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Decision trees

1 Supervised learning
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Figure 1: Toy set of records (UCI)

Islides thanks to Carlos Guestrin@CMU
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2 Univariate trees for classification
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Figure 2: Decision tree, 1 layer.
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Figure 3: Decision tree, 2 layers.

REMARK: not capable of classifying data not seen in training
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Figure 4: Decision tree, complete

3 Tree splitting

Finding the smallest decision tree in NP-complete. Use a heuristic:
e start with an empty decision tree
e split on the best feature.

® recurse

3.1 Entropy-based gain

1A)

H(Y)= Zp(yj)logz(w

Entropy after split by X feature

HY|X)= ZP (z4) ZP (yjlz:) logQ( B )

yj|$1)

Mutual information (or Information Gain).

IG(X) = H(Y) — HY|X)
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Figure 5: Entropy for 2-valued distribution

At each split we are going to choose the feature that gives the highest information gain.

Y

ol
>

(T (Al
M| |[m|A|T|A| 4

Figure 6: 2 possible features to split by
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HY|XYHY=-HY|X'=T)+-HY|X'=F) = ~(=log, = + =log, =) ~ 4

(Y|x) = S H(Y] )+ S H(Y] ) =0+ 5 (3 logy 7 + logy 7) ~ 405
IGXY) =H(Y) - H(Y|X") = .954 — 405 = .549

1 1 1.1 1 3 3. 1.1 11 1
H(Y|X?) = §H(Y|X2 =T)+ 5H(Y|X2 =F)= §<Z logy 7 + 7 logs Z) + 5(5 logy 5 + 5 logy 5) ~ .905

IG(X?) = H(Y) — H(Y|X?) = .954 — .905 = .049



Information gains uzing the training set (40 records)
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Figure 7: Information gain




4 When to stop splitting

e matching records have the same attribute value. REMARK: H(Y) =0
e No attributes can further distinguish records. REMARK : H(Y|X) = H(Y) for any feature X

4.0.1 O information gain case in general
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Figure 8: ”Do not split” VS ”split” when Information gain is 0

5 Real-valued inputs

If the input values of X are real (and/or continuous), then splitting branches by feature-values are not
feasible. Instead find the best threshold ¢ for the feature X.

HY|X :t)=P(X <t)H(Y|X <t)+ P(X > )H(Y|X > 1)
IG(X :t)=H(Y) - H(Y|X : )

Find ¢ that maximizes IG(X : t). To do so, a possibility is to consider all ¢ of the form (x; + z;4+1)/2, where
1,Z2, ..., Ly are the values of feature X in the training set.
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Figure 9: Real-valued information gain and decision tree

6 Regression trees

Lets say that fro each node m, x,, is the set of datapoints reaching that node.
Estimate a predicted value per tree node

ZtEXm Yt
I9m = —/— [ —
[Xom|

Calculate mean square error

_ ZteX"L (yt - gm)2
Xml

How to choose the next split. If E,, < 6, then stop splitting. Otherwise choose the split that realizes the
maximum drop in error for all all brances. Say we are considering feature X with branches x1, xs, ..., T,
and lets call x,,; the subset of )., for which X = z;.

Em

G — ZtGij Y
" |ij|
: (Yt — gmj)?
m

We shall choose X such that E/, (X) is minimized, or the drop in error is maximized.
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Figure 10: Regression tree
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Figure 11: Regression fit
7 Pruning

If a tree is "too small”, the model does not capture all structure of data, or it underfits. if the tree is too big,
it captures structure that is too local and it cannot be generalized (overfits). Pruning helps heuristically to
find the appropriate tree size.

Pre-pruning If a tree node contains less that, say, 5% of the training set, stop splitting (even if there
are features with positive information gain).

Post-pruning Grow the tree until all positive information gains are used for splitting; then find the
overfitting subtrees and merge them together. To do so, we need a pruning set (separate from testing or
validation sets): if merging subtrees does not increase the classification error on the pruning set (by more
than €), then we merge the subtrees.

8 Rules extraction

Go over the branches of the tree and write down the splits. For example, for the tree in figure 9, some rules
are:

IF (CYlinders<5) AND (horsepower<94) AND (maker= asia) THEN "predict good"

IF (cylinders>=5) AND (acceleration<19) THEN "predict bad"

Rules extraction directly from data. Also based on Information gain, but it traverses the data DFS
instead of BFS.



O Multivariate tree

In a multivariate tree, the splitting criteria can be a functional of more than one feature. For example, at
the root we can have the following split:

cylinders * 20 + horsepower < 180
More generally, a binary linear multivariate node m split can look like
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Figure 12: Multivariate split

Such splits can be extremely powerful (if data is linearly separable, a single split at root can create a
perfect classification); even more complex splits can be obtained using nonlinear split functions.

However, finding a good multivariate split is not anymore a matter of brute force: there are 2¢ (];[ ) possible
splits (or hyperplanes). Later on in the course we will discuss linear classification and how good hyperplanes
can be obtained without an exhaustive search.
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