
Error-Correcting Output Coding
for Text Classification

Adam Berger

School of Computer Science

Carnegie Mellon University

Pittsburgh PA 15213

aberger@cs.cmu.edu

Abstract

This paper applies error-correcting output cod-
ing (ECOC) to the task of document cate-
gorization. ECOC, of recent vintage in the
AI literature, is a method for decomposing a
multiway classification problem into many bi-
nary classification tasks, and then combining
the results of the subtasks into a hypothesized
solution to the original problem. There has
been much recent interest in the machine learn-
ing community about algorithms which inte-
grate “advice” from many subordinate predic-
tors into a single classifier, and error-correcting
output coding is one such technique. We pro-
vide experimental results on several real-world
datasets, extracted from the Internet, which
demonstrate that ECOC can offer significant
improvements in accuracy over conventional
classification algorithms.

1 Introduction

Error-correcting output coding is a recipe for solving
multi-way classification problems. It works in two stages:
first, independently construct many subordinate clas-
sifiers, each responsible for removing some uncertainty
about the correct class of the input; second, apply a
voting scheme to decide upon the correct class, given
the output of each weak learner. Recent experimental
work has shown that ECOC offers improvements over
standard k-way classification methods in domains rang-
ing from cloud classification [Aha and Bankert, 1997]
to speech synthesis [Bakiri and Dietterich, 1999], and a
number of theories have been proposed for its success
[James, 1998]. In this paper, we explore the application
of error-correcting output coding to document catego-
rization.

The idea of “classifying by consensus” using a large
number of independently-constructed classifiers has ap-
peared in a number of other guises recently in the ma-
chine learning literature. The technique of bagging, for
instance, involves generating multiple training sets by
sampling with replacement, learning a classifier from
each generated set, and allowing the learned classifiers to

vote on the correct class for a unlabeled object [Breiman,
1996a]. Boosting can be viewed as a special case of
bagging where the sampling is adaptive, concentrating
on misclassified training instances [Freund and Schapire,
1997]. Voting methods have also been applied to combin-
ing multiple neural networks trained on the same data
[Perrone, 1993] and applying different types of classifiers
to the same problem [Quinlan, 1993].

Why consensus algorithms work so well in practice
is still an open question. As a step in that direction,
theoretical work has recently established that combin-
ing multiple runs of a classification algorithm can re-
duce its variance [Breiman, 1996b]. Unlike most voting
algorithms, the constituent classifiers in error-correcting
output coding aren’t all solving the same problem; in
fact, they are each solving a distinct binary classification
problem. [Kong and Dietterich, 1995] have shown that
this property of the ECOC algorithm bestows on it, in
addition to the variance-reduction property of all voting
methods, the ability to correct for bias in the constituent
classifiers.

This paper applies ECOC to the problem of text cat-
egorization: given a database of documents, each an-
notated with a label or set of labels, learn a mapping
Λ : x→ {y} from documents to labels. Text categoriza-
tion by computer—such as the automatic assignment of
index terms to medical research papers [Yang and Chute,
1994]—has been a central concern in the field of bib-
liometrics for many years, but the recent flood of on-
line text has increased the interest in and applications
for text categorization. Internet-related classification re-
search has addressed the problem of learning to collect
interesting postings to electronic discussion groups based
on a user’s predilections [Lang, 1995], automatically clas-
sifying web pages by content [Craven et al., 1998], and
suggesting web pages to a user based on his or her ex-
pressed preferences [Pazzani et al., 1996].

We focus here on a restricted version of the general
classification problem—namely, we imagine documents
have exactly one correct labeling, meaning that the Λ
mapping is a function. The databases we employ for ex-
perimental purposes in Section 4 have this and an addi-
tional convenient characteristic: each label is well repre-
sented in the data. Under these conditions, the method

of Naive Bayes classification is highly competitive. How-
ever, Section 4 demonstrates that in this setting, error-
correcting output coding consistently outperforms Naive
Bayes. Further experiments reported there suggest that
ECOC will be of utility in the sparse-data domain as
well.

This paper will proceed as follows. The next section
introduces the technique of error-correcting output cod-
ing and its application to text classification. An ECOC
classifier relies on a binary “coding matrix,” and Sec-
tion 3 discusses some considerations in selecting this ma-
trix. Section 4 describes a series of experiments to vali-
date the claim that ECOC offers improvements on stan-
dard classification techniques. Section 5 relates ECOC
to Naive Bayes and k-nearest neighbor, another high-
performance classification algorithm, and Section 6 con-
cludes by outlining some directions for future work in
ECOC-based text categorization.

2 Error-correcting output coding

We describe the technique of error-correcting output
coding with a simple example: the task of classifying
newswire articles into the m = 4 categories {politics,
sports, business, arts}. To begin, one assigns a
unique n-bit vector to each label (where n > log2m):

label coding

politics 0110110001
sports 0001111100
business 1010101101
arts 1000011010

One can view the ith bitvector as a unique coding for
label i. For this reason (and others, which will soon
become apparent), we’ll refer to the set of bitvectors as
a code and denote it by C. The ith row of C we will write
as Ci, and the value of the jth bit in this row as Cij .

The second step in constructing an ECOC classifier is
to build an individual binary classifier for each column of
the code—10 classifiers in all, in this case. The positive
instances for classifier j are documents with a label i
for which Cij = 1. The third classifier, for instance, has
the responsibility of distinguishing between documents
whose label is sports or arts and those whose label is
politics or business. Heeding to convention, we refer
generically to any algorithm for predicting the value of
a single bit as a “plug-in classifier” (PiC). A PiC, then,
is a predictor of whether a document belongs to some
fixed subset of the classes.

To summarize, training an ECOC classifier consists of
learning a set Λ = {λ1, λ2 . . . λn} of independent binary
classifiers. With Λ in hand, one can hypothesize the cor-
rect class of an unlabeled document x as follows. Eval-
uate each independent classifier on x, generating a n-bit
vector Λ(x) = {λ1(x), λ2(x), . . . λn(x)}. Most likely, the
generated bitvector Λ(x) will not be a row of C, but it
will certainly be closer (in Hamming distance ∆, say) to
some rows than to others. Categorizing the document
x involves selecting argmini ∆(Ci,Λ(x)), the label i for

politics arts

business

sports

politics arts

business

sports

politics arts

business

sports

politics arts

business

sports

Figure 1: Decision boundaries for the first three plug-in
classifiers corresponding to the code given above. Clock-
wise from upper left: all decision boundaries, bit 1, bit
2, bit 3.

Algorithm 1
Training an ECOC document classifier

Input: Documents {x1, x2, . . . xD};
Labelings {y1, y2, . . . yD} (with m distinct
labels);
Desired code size n ≥ log

2
m

Output: m by n coding matrix C;
n classifiers {λ1, λ2 . . . λn}

1. Generate a m by n 0/1 coding matrix C

2. Do for j ∈ [1, 2 . . . n]

– Construct two superclasses, Sj and S̄j. Sj

consists of all labels i for which Cij = 1,
and S̄j is the complement set.

– Construct a binary classifier λj to
distinguish Sj from S̄j.

which Ci is closest to Λ(x). (If more than one row of C
are equidistant to Λ(x), select one arbitrarily.) For in-
stance, if the generated bitvector Λ(x) = {1010111101},
the document would receive the label business.

To the extent that rows of C are well-spaced in Ham-
ming distance, the classifier will be robust to a few errant
PiCs. This is the idea behind error-correcting codes as
well: to transmit a point in the m-dimensional cube reli-
ably over a noisy channel, map it to one of a set of well-
separated “fixed points” in a higher-dimensional cube;
to recover the original point, find the closest fixed point
to the point actually received and take its preimage in
the original cube.

In general, λj(x) may not be a 0/1 value, but a real-
valued probability, measuring the classifier’s confidence
that document x belongs in the j’th superclass. In this
case, one can search for the nearest neighbor according
to some Lp distance, rather than Hamming distance. In

Algorithm 2
Applying an ECOC document classifier

Input: Trained ECOC classifier: m by n coding
matrix C and n classifiers {λ1, λ2 . . . λn};
Unlabeled document x

Output: Hypothesized label y for x

1. Do for j ∈ [1, 2 . . . n]

– Compute λj(x)---the confidence with which
PiC j believes x ∈ Sj.

2. Calculate ∆(Λ(x), Ci) =
∑n

j=1
| λj(x) − Cij | for

i ∈ [1, 2 . . . m].

3. Output argmini ∆(Λ(x),Ci)

the experiments reported in Section 4, the plug-in clas-
sifiers output a probability, and we compute the nearest
neighbor according to L1 distance.

2.1 The Naive Bayes classifier

The PiC we relied most heavily on in constructing ECOC
classifiers is the Naive Bayes classifier [Lewis, 1998].
Naive Bayes assumes that a document is generated by
selecting a label y according to a prior distribution p(y),
and then independently selecting words w for the docu-
ment according to a distribution p(w | y). The probabil-
ity of generating a document W = {w1, w2 . . . wN} of N
words from label y is thus

p(W | y) =

N
∏

i=1

p(wi | y) (1)

Used for prediction, the Naive Bayes classifier selects for
an unlabeled document W the most likely label, given
by

argmax
y

p(y |W) = argmax
y

p(y)p(W | y)

= argmax
y

p(y)

N
∏

i=1

p(wi | y) (2)

where the first equality follows from Bayes’ Law.

2.2 Why should ECOC classification work?

Some standard classification algorithms such as back-
propagation [Rumelhart et al., 1986] are best suited to
distinguishing between two outcomes. A natural way to
combine such algorithms to predict from among k > 2
outcomes is to construct k independent predictors, as-
signing predictor i the task of deciding whether the ith
outcome obtains. To build the classifier, construct m
individual classifiers, where the positive examples for
classifier λi are those documents with label i. To ap-
ply the classifier to an unlabeled document x, select
i? = argmaxi λ

i(x)—the label whose classifier produces
the highest score. This is what some call the one versus
rest strategy. This method is a special case of ECOC
classification where C is the m by m identity matrix.

To see why one might expect ECOC classification to
outperform a one-vs.-rest approach, consider the prob-
lem of learning to classifying fruit. Imagine that within
the labeled set of examples used to train the individual
one-vs.-rest classifiers, the only yellow fruit are bananas.
So λbanana will learn a strong association between a yel-
low color and bananas. Now provide a yellow grape-
fruit to the trained one-vs.-rest classifier. The value of
λgrapefruit(x) will likely be close to one—after all, the ob-
ject in question is round and grapefruit-sized, despite not
being red like all the grapefruits encountered in training.
But the value of λbanana(x) will be very close to one,
and the system will misclassify the object as a banana.
ECOC classification is less “brittle” than the one-vs.-rest
approach: the distributed output representation means
one errant subordinate classifier won’t necessarily result
in a misclassification. This is a circuitous way of saying
that ECOC reduces variance of the individual classifiers.

Many classification algorithms, including decision
trees, exponential models, and neural networks have the
capability to directly perform multiway (k > 2) classifi-
cation. A reasonable classification strategy with these
algorithms is to construct a single, monolithic classi-
fier. But the monolithic classifier faces a difficult task.
Imagining the classes as clouds in a large-dimensional
feature space, a single classifier must learn all the deci-
sion boundaries simultaneously, whereas each PiC of an
ECOC classifier learns only a relatively small number of
decision boundaries at once. Moreover, (assuming n is
sufficiently large) an ECOC classifier learns each bound-
ary many times, and is forgiving if a few PiCs place the
input x on the wrong side of some decision boundaries
[Kong and Dietterich, 1995].

3 Choosing a good code

Early work on error-correcting output coding looked to
algebraic coding theory, and in particular to the family
of linear codes, for a coding matrix C. An n-bit lin-
ear error-correcting code, a subspace of the vertices on
a n-dimensional cube, can be defined as the span of an
n-column binary matrix G, called a generator matrix.
Error-correcting codes are often measured on the mini-
mum distance between any two linear combinations of G.
BCH codes [MacWilliams and Sloane, 1977], a popular
class of linear algebraic error-correcting codes, have the
useful property that their codewords (all different linear
combinations of rows of G) are well separated. Using
such a matrix for ECOC classification is for this reason
an attractive possibility, and some ECOC classification
work has used BCH codes as a coding matrix.

However, subsequent ECOC work has established that
ECOC classification should perform well when the cod-
ing matrix C is constructed randomly—specifically, by
choosing each entry Cij uniformly at random from {0, 1}.
This section provide some statistical and combinatorical
arguments for why this should be the case. Section 3.1
summarizes some results from [James, 1998] and Sec-
tion 3.2 is new.

3.1 A statistical perspective

Definition: Given a database D of (document, la-
bel) pairs (x, yx) with empirical distribution p̃(y, x), the
Bayes classifier is β(x) ≡ argmaxi p̃(yx = i | x).

The Bayes classifier assigns to a document x the label
which appears most often in the database D with x. In
terms of classification accuracy on D, the Bayes classifier
is the best possible strategy. In the present setting, it
is reasonable to assume documents don’t occur multiple
times with different labels in the collection, and so the
Bayes classifier simply selects the label of the document
in D. During the training phase, all document labels are
available and so we have access to the Bayes classifier.
But in applying the classifier we do not. Yet the Bayes
classifier will still turn out to be a useful concept, as
the following definition and theorem from [James, 1998]
suggest.

Definition: A classification algorithm Λ built from
subordinate classifiers {λ1, λ2, . . .} is Bayes consistent
if, whenever the λi are Bayes classifiers, so too is Λ.

Loosely speaking, a Bayes consistent classifier con-
structed from accurate PiCs will be accurate. This is
a property one would like to achieve in an ECOC classi-
fier. The next theorem states the conditions under which
this is achievable.

Theorem 1 Assuming C was constructed randomly, the
ECOC classifier becomes consistent as n→∞.

This theorem is not saying that with enough bits, an
ECOC classifier will do arbitrarily well. Consistency of
an ECOC classifier doesn’t guarantee correctness—since
the PiCs aren’t themselves producing Bayes estimates.
Still, this theorem suggests why a random construction
of C performs well.

3.2 A combinatorial perspective

The example code presented earlier has the unfortunate
property that the third and tenth columns are equal.
Therefore, the corresponding classifiers will learn pre-
cisely the same task. This is a permissible situation,
though hardly desirable. Not permissible is when two
rows of C are equal, for then the code cannot distin-
guish between the corresponding labels. Fortunately, for
a randomly-generated binary code with sufficiently many
columns, the probability of such an event is miniscule:
for a code with m labels and n bits, the probability is

1−

m−1
∏

i=1

(

1−
i

2n

)

,

which is one for n = log2m but approaches zero quickly
thereafter as n increases.

More generally, if two rows in C are close in Ham-
ming distance, an ECOC classifier built from C is apt to
confuse the corresponding labels. We’ll write ∆(Ci, Ci′)
as the Hamming distance between rows i and i′ of C,

and ∆min(C) as the minimum distance between any two
codewords. If the PiCs produce binary outputs, then
the ECOC classifier can always recover from at least
b∆min(C)/2c incorrect PiC outputs. The following theo-
rem is a statement about how much row separation one
can possibly hope for in a coding matrix.

Theorem 2 For any m by n binary matrix C, there ex-

ist two rows which differ in at most n
2

(

m
m−1

)

bits.

Proof Let H be the minimum distance between any
two rows of one such matrix C. Select two rows
i, j ∈ [1, 2 . . .m] with replacement. Select a column
k ∈ [1, 2 . . . n]. The probability that Cik 6= Cjk is

pdiff ≥

(

m− 1

m

)

H

n

Now select a column k ∈ [1, 2 . . . n], and then select two
rows i, j ∈ [1, 2 . . .m] with replacement. The probability
that Cik 6= Cjk is no greater than 1/2. Combining these
inequalities to solve for H gives the result. 2

This shows that, as m becomes large, a relative spac-
ing of one half is optimal. If we consider only square
matrices, there exists an explicit construction which
achieves this bound; namely, the Hadamard matrix. For
general 0/1 matrices we are not aware of an explicit con-
struction meeting this bound, but the following result
suggests that a random construction is likely to have
good separation.

Theorem 3 Define a well row-separated m by n binary
matrix as one in which all rows have a minimum relative
Hamming separation at least

1

2
− 4

√

logm

n

The probability that a randomly-constructed binary ma-
trix is not well row-separated is at most 1/m4.

Proof Given is a randomly-constructed C. Fix two
different rows r1 and r2. For i ∈ [1, 2 . . . n], define the
random variable xi as

xi =

{

+1 if r1[i] = r2[i]
−1 otherwise

Let S =
∑

xi. For a randomly-constructed C, E[S] = 0,
which corresponds to an n/2 Hamming distance between
the rows. We are interested in the probability that S �
0. Using Chernoff bounds,

Pr(S > 4
√

n logm) < e−8 log m =
1

m8
.

There are
(

m
2

)

rows in C, and so the probability that no
pair of rows is too close is

Pr ≤

(

m

2

)

1

m8
≤

1

m4

2

Although attention in the ECOC literature has gen-
erally concentrated on finding a C with good row sep-
aration, a perhaps equally important desideratum is a
large separation between columns. Columns that are
close give rise to classifiers which are performing nearly
the same task—in the extreme case, two equal columns
corresponding to two identical classifiers. With only a
slight change, Theorem 3 shows that random matrices
are likely to have good column separation as well, pro-
viding another justification for constructing a code ran-
domly.

In practice, a large column separation in C is not quite
sufficient to ensure good performance, because of a de-
generacy inherent in binary classification. Many classifi-
cation algorithms treat 0 and 1 symmetrically, and so if
two columns of C are complementary (or nearly so), the
corresponding PICs will learn identical (or nearly iden-
tical) classification tasks. What we really want, then,
is a matrix whose rows are pairwise well-separated, but
not too well-separated. The following corollary to Theo-
rem 3 shows that a randomly-selected matrix is, asymp-
totically, very likely to have this property.

Corollary: Define a strongly well-separated m by n
binary matrix as a matrix any two rows of which have a
relative Hamming separation in the range

[

1

2
− 4

√

logm

n
,
1

2
+ 4

√

logm

n

]

The probability that a randomly-constructed binary ma-
trix is not strongly well row-separated is at most 2/m4.

4 Experimental results

We applied error-correcting output coding classification
to four real-world text collections, all extracted from the
Internet1. All corpora were subject to the same prepro-
cessing: remove punctuation, convert dates and mone-
tary amounts and numbers to canonical forms, map all
words to uppercase, and remove words occurring twice
or less. Table 1 summarizes some salient characteristics
of these datasets.

• 20 Newsgroups: This is a collection of about
20, 000 documents, culled from postings to 20
Usenet discussion groups [Lang, 1995]. The docu-
ments are approximately evenly distributed among
the 20 labels.

• Four universities: This (misnamed) dataset con-
tains web pages gathered from a large number of
university computer science departments [Craven
et al., 1998]. The pages were manually clas-
sified into the categories {course, department,

faculty, staff, student, project, other}.

• Yahoo science: Following [Baker and McCallum,
1998], we automatically extracted the entire Yahoo

1The 20 newsgroups and four universities datasets are
publicly available at www.cs.cmu.edu/˜textlearning.

collection documents labels words
20 newsgroups 19997 20 60915
4 universities 8263 7 29004
Yahoo science 10158 41 69939
Yahoo health 5625 36 48110

Table 1: Particulars on the four training datasets used.
Each dataset was partitioned five separate times into a
3/4−1/4 training/test split, and the numbers are statis-
tics from the last of these trials. The last column reports
the number of distinct words in the collection, excluding
those appearing once or twice.

science hierarchy in early 1999, and formed a la-
beled collection containing 41 classes by collapsing
the hierarchy to the first level.

• Yahoo health: This corpus was collected in
the same way as the science collection, but has
rather different characteristics. In particular, many
of its 36 classes are highly confusable, present-
ing a difficult task for classification algorithms.
For instance, three of the labels in this collec-
tion are Health Administration, Hospitals And

Medical Centers, and Health Care.

Figure 2 plots ECOC classification accuracy against
code size n for these four corpora. The codes C were con-
structed by selecting entries uniformly at random from
{0, 1}, except in the case of the 4 universities dataset, for
which the columns of C were a random permutation of
the 126 unique, non-trivial 7-bit vectors. The plots also
display the results of standard Naive Bayes classification.

From an implementation standpoint, a larger value of
n incurs a penalty in speed. (This may be an issue in
high-throughput systems such as a text filtering systems
designed to route relevant news articles to many users,
each with their own preferences. However, Figure 2 sug-
gests that, to a point, larger values of n offer more ac-
curate classification. And beyond that point, accuracy
doesn’t tail off, as is the case in many other learning al-
gorithms for classification, which are prone to overfitting
when the number of parameters becomes large.

The four universities dataset was the only collection
on which ECOC classification didn’t significantly out-
perform Naive Bayes one-vs.-rest classification. The
ECOC classifier’s performance on this collection is al-
most poignant: error rate steadily decreases until n =
126, at which point there simply are no more unused,
non-trivial 7-bit columns to add to C.

In the collections we are considering, each label is well-
represented in the data and models p(w | y) can be well
estimated. In this setting the standard Naive Bayes
method is highly competitive [Lewis, 1998]. For this
reason, we use a Naive Bayes classifier as the PiC in the
ECOC classifiers corresponding to Figure 2. However,
on datasets with poorly-represented labels, Naive Bayes
can starve for a lack of data. With an eye towards such
collections, we explored using a feature-based classifica-

0

20

40

60

80

100

1 5 10 20 100 500 2000

%
 e

rr
or

bits

20 Newsgroups

0

20

40

60

80

100

1 4 8 20 50 126

%
 e

rr
or

bits

Four universities

0

20

40

60

80

100

1 5 10 20 41 100 500 2000

%
 e

rr
or

bits

Yahoo science

0

20

40

60

80

100

1 5 10 20 36 100 500 2000

%
 e

rr
or

bits

Yahoo health

Figure 2: Performance of ECOC classification as a function of code size. Naive Bayes classifiers served as the PiCs.
Each point reflects an average over five randomized training/test splits, and the bars measure the standard deviation
over these trials. The horizontal line is the behavior of standard one-vs.-rest Naive Bayes. All points are averaged
over five trials with a randomized C and randomized 3/4− 1/4 training/test split of the data.

tion approach as the ECOC PiC. Specifically, we trained
binary decision trees to predict the individual bits in an
ECOC code; the questions at the nodes of each tree were
of the form Did word w appear in the document? We do
not expect such a classifier to match the best reported
performance on this dataset, since this algorithm only
considers whether a word occurs in a document and not
how often. However, Figure 3 does suggest that for suf-
ficiently high n, combining decision trees into an ECOC
classifier improves performance over a one-vs.-rest deci-
sion tree approach, which augurs well for the application
of ECOC to larger, sparse datasets.

Truly meaningful values of n lie in the range
[log2m, 2

m]. A code of size n < log2m cannot even
assign a distinct bitvector to each label; at the other
extreme, a code of size n > 2m must contain duplicate
columns, which corresponds to two PiCs learning the
same task. (A tighter upper bound is actually (2m−1)/2:
the −1 comes about since the all-zero vector corresponds
to a trivial classifier, and the denominator arises from the
0/1 degeneracy mentioned above).

0

20

40

60

80

100

1 5 10 20 100 500

%
 e

rr
o
r

bits

20 Newsgroups (Tree)

Figure 3: Performance of ECOC classification as a func-
tion of code size, for a decision tree PiC with a Bernoulli
event model which takes no account of multiple appear-
ances of a word in a document. Each point reflects a
single trial using a randomized 3/4 − 1/4 training/test
partition of the 20 newsgroups collection. The horizontal
line is the one-vs.-rest decision tree performance.

5 Discussion

The results of the previous section suggest that up to a
point, classifier performance improves with n. A simple
calculation shows why this should be so.

Assume for the moment that the PiCs only output bi-
nary values, and the errors committed by any two PiCs
are independent of one another. Denote by pi the prob-
ability of error by the ith PiC, and let p̂ ≡ maxi pi. If
the minimum distance of C is ∆min, then classification
is robust to any b∆min/2c or fewer errors, and so the
probability of a correct classification, as a function of n,
is

p(n) ≥

b∆min/2c
∑

k=0

(

n

k

)

p̂k(1− p̂)n−k (3)

The quantity on the right—the first b∆min/2c terms of
the binomial expansion of p + (1 − p)—is monotoni-
cally increasing in ∆min, which itself increases with n
for a randomly-constructed code. Section 4 shows that
in practice, p(n) eventually plateaus, which means that
the assumption that the errors are uncorrelated is false.
This is hardly surprising: after all, the individual classi-
fiers were trained on the same data. One would expect
a correlation between, for instance, the second and third
columns of the code presented in Section 2.

5.1 Relation to Naive Bayes

We have already seen that the one-vs.-rest strategy is a
special case of ECOC classification. It is not difficult to
see that the standard Naive Bayes approach is an im-
plementation of ECOC classification. Notice that Naive
Bayes is clearly a one-vs.-rest technique: predicting from
amongm classes requires constructingm classifiers (each
consisting of a prior p(y) and a class-specific distribution
p(w | y)), and selecting a label y? via (2). But this just
amounts to using as a code C them bym identity matrix,
and then applying Algorithm 2 using an Lp norm.

5.2 Relation to k-nearest neighbor

A popular approach to text classification, particularly
competitive for very large and sparse datasets, is k-
nearest neighbor (kNN). kNN relies on a map ψ : x→ ~v
from documents x to N -dimensional vectors ~v. The en-
tries of the latter may be word counts or, more gen-
erally, a list of feature values. A kNN classifier stores
the images of all training set documents in a database
V = {~v1, ~v2, . . .}. To classify an unlabeled document x,
kNN finds the k vectors in V closest to ψ(x), and takes
a weighted vote of their labels.
kNN and ECOC have some superficial similarities.

Both use for classification a data structure consisting of a
set of vectors, and both search this data structure using
a nearest-neighbor algorithm, linear in the size of the
data structure. One distinction—of particular impor-
tance when the size of the training set becomes large—is
that while ECOC’s data structure consists of a single
vector for each label, kNN must store a vector for each
document in the training set.

6 Conclusion

We have described an application of error-correcting out-
put coding to the problem of automatic text categoriza-
tion. The recent explosion in availability of online text
lends an extra importance, if not urgency, to this prob-
lem, and also suggests a source of experimental data.
In fact, the experiments reported in Section 4 were all
conducted on data gathered from the Internet. Those
experiments offer compelling empirical evidence for the
effectiveness of ECOC in text categorization.

This paper reports just some initial proof of concept
experiments. There is yet much unexplored terrain,
and it is our belief that coding theory has more to say
about classification. For instance, a useful class of error-
correcting codes for digital transmission is erasure codes,
which are robust to some fraction of lost bits. If the PiCs
produce probabilities, then one could view a classifier λ
which is sufficiently indecisive (λ(x) ≈ 1/2) as a “lost
bit”; an ECOC classifier containing λ could ignore λ in
attempting to recover the label of the document.

Although we presented evidence suggesting the ben-
efits of random codes, there are settings in which one
would expect a structured code to be preferable. For
instance, performing a nearest-neighbor search in high
dimensional space can be expensive, prohibitively so for
high-throughput systems. However, one might still be
able to reap the benefits of high-n error-correcting out-
put coding without actually conducting the full search.
Using a deterministic code with some structure, like a
BCH code, may allow the user to replace the Θ(nm)
exhaustive search with a Θ(n) search at a slight cost
in accuracy. For just this reason, real-world digital en-
coding/decoding systems—such as modems, CD play-
ers, satellites, and digital cell phones—rely on structured
codes.

Furthermore, the theoretical arguments which argue
in favor of random codes are predicated on the assump-
tion, untenable in most real-world data, that the er-
rors made by the individual predictors are uncorrelated.
In fact, textual data often contain strong correlations,
which a classifier ignores at its own peril. For instance,
the astronomy and space classes in the Yahoo science
category have a strong overlap in word usage—evidenced
by the confusion matrices of classifiers we have con-
structed on this data. A promising direction for im-
provement is to combine the ECOC approach with some
form of word or document clustering, by designing a code
which captures the inherent “clumpiness” of the data. In
particular, a well-engineered code could reflect a hierar-
chical decomposition of the problem: first determine if
the document belongs to either astronomy or space, and
only then decide which of these classes is most appropri-
ate.

Acknowledgments

The author thanks Tom Dietterich, Adam Kalai, John
Lafferty, and Kamal Nigam for suggestions on an early
draft, and the “theory lunch group” at CMU for sug-

gestions leading to the material in Section 3.2. This
research was supported in part by an IBM Cooperative
Fellowship.

References

[Aha and Bankert, 1997] D. Aha and R. Bankert. Cloud
classification using error-correcting output codes. Ar-
tificial Intelligence Applications: Natural Resources,
Agriculture, and Environmental Science, 11:1:13–28,
1997.

[Baker and McCallum, 1998] D. Baker and A. McCal-
lum. Distributional clustering for text classification.
In Proceedings of SIGIR, 1998.

[Bakiri and Dietterich, 1999] G. Bakiri and T. Diet-
terich. Achieving high-accuracy text-to-speech with
machine learning. Data mining in speech synthesis,
1999.

[Breiman, 1996a] L. Breiman. Bagging predictors. Ma-
chine Learning, 26:2:123–140, 1996.

[Breiman, 1996b] L. Breiman. Bias, variance, and arcing
classifiers. Technical report, Statistics Department,
Stanford University TR-460, 1996.

[Craven et al., 1998] M. Craven, D. DiPasquo, D. Fre-
itag, A. McCallum, T. Mitchell, K. Nigam, and
S. Slattery. Learning to extract symbolic knowledge
from the World Wide Web. In Proceedings of the 15th
National Conference on Artificial Intelligence (AAAI-
98), 1998.

[Freund and Schapire, 1997] Y. Freund and R. Schapire.
A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer
and System Sciences, 55(1):119–139, 1997.

[James and Hastie, 1997] G. James and T. Hastie. The
error coding method and PiCTs. Journal of Compu-
tational and Graphical Statistics, 7:3:377–387, 1997.

[James, 1998] G. James. Majority vote classifiers: the-
ory and applications. PhD thesis, Stanford University,
1998.

[Kong and Dietterich, 1995] E. Kong and T. Dietterich.
Error-correcting output coding corrects bias and vari-
ance. In Proceedings of the 12th International Confer-
ence on Machine Learning, pages 313–321, 1995.

[Lang, 1995] K. Lang. Newsweeder: Learning to filter
news. In Proceedings of the 12th International Con-
ference on Machine Learning, pages 331–339, 1995.

[Lewis, 1998] D. Lewis. Naive (Bayes) at forty: The in-
dependence assumption in information retrieval. In
Proceedings of the European Conference on Machine
Learning, 1998.

[MacWilliams and Sloane, 1977] F. MacWilliams and
N. Sloane. The theory of error-correcting codes. North
Holland: Amsterdam, The Netherlands, 1977.

[Pazzani et al., 1996] M. Pazzani, J. Muramatsu, and
D. Billsus. Syskill & Webert: Identifying interesting

web sites. In Proceedings of the National Conference
on Artificial Intelligence, 1996.

[Perrone, 1993] M. Perrone. Improving regression es-
timation: Averaging methods for variance reduction
with extensions to general convex measure optimiza-
tion. PhD thesis, Brown University, 1993.

[Quinlan, 1993] J. Quinlan. Combining instance-based
and model-based learning. In Proceedings of the In-
ternational Conference on Machine Learning. Morgan
Kaufman, 1993.

[Rumelhart et al., 1986] D. Rumelhart, G. Hinton, and
R. Williams. Learning representations by back-
propagating errors. Nature, 323:533–536, 1986.

[Yang and Chute, 1994] Y. Yang and C. Chute. An ap-
plication of expert network to clinical classification
and Medline indexing. In Proceedings of the 18th An-
nual Symposium on Computer Applications in Medical
Care (SCAMC’94), volume 18 (Symp.Suppl), pages
157–161, 1994.

