Decision trees¹

Virgil Pavlu September 16, 2008

1 Supervised learning

mpg	cylinders	displacement	horsepower	weight	acceleration	modelyear	maker
good	4	low	low	low	high	75to78	asia
bad	6	medium	medium	medium	medium	70to74	america
bad	4	medium	medium	medium	low	75to78	europe
bad	8	high	high	high	low	70to74	america
bad	6	medium	medium	medium	medium	70to74	america
bad	4	low	medium	low	medium	70to74	asia
bad	4	low	medium	low	low	70to74	asia
bad	8	high	high	high	low	75to78	america
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
:	:	:	:	:	:	:	:
bad	8	high	high	high	low	70to74	america
good	8	high	medium	high	high	79to83	america
bad	8	high	high	high	low	75to78	america
good	4	low	low	low	low	79to83	america
bad	6	medium	medium	medium	high	75to78	america
good	4	medium	low	low	low	79to83	america
good	4	low	low	medium	high	79to83	america
bad	8	high	high	high	low	70to74	america
good	4		medium	low	medium	75to78	europe
bad	5	medium	medium	medium	medium	75to78	europe

40 Records

Figure 1: Toy set of records (UCI)

 $^{^1}$ slides thanks to Carlos Guestrin@CMU

2 Univariate trees for classification

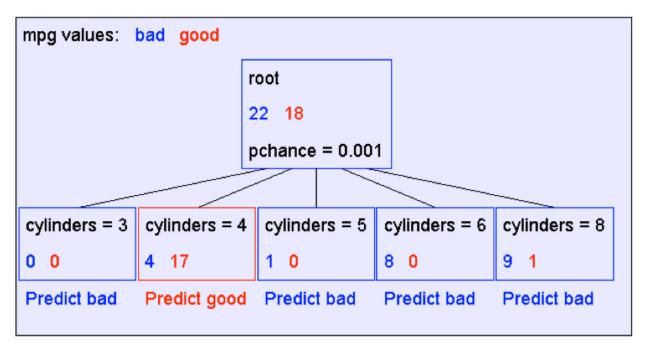


Figure 2: Decision tree, 1 layer.

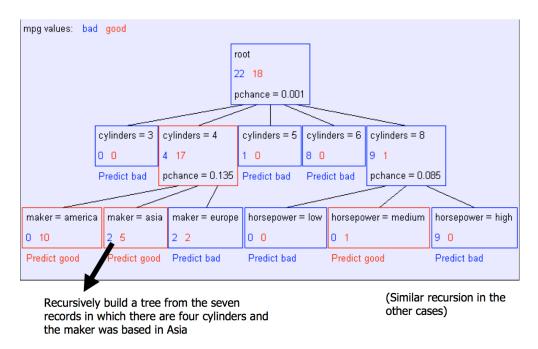


Figure 3: Decision tree, 2 layers.

REMARK: not capable of classifying data not seen in training

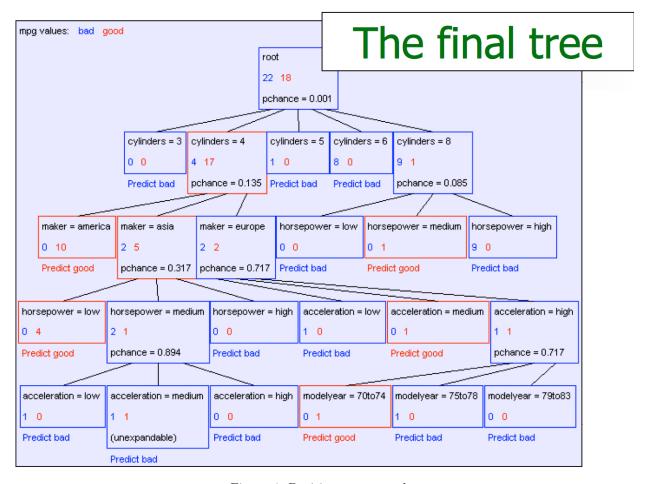


Figure 4: Decision tree, complete

3 Tree splitting

Finding the smallest decision tree in NP-complete. Use a heuristic:

- start with an empty decision tree
- split on the best feature.
- recurse

3.1 Entropy-based gain

$$H(Y) = \sum_{j} P(y_j) \log_2(\frac{1}{P(y_j)})$$

Entropy after split by X feature

$$H(Y|X) = \sum_{i} P(x_i) \sum_{j} P(y_j|x_i) \log_2(\frac{1}{P(y_j|x_i)})$$

Mutual information (or Information Gain).

$$IG(X) = H(Y) - H(Y|X)$$

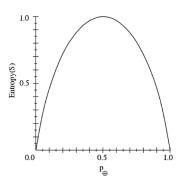


Figure 5: Entropy for 2-valued distribution

At each split we are going to choose the feature that gives the highest information gain.

X ¹	X ²	Υ
Т	Т	H
Т	F	Т
Т	Т	Т
Т	F	Т
F	Т	Т
F	F	F
F	Т	F
F	F	F

Figure 6: 2 possible features to split by

$$H(Y|X^{1}) = \frac{1}{2}H(Y|X^{1} = T) + \frac{1}{2}H(Y|X^{1} = F) = 0 + \frac{1}{2}(\frac{1}{4}\log_{2}\frac{1}{4} + \frac{3}{4}\log_{2}\frac{3}{4}) \approx .405$$
$$IG(X^{1}) = H(Y) - H(Y|X^{1}) = .954 - .405 = .549$$

$$H(Y|X^2) = \frac{1}{2}H(Y|X^2 = T) + \frac{1}{2}H(Y|X^2 = F) = \frac{1}{2}(\frac{1}{4}\log_2\frac{1}{4} + \frac{3}{4}\log_2\frac{3}{4}) + \frac{1}{2}(\frac{1}{2}\log_2\frac{1}{2} + \frac{1}{2}\log_2\frac{1}{2}) \approx .905$$

$$IG(X^2) = H(Y) - H(Y|X^2) = .954 - .905 = .049$$

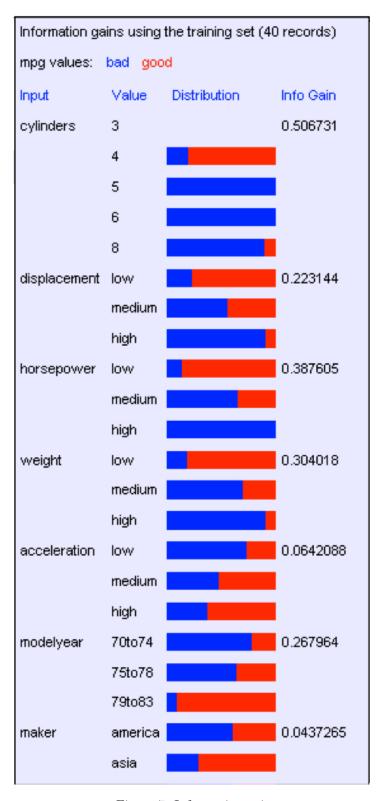
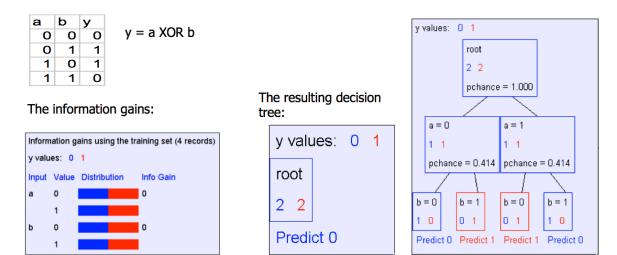


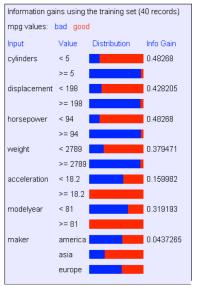
Figure 7: Information gain

4 When to stop splitting

- matching records have the same attribute value. REMARK: H(Y) = 0
- No attributes can further distinguish records. REMARK: H(Y|X) = H(Y) for any feature X

4.0.1 0 information gain case in general




Figure 8: "Do not split" VS "split" when Information gain is 0

5 Real-valued inputs

If the input values of X are real (and/or continuous), then splitting branches by feature-values are not feasible. Instead find the best threshold t for the feature X.

$$H(Y|X:t) = P(X < t)H(Y|X < t) + P(X \ge t)H(Y|X \ge t)$$

$$IG(X:t) = H(Y) - H(Y|X:t)$$

Find t that maximizes IG(X:t). To do so, a possibility is to consider all t of the form $(x_i + x_{i+1})/2$, where $x_1, x_2, ..., x_n$ are the values of feature X in the training set.

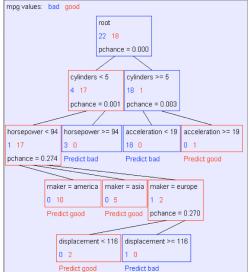


Figure 9: Real-valued information gain and decision tree

6 Regression trees

Lets say that fro each node m, χ_m is the set of datapoints reaching that node.

Estimate a predicted value per tree node

$$g_m = \frac{\sum_{t \in \chi_m} y_t}{|\chi_m|}$$

Calculate mean square error

$$E_m = \frac{\sum_{t \in \chi_m} (y_t - g_m)^2}{|\chi_m|}$$

How to choose the next split. If $E_m < \theta$, then stop splitting. Otherwise choose the split that realizes the maximum drop in error for all all brances. Say we are considering feature X with branches $x_1, x_2, ..., x_k$, and lets call χ_{mj} the subset of χ_m for which $X = x_j$.

$$g_{mj} = \frac{\sum_{t \in \chi_{mj}} y_t}{|\chi_{mj}|}$$

$$E'_{m}(X) = \frac{\sum_{j} \sum_{t \in \chi_{mj}} (y_{t} - g_{mj})^{2}}{|\chi_{m}|}$$

We shall choose X such that $E'_m(X)$ is minimized, or the drop in error is maximized.

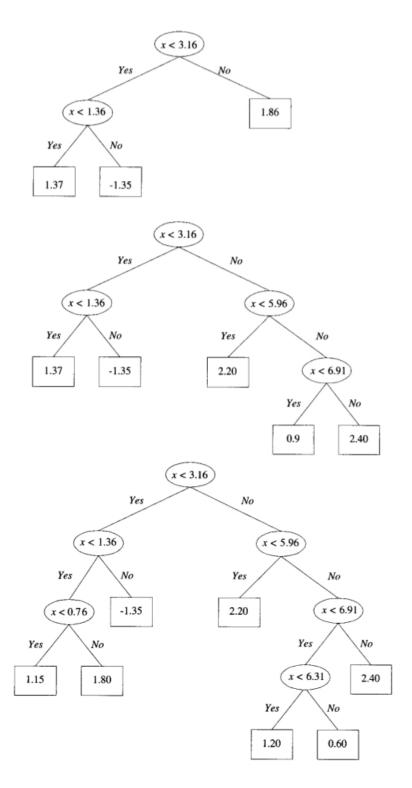


Figure 10: Regression tree

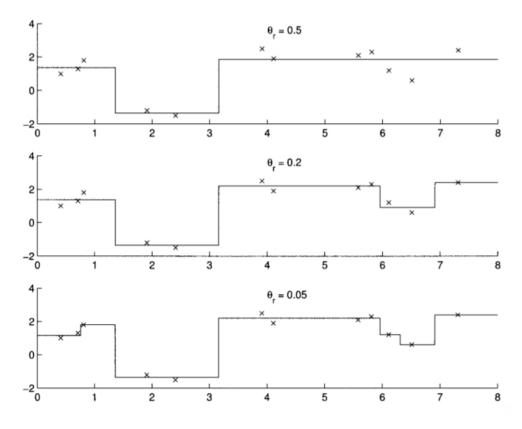


Figure 11: Regression fit

7 Pruning

If a tree is "too small", the model does not capture all structure of data, or it *underfits*. if the tree is too big, it captures structure that is too local and it cannot be generalized (*overfits*). Pruning helps heuristically to find the appropriate tree size.

Pre-pruning If a tree node contains less that, say, 5% of the training set, stop splitting (even if there are features with positive information gain).

Post-pruning Grow the tree until all positive information gains are used for splitting; then find the overfitting subtrees and merge them together. To do so, we need a pruning set (separate from testing or validation sets): if merging subtrees does not increase the classification error on the pruning set (by more than ϵ), then we merge the subtrees.

8 Rules extraction

Go over the branches of the tree and write down the splits. For example, for the tree in figure 9, some rules are:

```
IF (CYlinders<5) AND (horsepower<94) AND (maker= asia) THEN "predict good" IF (cylinders>=5) AND (acceleration<19) THEN "predict bad"
```

Rules extraction directly from data. Also based on Information gain, but it traverses the data DFS instead of BFS.

9 Multivariate tree

In a multivariate tree, the splitting criteria can be a functional of more than one feature. For example, at the root we can have the following split:

$${\tt cylinders}*20 + {\tt horsepower} < 180$$

More generally, a binary linear multivariate node m split can look like

$$w^{1}x^{1} + w^{2}x^{2} + ... + w^{d}x^{d} + w^{0} > 0$$

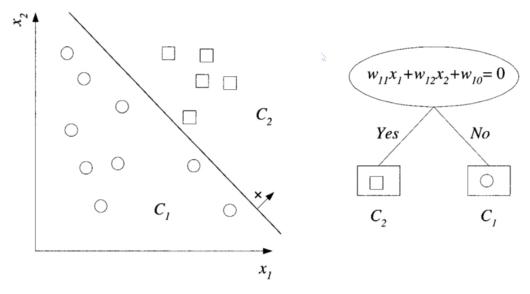


Figure 12: Multivariate split

Such splits can be extremely powerful (if data is linearly separable, a single split at root can create a perfect classification); even more complex splits can be obtained using nonlinear split functions.

However, finding a good multivariate split is not anymore a matter of brute force: there are $2^d \binom{N}{d}$ possible splits (or hyperplanes). Later on in the course we will discuss linear classification and how good hyperplanes can be obtained without an exhaustive search.