� If we choose t of the m columns at
random and eliminate all rows that contain a � in any of these columns� then the probability
that this row is not eliminated is


m�r
t

�


m
t

� �
�m� r�#k#

�k � r�#m#
�

k�k � �� � � � �k � r � ��

m�m� �� � � � �m� r � ��
�

�
k

m

�r

�

�
k

m

�j

Hence the probability that there is any row of M with j or more �s that is not eliminated is
at most min��� n�k�m�j�� Since 
 � j only if there is a row of M with j or more �s that is
not eliminated� it follows that

pj � min��� n�k�m�j�

Thus

E�
� �
kX

j��

min��� n�k�m�j�

� s � n
�X

j�s��

�k�m�j for any s � �

� s � n
�k�m�s��

� � �k�m�

� s �
nk

m� k
e�s ln�m�k�

Let s be the least integer greater than

ln� nk
m�k

ln�m�k��

ln�m�k�

Making this substitution and simplifying� we obtain

E�
� �
lnn � ln��k��m� k�� ln�m�k�� � �

ln�m�k�
� �

Since ln�x� � x� � for all x � �� we have

ln�m�k� � �m�k�� � � �m� k��k�

and thus ln��k��m� k�� ln�m�k�� � �� It follows that

E�
� �
lnn � �

ln�m�k�
� �

giving the result�
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Lemma � Let P be a nondegenerate prior distribution on F � Let x�� � � � � xm be any sequence
of instances in the instance space X and f be any �unknown� target concept in F � Suppose
that t�� of the m instances x�� � � � � xm are selected uniformly at random without replacement�
we are given the values of f on the �rst t of these instances� and we are asked to predict the
value of f on the last instance� Then if we use the Gibbs learning algorithm with prior P�
or indeed any learning algorithm that always predicts by selecting a hypothesis in F that is
consistent with all the examples it has seen so far� the probability that we predict incorrectly
is at most

lnn� �

�m� t� ln�m��m� t��
�

�

m� t

where n � j"F
m�x�� � � � � xm�j� Furthermore� if we use the Bayes algorithm with prior P� the

probability that we predict incorrectly is at most twice this value�

Proof� Choose a representative fi � F for each equivalence class of "F
m�x�� � � � � xm�� for

� � i � n� De	ne the n by m matrix M by letting Mi�j � � if fi�xj� � f�xj� and Mi�j � �
otherwise� Thus each row in M indicates for which instances in x�� � � � � xm the functions in
the ith equivalence class will predict the wrong label� In particular� the row representing the
equivalence class of f itself is all �s�

Let us assume that the instances xj�� � � � � xjt�� are chosen at random without replacement
from x�� � � � � xm and that we are given the value of f on the 	rst t of these chosen instances�
Consider the problem of predicting the value of f on xjt�� � Suppose we are using a learning

algorithm that predicts by choosing a hypothesis �f from F that is consistent with the labels
it has seen so far� that is� �f�xj�� � f�xj��� � � � � �f�xjt� � f�xjt�� The Gibbs algorithm is one
such algorithm� Since all that matters as far as mistakes in prediction on points in x�� � � � � xm
is concerned is the equivalence class of the hypothesis chosen� any such learning algorithm
corresponds to choosing a row i in M with a � in each of the t columns j�� � � � � jt� Now since
the t� �st instance xjt�� is randomly chosen from among the m� t instances left after the
	rst t instances are chosen� the probability �with respect to the choice of this t��st random
instance but 	xing the choice of the 	rst t instances� that the label of the t � �st instance
is predicted incorrectly is ri��m� t�� where ri is the number of �s in the row i of M chosen
by the algorithm�

Let M � be the matrix obtained from M by eliminating the t columns j�� � � � � jt� and
eliminating any row that has a � in any of these columns� Note that M � is nonempty since
M has an all � row� Then for any row i chosen by a consistent learning algorithm we have
ri��m� t� � 
��m� t�� where 
 is the maximum number of �s in any row of M �� It follows
that the probability �with respect to the random choice of all t� � instances� that the label
of this t��st instance is predicted incorrectly is at most E�
���m�t�� where the expectation
is with respect to the random choice of the 	rst t instances� By the previous lemma�

E�
�

m� t
�

lnn� �

�m� t� ln�m��m� t��
�

�

m� t

This gives the 	rst result�
For the second result� again assume that the instances xj�� � � � � xjt are the 	rst t instances

selected at random �without replacement� from x�� � � � � xm and de	ne the matrix M � as
above� Given the labels f�xj��� � � � � f�xjt�� let Pt be the posterior distribution induced on F
as de	ned in Section �� For each i let pi denote the probability� with respect to Pt� of the

��



equivalence class represented by row i of the matrix M �� Since P is nondegenerate� pi � �
for each row i of M ��

Let us de	ne the mistake weight ��j� of column j of M � by letting

��j� �
X
i

piMi�j

Thus ��j� is the total posterior probability of all rows that have a � in column j� Note
that a mistake is made by the Bayes algorithm in predicting the label of the t��st random
instance xjt�� with probability � if the mistake weight ��jt��� � ���� and with probability
��� if ��jt��� � ���� Thus this probability of a mistake on the t��st random instance is at
most ���m � t�� where � is the number of columns in M � with mistake weight at least ����

Let us de	ne the total mistake weight � of M � by � �
P

j ��j�� Since the number of
columns with mistake weight at least ��� is at most twice the total mistake weight of all
columns� we have � � ��� However� since � �

P
i�j piMi�j �

P
i piri� where ri is the number

of �s in row i of M �� it is also clear that � � 
� where 
 is the maximum number of �s in
any row of M �� Hence� the probability of a mistake for the Bayes algorithm on the t� �st
random instance is at most �
��m� t�� The remainder of the proof is as above�

Theorem � Let P be a nondegenerate prior on F and Q be any distribution on F � Let D be
a distribution on X� Assume the target function f is drawn at random from F according to
Q� Suppose that t�� instances are selected independently at random with replacement from
X according to D� Assume we are given the values of f on the �rst t of these instances� and
we are asked to predict the value of f on the last instance� Then if we use the Gibbs learning
algorithm� or indeed any learning algorithm that always predicts by selecting a hypothesis in
F that is consistent with all the examples it has seen so far� the probability that we predict
incorrectly is at most

inf
k��

�
lnEx�Dt�k�"F

t�k�x�� � �

k ln�� � t�k�
�

�

k

�

If we use the Bayes algorithm� the probability that we predict incorrectly is at most twice this
value� Further� if d � dim�F� �
� then this value is at most

�� � o����
d

t
ln

t

d

where o��� represents a quantity that goes to zero as t�d goes to in�nity�

Proof� Fix k � � and let m � t� k� Fix the target concept f � F � The previous lemma
shows that for any 	xed sequence x � �x�� � � � � xt�k� of instances from X� if we randomly
select t� � of these� and use the labels of the 	rst t to predict the label of the t� �st� then
using any consistent learning algorithm� the probability we predict incorrectly is at most

lnn� �

�m� t� ln�m��m� t��
�

�

m� t
�

lnn� �

k ln��� t�k�
�

�

k
����

where n � j"F
t�k�x�j� Since this bound holds for any 	xed sequence x � X t�k� it also holds

if the xis in x are drawn independently with replacement from any distribution on X� when
n is replaced with Ex�Dt�k �j"F

t�k�x�j�� However� when x�� � � � � xt�k are drawn independently

��



with replacement from some 	xed distribution D and then t� � of these t� k instances are
selected at random �without replacement�� the overall distribution on the set of all possible
sequences of the resulting t� � instances is the same if they were directly selected from D
independently with replacement� Hence� for each k � �� the value ���� above is a bound
on the probability of a mistake in predicting the label of the last instance in a sequence of
t��� drawn independently with replacement� given the labels of the 	rst t variables� Finally�
since this bound holds for any target f � F � it also holds in expectation when the target
f is selected at random according to any distribution Q on F � This gives the 	rst result of
the theorem� The argument is similar for the result about the Bayes algorithm� using the
second part of the previous lemma�

To establish the last result� note that by Sauer�s lemma �Equation ������

lnEx�Dt�k�"F
t�k�x�� � �� � o����d ln

t� k

d

Let k � dt ln�t�d�e� Then

lnEx�Dt�k�"F
t�k�x�� � �

k ln�� � t�k�
�

�

k
�

�� � o����d ln t�t ln�t�d�
d

t ln�t�d� ln�� � �� ln�t�d��

�
�� � o����d ln�t�d�

t ln�t�d� ln�� � �� ln�t�d��

�
�� � o����d

t ln�� � �� ln�t�d��

� �� � o����
d

t
ln

t

d

This gives the result�
Note that the trick employed in the proof above of varying the additional number of

instances k to get better averages has also been used in 
��
 and 
��
 to get other bounds on
related measures based on the VC dimension�
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